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Introduction

This text is a reduced English version of the material prepared for my combustion class at the
RWTH Aachen Technical University. It is intended as an introduction to the fundamentals of com-
bustion science with the aim to supply the basic notions and equations for more detailed numerical
investigations. With modern computational tools and facilities numerical calculations with large
codes aiming to predict the performance of combustion devices such as furnaces, reciprocative
engines and gas turbines are feasible. Whether they will partly or fully replace experimental in-
vestigations will largely depend on the reliability of the combustion models used. While there is
a large scientific community concerned with Computational Fluid Dynamics and the improvement
of turbulence models, the know-how in combustion modeling seems to be restricted to specialists.
The reason for this is the complexity of the subject which requires advanced knowledge in thermo-
dynamics, chemical kinetics and fluid mechanics. At the interface of these disciplines combustion
emerges as a science which is able to predict rather than to merely describe experimentally ob-
served phenomena. In order to classify combustion phenomena it has been useful to introduce
two types of situations with respect to mixing: Premixed and non-premixed combustion. For lami-
nar flames issuing from a tube burner these two models of combustion are shown in Fig. 1. If fuel
and air are already mixed within the tube, as in the case of a Bunsen burner, and the gas is ignited
downstream, a premixed flame front will propagate towards the burner until it finds its steady state
position in the form of the well-known Bunsen cone. The fundamental quantity which describes
this mode of combustion is the laminar burning velocity. It is the velocity at which the flame front
propagates normal to itself into the unburned mixture. For the steady state Bunsen cone the burn-
ing velocity therefore must be equal to the flow velocity v,, normal to the flame front. Behind the
flame front yet unburnt intermediates as CO and Hs will mix with the air entrained from outside
and lead to post flame oxidation and radiation. The other mode of combustion is that in a diffusion

flame. Here no air is mixed with the fuel within the tube of the burner. This may be achieved but
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Figure 1: Different modes of laminar combustion

using a simply tube or by closing the air inlet in a Bunsen burner. Then only fuel issues from the
tube as shown in the second picture in Fig. 1. It mixes with the surrounding air by convection
and diffusion during combustion. Optimal conditions for combustion are restricted to the vicinity of
the surface of stoichiometric mixture. This is the surface where fuel and air are locally mixed in a
proportion that allows both to be entirely consumed. This will lead to the highest flame tempera-
ture and, due to the temperature sensitivity of the chemical reactions, to the fastest reaction rates.
Since in most cases combustion is much faster than diffusion the latter is the rate limiting step that
controls the entire process. This is the reason why those flames, where the reactants are initially
non-premixed, are called diffusion flames. Premixed flames appear with a blue to bluish-green
color, while diffusion flames radiate in a bright yellow color. The blue color of premixed flames is
due to chemiluminescence of some excited species (C, and CH radicals), while the yellow color of
diffusion flames is caused by radiating soot particles which dominate over the chemiluminescence
that is also present in at the base of a diffusion flame. Close to the burner there appears blue layer
since the local residence time is too short for soot particles to be formed. This leads to the conclu-

sion that the color of a flame is characteristic for the available residence time rather than the mode



of mixing. Premixed Flames are used whenever intense combustion is required within a small
volume. This is the case in household appliances and spark ignition engines. In such an engine
a premixed turbulent flame front propagates from the spark through the combustion chamber until
the entire mixture is burnt. An example for non-premixed combustion are Diesel engines, where
a liquid fuel spray is injected into the compressed hot air within the cylinder. It rapidly evaporates
and mixes with the air and then auto-ignition under partly premixed conditions. The final stage
at combustion occurs under non-premixed conditions. Finally, large combustion devices such as
furnaces, operate under non-premixed conditions because premixing of large volumes of fuel and
air would represent a serious safety hazard.

The classification of combustion phenomena into premixed and non-premixed combustion is
used throughout this text. After an introduction into the basic thermodynamics of combustion sys-
tems in Lecture 1, a simplified calculation of the adiabatic flame temperature and an approximate
calculation of equilibrium constants is presented in Lecture 2. The balance equations of fluid dy-
namics are presented shortly in Lecture 3, laminar premixed flames are treated in Lecture 4-7 and
laminar diffusion flames in Lectures 8 and 9. Then an introduction into turbulent combustion is
given in Lecture 10. Premixed turbulent combustion is presented in terms of the regime diagram
in Lecture 11, the level set approach and the turbulent burning velocity is presented in Lectures
12 and 13, while non-premixed turbulent combustion is treated in Lecture 14. Finally, in Lecture
15 applications in engines closes the text. In preparing these lectures and the text | have enjoyed
the support from many of my students and friends. | am particular indebted to Bernd Binninger for
cross-reading the manuscript and for the preparation of many of the figures. | could also rely on

the efficiency of Sonja Engels in preparing the manuscript.



Lecture 1

Thermodynamics of Combustion

Systems

Combustion is a mass and energy conversion process during which chemical bond energy is
transformed to thermal energy. The fuel reacts with the oxygen of the air to form products such
as carbon dioxide and water which have a lower enthalpy of formation or reference enthalpy than
the reactants. The details of the reaction mechanism that leads from the reactants to the products
will be presented by other lectures of this summer school. In this lecture we will only consider
the initial and the final state of a homogeneous system and use the classical balance laws of
thermodynamics. This global view is much simpler and leads in Lecture 2 to some useful results
such as the adiabatic flame temperature. We will first present definitions of concentrations and
other thermodynamic variables and present the mass and energy balance for multicomponent

systems.

1.1 Mole Fractions and Mass Fractions

When chemical species react with each other to form other species, their basic constituents, the
chemical elements are conserved. The particular atom defining the element, a C atom within a
CH,4 molecule, for example, will be found within the CO, molecule after combustion is completed.
In order to describe the chemical transformation between species quantitatively, we need to intro-

duce definitions for concentrations. Since different descriptions are being used in the combustion



literature, it is useful to present these first and to relate them to each other.

1.2 The Mole Fraction

We consider a multi-component system with & different chemical species that contains a large
number of molecules. Then 6.0236 - 1023 molecules are defined as one mole. The number of moles
of species i denoted by n; and its sum is the total number of moles n

k
ng = an (1.1)
i=1

The mole fraction of species 7 is now defined

Uz

Xi=2 i=1,2,... k. (1.2)

)
ns

1.2.1 The Mass Fraction

The mass m; of all molecules of species i is related to its number of moles by
mi:Wini, i:1,2,...,k, (13)

where W; is the molecular weight of species i. For some important species in combustion W is

given in Tab. 2.1. The total mass of all molecules in the mixture is

k
m = Zmi‘ (1.4)
i=1

The mass fraction of species ¢ is now defined

v, =2 =192,k (1.5)
m
Defining the mean molecular weight W by
m=Wns (1.6)



one obtains the relation between mole fractions and mass fractions as

W; .
Vim giXe i=1.20 0k (1.7)

The mean molecular weight may be calculated if either the mole fractions or the mass fractions

are known

W= iWiXi - [Z i} o (1.8)

1.2.2 The Mass Fraction of Elements

In addition, the mass fraction of elements is very useful in combustion. While the mass of the
species changes due to chemical reactions, the mass of the elements is conserved. We denote
by m; the mass of all atoms of element j contained in all molecules of the system. If a;; is the
number of atoms of element j in a molecule of species i and W is the molecular weight of that
atom, the mass of all atoms j in the system is

“ ay W, ;
mi= Brtmi, j =12 ke, (1.9)
i=1 t

where k. is the total number of elements in the system. The mass fraction of element j is then

Z—:@:i“iﬂwjy—:%ia--x- J=1,2,...k (1.10)
7 m v Wi i Wi:1 174315 9 Ly eeeylve, .

Notice that no meaningful definition for the mole fraction of elements can be given because only
the mass of the elements is conserved. From the definitions above it follows that

k k ke
doXi=1, ) Yi=1, ) Z =1 (1.11)

i=1 i=1 j=1

1.2.3 The Partial Molar Density

An additional variable defining a concentration, that is frequently used in chemical kinetics, is the

number of moles per unit volume or partial molar density

(Xi]| ==, i=1,2,... .k, (1.12)

10



where V is the volume of the system. The molar density of the system is then
n k
Vs = [Xi]. (1.13)
=1

1.2.4 The Partial Density
The density and the partial density are defined

m m; .
==, pi=— = pY;, =1,2,... k. 1.14
P=v Pi= g =P i (1.14)

The partial molar density is related to the partial density and the mass fraction by

pi  pYi .
X)) =PL Pl 10

k. (1.15)

1.2.5 The Thermal Equation of State

In most combustion systems of technical interest the law of ideal gases is valid. Even for high
pressure combustion this is a sufficiently accurate approximation because the temperatures are
typically also very high. In a mixture of ideal gases the molecules of species i exert on the sur-
rounding walls of the vessel the partial pressure p;

% =

pYi
Wi

pi = [(XGRT = ELRT, i=1,2,... k. (1.16)

Here R is the universal gas constant equal to 8.3143 J/mol/K. Dalton’s law states that for an
ideal gas the total pressure is equal to the sum of the partial pressures. This leads to the thermal
equation of state for a mixture of ideal gases

RT  pRT
p=Y pi=n =200 (1.17)

where Egs. (1.6) and (1.14) have been used. From Egs. (1.16), (1.17), and (1.2) it follows that the
partial pressure is equal to the total pressure times the mole fraction

pZ:lea 2217217k (118)

11



Furthermore, defining the partial volume by

V= WRT ok (1.19)
p

it follows that an equivalent relation exists for the partial volume

Vi=VX;, i=12,....k (1.20)

1.2.6 Stoichiometry

Equations describing chemical reactions such as

1
Hy + 502 = H0 (1.21)
or
k
H+ O, k:f OH+ O (1.22)

are based on the principle of element conservation during reaction and define the stoichiometric
coefficients v/ of the reactant i on the left hand side and v/’ of the product i on the right hand side.
The first example above corresponds to a global reaction while the second one, where the equal
sign is replaced by arrows, denotes an elementary reaction that takes place with a finite reaction
rate (conf. Lecture 2). Formally a reaction equation may be cast into the form

k k
S UM = M (1.23)
=1 =1

where M; stands for the chemical symbol of species i. The net stoichiometric coefficient

vi=vl —v, i=1,2,...,k (1.24)

79

is positive for products and negative for reactants. A system of r elementary reactions may formally
then be written

k
> waMi=0, 1=1,2,...r (1.25)
=1

where v;; is the net stoichiometric coefficient of species 7 in reaction /.
The stoichiometry defined by the reaction equation relates the molar production or consumption

12



of species to each other. The change of the number of moles of species i to that of species 1 is

dni _dm ok (1.26)

v 1

With Eq. (1.3) the relation between the partial masses is

dmi - dm1

= 7
I/iWi I/1W1 ’ ’ ’

Il
N

k. (1.27)
Since the total mass in the system is independent of the chemical reaction (while the total number
of moles is not), the relation between mass fractions is

dy;  dv;
I/Z'Wi o V1W17

i=2,... k. (1.28)

A fuel-air mixture is called stoichiometric, if the fuel-to-oxygen ratio is such that both are entirely
consumed when combustion to CO, and H2O is completed. For example, the global reaction

describing the combustion of a single component hydrocarbon fuel C,,H,, (subscript F) is
vpCmH, + 15,02 = 140, CO2 + 141, H2 O (1.29)

the stoichiometric coefficients are

n
R

vp =1, V62:m+4

VGo, =M Vig,o = g (1.30)

where vf, may be chosen arbitrarily to unity. Stoichiometric mixture requires that the ratio of the

number of moles of fuel and oxidizer in the unburnt mixture is equal to the ratio of the stoichiometric

coefficients )
N0, ,u Yo,
—| == (1.31)
NE .y Ist Vg
or in terms of mass fractions ,
Yoru| _ Yo, Vou _ (1.32)
YF,u st U{;\WF ’

where v is called the stoichiometric mass ratio. Then fuel and oxidizer are both consumed when

combustion is completed. Integrating Eq. (1.28) with i = O2, 1 = F between the initial unburnt

13



state (subscript ©) and any later state leads to

Yo, = Yo,u _ Yr — Y
O Dz _ T T (1.33)
VO2W02 VFWF

This may be written as
VYF — Y02 = VYFyu — Yo%u. (134)

For a stoichiometric mixture fuel and oxygen are completely consumed at the end of combustion,
Yr = Yo, = 0. Introducing this into Eqgs. (1.34), (1.32) is recovered.

1.2.7 The Mixture Fraction

The mixture fraction is an extremely useful variable in combustion, in particular for diffusion flames
(Lectures 9, 10, 12, and 13). Here we present it first for a homogeneous system. In a two-
feed system, where a fuel stream (subscript 1) with mass flux m; is mixed with an oxidizer stream
(subscript 2) with mass flux m, the mixture fraction represents the mass fraction of the fuel stream
in the mixture

my

7= (1.35)

mi + meo '
Both fuel and oxidizer streams may contain inerts such as nitrogen. The mass fraction Yz ,, of the

fuel in the mixture is proportional to the mass fraction in the original fuel stream, so
Yrpu=Yr 1Z (1.36)

where Yy ; denotes the mass fraction of fuel in the fuel stream. Similarly, since 1 — Z represents
the mass fraction of the oxidizer stream in the mixture, one obtains for the mass fraction of oxygen
in the mixture

Yo, u=Yo,2(1 —2), (1.37)

where Yo, » represents the mass fraction of oxygen in the oxidizer stream (Yo, 2 = 0.232 for air).
Introducing Eqgs. (1.36) and (1.37) into Eq. (1.34) one obtains the mixture fraction as a variable

that couples the mass fractions of the fuel and the oxygen

VYF - YO2 + YO272

Z =
vYr 1+ Yo, 2

(1.38)

14



For a stoichiometric mixture one obtains with Yy = Y5, the stoichiometric mixture fraction

Yo,,2
g = ———22 1.39
i vYr 1+ Yo, 2 ( )

If Z < Z fuel is deficient and the mixture is called fuel lean. Then, combustion terminates when
all the fuel is consumed, Yr; = 0 in the burnt gas (subscript b). The remaining oxygen mass

fraction in the burnt gas is calculated from Eq. (1.38) as
Z
= _— < .
Yo, = Yo, (1 Zst), Z < Zy (1.40)

where Eq. (1.39) was used. Similarly, if Z > Z,; oxygen is deficient and the mixture is called fuel

rich. Combustion then terminates when all the oxygen is consumed, Yo, ;, = 0, leading to

Z — Zg
1—Zg'

Yrp =Yr Z 2 Zg. (1.41)

For the hydrocarbon fuel considered above the element mass fractions in the unburnt mixture are

Wea Whu
Ze =m—Yru, Zu=n—"VYru, Zo="Yo,u 1.42
C mWF F, H nWF F, O Oa2, ( )
or
Z Z Yrou
L (1.43)
mWe  nWy vpWe
For a stoichiometric mixture where
Yo,u Yru
e - 5 (1.44)
V02W02 vpWr
it follows that the combination
Z Z Z
g 2o dn 5 “Zo (1.45)

mWe  nWy 1/02 Wo,

vanishes. Normalizing this such that the variable Z = 1 in the fuel stream and Z = 0 in the oxidizer

stream, one obtains Bilger’s definition

e
7= 00 (1.46)
or  _ Ze/(mWo) + Zu/ (nWa) +2(Yo,.u = Z0)/ (v, Wo,) (1.47)

Zc,l/(an) + ZH71/(mWH) + 2Y02,u/(7/02 Woz)

15
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Figure 1.1: Profiles of Yr, Yo,, Yco, and Yu,o in the unburnt and burning gas

Because elements are conserved during combustion, the element mass fractions calculated from
Eqg. (1.10) do not change. For the burnt gas they are

Wey o We

ZC = mWF Ypyb —+ WCOZ YCOQ.,b (148)
Wy Wy
Zy = n——Y} 2 Yi 1.49
H nWF Fb+ Mo H20,b ( )
Wo Wo Wo
Zo = 2——Y 2 Y —_— 1.50
0 = 235 Youu + Weo, Yoozt + Mo Vinos (1.50)

This leads with Eq. (1.36) and Yy, = 0 for Z < Z,, and Eq. (1.38) for Z > Z,, to piecewise linear
relations of the product mass fractions in terms of Z

Z Z
Z<Zg: Yco,b=Ycosst5—>s YH,0b= YH,0,5t 75— (1.51)

Zst Zst

1-7Z 1-7Z
Z > Y =Y st——, Y] =Y . 1.52
> Zst C0z,0 = Y00u,50 7~ 120, = V20,80 75— (1.52)
where
mWco,

YCOQ,st - YF,IZst

i (1.53)

16



Profiles of Yr and Yo, in the unburnt and in the burnt gas and product profiles are shown in Fig. 1.1.
The fuel-air equivalence ratio is the ratio of fuel-air ratio in the unburnt to that of a stoichiometric
mixture
YF u/Y02 u I/YF u
= : — = —. 1.54
¢ (YF,u/YOQ,u)st YOg,u ( )
Introducing Egs. (1.36) and (1.37) into Eq. (1.38) leads with Eq. (1.39) to a unique relation

between the equivalence ratio and the mixture fraction

Z (1—Zg)

=17 7ot

(1.55)

This relation is also valid for multicomponent fuels (conf. Exercise 1.1). It illustrates that the mixture

fraction is simply another expression for the local equivalence ratio.

Exercise 1.1
The element mass fractions Zy r, Z¢,r 0f a mixture of hydrocarbons and its mean molecular weight

W are assumed to be known. Determine its stoichiometric mixture fraction in air!

17



Lecture 2

Adiabatic Flame Temperature and
Chemical Equilibrium

The first law of thermodynamics describes the balance between different forms of energy and
thereby defines the internal energy.

du + pdv = dh — vdp = dq + dwg (2.1)

Here dq is the heat transfer from the surroundings, dwg is the frictional work, du is the change
of internal energy and pdv is the work due to volumetric changes, where v = 1/p is the specific

volume 1. The specific enthalpy 4 is related to the specific inner energy « by

h =u+ pv, (2.2)
which for an ideal gas also reads
h=u+ RT (2.3)

In a multicomponent system, the specific internal energy and specific enthalpy are the mass

1The different notation of infinitesimal quantities in Eq. (2.1) is chosen to discriminate between variables of state like
internal energy, enthalpy, pressure and volume, which have a total differential written d, whereas heat and work are pro-
cess dependent quantities, of which infinitesimal small amounts are indicated with a §. This perfectly corresponds to the

2 2
difference in notation of integrals such as ug — u; = /du and g2 = /5q!
1 1

18



weighted sums of the specific quantities of all species

k k
u=>Y Yiu, h=> Yih. (2.4)
=1 1=1

For an ideal gas the partial specific enthalpy is related to the partial specific internal energy by

RT

hi:’i ETTaR)
u—|—Wi

i=1,2,... .k (2.5)

and both depend only on temperature. The temperature dependence of the partial specific en-
thalpy is given by

T
hi = hi,rcf + / CpidT, = 1, 2, ey k (26)
Thet

Here ¢,; is the specific heat capacity at constant pressure and h; ..t is the reference enthalpy
at the reference temperature T, . This temperature may be arbitrarily chosen, most frequently

Tret = 0 K or Tyor = 298.15 K are being used. The partial molar enthalpy is
H,=W;h;, 1=12,....k, (2.7)
and its temperature dependence is

T
H;, = Hi,ref + CpidT, i=1,2,...,k, (28)
Thret

where the molar heat capacity at constant pressure is

Opi == Wicpi7 = 1,2,...,I€. (29)

In a multicomponent system, the specific heat capacity at constant pressure of the mixture is

k
cp = ‘/71 Yicpi. (2.10)

In Tab. 2.1 the molar reference enthalpies at T, = 298.15 K of a number of species are listed.
It should be noted that the reference enthalpies of Hy, O2, Ns, and solid carbon were chosen
as zero, because they represent the chemical elements. Reference enthalpies of combustion
products such as CO, and H,O are typically negative. The temperature dependence of C,;, H;
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and S; may be calculated from the NASA polynomials Tab. 2.2

Tab. 2.1, Legend see page 22

Nr. species M; Hi yef S vef TA TB,i
kg/kmol | kJ/mol | kJ/(molK)
1 H° 1.008 | 217.986 | 114.470 -1.2261 | 1.9977
2 HNO° 31.016 99.579 | 220.438 -1.0110 | 4.3160
3 OH° 17.008 39.463 | 183.367 3.3965 | 2.9596
4 HO$ 33.008 20.920 | 227.358 -1.1510 | 4.3160
5 Ho 2.016 0.000 | 130.423 -2.4889 | 2.8856
6 H50 18.016 | -241.826 | 188.493 -1.6437 | 3.8228
7 H504 34.016 | -136.105 | 233.178 -8.4782 | 5.7218
8 N° 14.008 | 472.645 | 153.054 5.8661 | 1.9977
9 NO 30.008 90.290 | 210.442 5.3476 | 3.1569
10 NO4 46.008 33.095 | 239.785 -1.1988 | 4.7106
11 No 28.016 0.000 | 191.300 3.6670 | 3.0582
12 N-.O 44.016 82.048 | 219.777 -5.3523 | 4.9819
13 0O° 16.000 | 249.194 | 160.728 6.8561 | 1.9977
14 04 32.000 0.000 | 204.848 4.1730 | 3.2309
15 O3 48.000 | 142.674 | 238.216 -3.3620 | 5.0313
16 NH®° 15.016 | 331.372 | 180.949 3.0865 | 2.9596
17 NHS 16.024 | 168.615 | 188.522 -1.9835 | 3.8721
18 NH; 17.032 -46.191 | 192.137 -8.2828 | 4.8833
19 NoHs 30.032 | 212.965 | 218.362 -8.9795 | 5.4752
20 N, HS 31.040 | 153.971 | 228.513 -17.5062 | 6.9796
21 NoHj 32.048 95.186 | 236.651 -25.3185 | 8.3608
22 Ce 12.011 | 715.003 | 157.853 6.4461 | 1.9977
23 CH® 13.019 | 594.128 | 182.723 2.4421 | 3.0829
24 HCN® 27.027 | 130.540 | 201.631 -5.3642 | 4.6367
25 HCNO 43.027 | -116.733 | 238.048 -10.1563 | 6.0671
26 HCO® 29.019 -12.133 | 224.421 -10.2313 | 4.2667
27 CHS 14.027 | 385.220 | 180.882 -5.6013 | 4.2667
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Continuation of Tab. 2.1
N, species M; Hi et Si ref TAi TB,i
kg/kmol | kJ/mol | kJ/(molK)

28 CH-O 30.027 | -115.896 | 218.496 -8.5350 | 5.4012
29 CHS 15.035 | 145.686 | 193.899 -10.7155 | 5.3026
30 CH,OH® 31.035 | -58.576 | 227.426 -15.3630 | 6.6590
31 CH4 16.043 | -74.873 | 185.987 -17.6257 | 6.1658
32 CH3;0H 32.043 | -200.581 | 240.212 -18.7088 | 7.3989
33 CO 28.011 | -110.529 | 197.343 4.0573 | 3.1075
34 COq2 44.011 | -393.522 | 213.317 -5.2380 | 4.8586
35 CN° 26.019 | 456.056 | 202.334 4.6673 | 3.1075
36 Cs 24.022 | 832.616 | 198.978 1.9146 | 3.5268
37 CoH° 25.030 | 476.976 | 207.238 -4.6242 | 4.6367
38 CoHy 26.038 | 226.731 | 200.849 -15.3457 | 6.1658
39 CoH3 27.046 | 279.910 | 227.861 -17.0316 | 6.9056
40 CH3CO° 43.046 | -25.104 | 259.165 -24.2225 | 8.5334
41 CoHy 28.054 52.283 | 219.468 -26.1999 | 8.1141
42 CH3COH® | 44.054 | -165.979 | 264.061 -30.7962 | 9.6679
43 CoHg 29.062 | 110.299 | 228.183 -32.8633 | 9.2980
44 CoHg 30.070 | -84.667 | 228.781 -40.4718 | 10.4571
45 C3Hsg 44.097 | -103.847 | 269.529 -63.8077 | 14.7978
46 C4H3 50.060 | 465.679 | 250.437 -34.0792 | 10.0379
47 C4H3 51.068 | 455.847 | 273.424 -36.6848 | 10.8271
48 C4Hsg 56.108 16.903 | 295.298 -72.9970 | 16.7215
49 C4Hyo 58.124 | -134.516 | 304.850 -86.8641 | 19.0399
50 CsHyo 70.135 | -35.941 | 325.281 -96.9383 | 20.9882
51 CsHio 72.151 | -160.247 | 332.858 -110.2702 | 23.3312
52 CeHi2 84.152 | -59.622 | 350.087 -123.2381 | 25.5016
53 CeHia 86.178 | -185.560 | 380.497 -137.3228 | 28.2638
54 C7Hyy 98.189 | -72.132 | 389.217 -147.4583 | 29.6956
55 C7Hye 100.205 | -197.652 | 404.773 -162.6188 | 32.6045
56 CsHig 112.216 | -135.821 | 418.705 -173.7077 | 34.5776
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Continuation of Tab. 2.1

Nr. species M; Hi ret Si ret TA TR
kg/kmol | kJ/mol | kJ/(molK)

57 CgH;s 114.232 | -223.676 | 430.826 -191.8158 | 37.6111

58 CoH40 44.054 -51.003 | 243.044 -34.3705 9.7912

59 HNO; 63.016 | -134.306 | 266.425 -19.5553 | 9.7912

60 He 4.003 0.000 | 125.800 - -

61 Ar 39.944 0.000 | 154.599 - -

62 Csolid 12.011 0.000 0.000 -9.975 1.719

Table 2.1: Molecular data for some important species in combus-

tion at Tior = 298.15 K. Superscripts ° denote chemical radicals.)

67% = a1+ a2 T/K + a3 (T/K)? + a4 (T/K)* + a5 (T/K)*

7]5T - TéK s (T/3K)2 o (T/4K)3 o (T/5K)4 N TG/GK (2.11)
) 2 3 4

% = a1 In(T/K) + ax T/K + as (T/2K) + ay (T/?)K) + as % + a7 +1n(p/po).

Let us consider the first law for an adiabatic system (6¢ = 0) at constant pressure (dp = 0) and
neglect the work done by friction (dwg = 0). From Eq. (2.1) we then have dh = 0 which may be

integrated from the unburnt to the burnt state as

ha = he (2.12)
or
k k
> Yiuwhiw=Y_ Yiphip. (2.13)
=1 1=1
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Tab. 2.2, NASA Polynomials for two temperature ranges and standard pressure p = 1 atm

H, temperature range: 1000 < T < 5000
a1 = +0.29914234E4+01  as = +0.70006441E—-03 a3 = —0.56338287E—07 a4 = —0.92315782E — 11
as = +0.15827518E-14  ag = —0.83503399E4+03 a7 = —0.13551102E+01
temperature range: 300 < T < 1000
a1 = +0.32981243E4+01  as = +0.82494417E—-03 a3 = —0.81430153E-06 a4 = —0.94754343E — 10
a5 = +0.41348722E—-12 ag = —0.10125209E+04 a7 = +0.32940941E+01

O, temperature range: 1000 < T < 5000
a1 = +0.36975782E4+01  ap = +0.61351969E—-03 a3 = —0.12588419E—-06 a4 = +0.17752815E — 10
as = —0.11364353E—14  a¢ = —0.12339302E+04 a7 = +0.31891656E+01
temperature range: 300 < T < 1000
a1 = +0.32129364E4+01  ag = +0.11274863E—-02 a3 = —0.57561505E—-06 a4 = +0.13138772E — 08
as = —0.87685539E—-12 ag = —0.10052490E+04 a7 = +0.60347376E+01

N2 temperature range: 1000 < T < 5000

a1 = +0.29266400E+4-01
as = —0.67533513E—14

ap = +0.14879767E—-02
ag = —0.92279767E+03

300 < T < 1000

az = +0.14082404E—02
as = —0.10208999E+04

temperature range:

a1 = +0.32986769E+401
as = —0.24448549E—-11

az = —0.56847608E—06
a7 = +0.59805279E+01

az = —0.39632223E-05
a7 = +0.39503722E+01

a4 = +0.10097038E — 09

as = +0.56415153E — 08

Continuation next page
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Continuation Tab. 2.2, NASA Polynomials for two temperature ranges and standard pressure p = 1 atm

CO temperature range: 1000 < T < 5000
a1 = +0.30250781E4+01 a2 = +0.14426885E—-02 a3 = —0.56308278E—-06 a4 = +0.10185813E — 09
as = —0.69109515E—-14  ag = —0.14268349E+05 a7 = +0.61082177E4-01
temperature range: 300 < T < 1000
a1 = +0.32624516E+01 a2 = +0.15119408E—-02 a3 = —0.38817552E—-05 a4 = +0.55819442E — 08
as = —0.24749512E—-11 ag = —0.14310539E+05 a7 = +0.48488969E+4-01

CO, temperature range: 1000 < T < 5000
a1 = +0.44536228E+01  ag = +0.31401687E—-02 a3 = —0.12784105E—-05 a4 = +0.23939967E — 09
as = —0.16690332E—-13  ag = —0.48966961E+05 a7 = —0.95539588E+00
temperature range: 300 < T < 1000
a1 = +0.22757246E+01  ag = +0.99220723E—-02 a3 = —0.10409113E—-04 a4 = +0.68666868E — 08
as = —0.21172801E—-11 ag = —0.48373141E4+05 a7 = +0.10188488E+4-02

H>O temperature range: 1000 < T < 5000

a1 = +0.26721456E+01
as = —0.63916179E—14

az = +0.30562929E—-02
as = —0.29899209E+05

300 < T < 1000

az = +0.34749825E-02
as = —0.30208113E+05

temperature range:

a1 = +0.33868425E+01
as = —0.25065884E—11

az = —0.87302601E—-06
a7 = +0.68628168E+401

az = —0.63546963E—05
a7 = +0.25902328E4-01

ay = +0.12009964E — 09

as = +0.69685813E — 08

Continuation next page
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Continuation Tab. 2.2, NASA Polynomials for two temperature ranges and standard pressure p = 1 atm

CH, temperature range: 1000 < T < 5000

a1 = +0.16834788E+01  ag = +0.10237235E—-01 a3 = —0.38751286E—05 a4 = +0.67855849E — 09
as = —0.45034231E—13 ag = —0.10080787E+4+05 a7 = +0.96233949E+4-01
temperature range: 300 < T < 1000
a; = +0.77874148E+00 a2 = +0.17476683E—01 a3 = —0.27834090E—04 a4 = +0.30497080E — 07
as = —0.12239307E—-10 ag = —0.98252285E4-04 a7 = +0.13722195E4-02

C3OH temperature range: 1000 < T < 5000
a; = 4+0.36012593E+01  ag = +0.10243223E—01 a3 = —0.35999217E-05 a4 = 4+0.57251951E — 09
a5 = —0.33912719E—13  ag¢ = —0.25997155E4-05 a7 = +0.47056025E+4-01
temperature range: 300 < T < 1000
a; = +0.57153948E+01 ae = —0.15230920E—01 a3 = +0.65244182E—04 a4 = —0.71080873E — 07
as = +0.26135383E—10 ag = —0.25642765E4+05 a7 = —0.15040970E+4-01

C2Hg temperature range: 1000 < T < 5000

a1 = +0.48259382E+01  ag = +0.13840429E—-01
as = —0.35981614E—13 ag¢ = —0.12717793E405

300 < T < 1000

az = +0.15494667E—-01
ag = —0.11239176E4-05

temperature range:

a1 = +0.14625387E+01
as = +0.45862671E—11

az = —0.45572588E—-05
a7 = —0.52395067E+4-01

az = +0.57805073E-05
a7 = +0.14432295E4-02

as = +0.67249672E — 09

as = —0.12578319E — 07

Continuation next page
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Continuation Tab. 2.2, NASA Polynomials for two temperature ranges and standard pressure p = 1 atm

C;H, temperature range: 1000 < T < 5000
a1 = +0.35284188E+01 a9 = +0.11485184E—01 a3 = —0.44183853E—05 a4 = +0.78446005E — 09
a5 = —0.52668485E—13 ag = +0.44282886E+04 a7 = +0.22303891E+01
temperature range: 300 < T <1000
a1 = —0.86148798E+00 as = +0.27961628E—01 a3 = —0.33886772E—04 a4 = +0.27851522E — 07
as = —0.97378789E—11 ag = +0.55730459E+04 a7 = +0.24211487E+02

C2H, temperature range: 1000 < T < 5000
ay = +0.44367704E4+01 a9 = +0.53760391E—02 a3 = —0.19128167E—05 a4 = +0.32863789E — 09
as = —0.21567095E—13 ag = +0.25667664E4+05 a7 = —0.28003383E+01
temperature range: 300 < T < 1000
a1 = +0.20135622E+01 as = +0.15190446E—01 a3 = —0.16163189E—-04 a4 = 4+0.90789918E — 08
a5 = —0.19127460E—11 ag = +0.26124443E+05 a7 = +0.88053779E+01

CsHg temperature range: 1000 < T < 5000

a1 = +0.75252171E+01
as = —0.48124099E—-13

az = +0.18890340E—-01
a¢ = —0.16464547E405

300 < T < 1000

a2 = +0.26689861E—01
ae¢ = —0.13954918E4-05

temperature range:

a1 = +0.89692080E+00
as = +0.92433301E—-11

az = —0.62839244E—-05
a7 = —0.17843903E+4-02

az = +0.54314251E-05
a7 = +0.19355331E4-02

as = +0.91793728E — 09

as = —0.21260007E — 07

Continuation next page
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Continuation Tab. 2.2

C;H,4 temperature range: 1000 < T < 5000

a1 = +0.22818893E+02 ag = +0.32543454E—01
as = —0.96212101E-13  ag = —0.33678738E+05
temperature range: 300 < T <1000

a1 = +0.30149546E+01  ag = +0.54457203E-01
as = +0.20808730E—-10 ag = —0.26003379E+05

az = —0.11120041E—-04
a7 = —0.94335007E+02

asz = +0.21812681E—04
a7 = +0.17508575E+02

as = +0.17131743E — 08

as = —0.54234111E — 07




With the temperature dependence of the specific enthalpy Eq. (2.6) this may be written as

k Ty Tu
> Vi = Yip) hirer = / cppdT — / cpudT. (2.14)

=1 Tret Tret

Here the specific heat capacities are those of the mixture, to be calculated with the mass fractions
of the burnt and unburnt gases, respectively

k k
Cp,b = Z }/i-,bcpi(T)a Cpu = Z }/i,ucpi(T)- (215)
=1 1=1

For a one-step global reaction the left hand side of Eq. (2.14) may be calculated by integrating Eq.
(1.28) as

v Wi )
Yiw—Yiv =Yy —Yry) ——, i=1,2,...,k, 2.16
: b= (Y, F.b) i (2.16)
such that i
(Yru — Yryp)
}/iu — Iq hi.rc - ZW hz re 217
;( , b) R vt = I ; v f. (2.17)
Here it is convenient to define the heat of combustion as
k k
_ZViWihi = _ZViHi- (218)
=1 i=1

This quantity changes very little with temperature and is often set equal to

k
Quot = — Y _ Vil et (2.19)

For simplicity, let us set T,, = T+ and assume ¢, ; to be approximately constant. For combustion
in air, the contribution of nitrogen is dominant in calculating ¢, . At temperatures around 2000 K
its specific heat is approximately 1.30kJ/kg/K. The value of ¢,; is somewhat larger for CO, and
somewhat smaller for Os while that for H>O is twice as large. A first approximation for the specific
heat of the burnt gas for lean and stoichiometric mixtures is then ¢, = 1.40kJ/kg/K. Assuming ¢,
constant and Q = Q,r , the adiabatic flame temperature for a lean mixture (Y, = 0) is calculated
from Egs. (2.14) and (2.17) with vp = —1}, @s

QrefYF u

T, — T, =
b Cplp Wg

(2.20)
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For a rich mixture Eq. (2.16) must be replaced by

viW; .
Y;,u - }/i,b = (YO27U - YOg,b) 70 WO , 1= 17 21 R k (221)
2 2

and one obtains similarly for complete consumption of the oxygen (Yo, » = 0)

QrchOQ.u
T, —T, = ———2—. 2.22
’ CPV62 WOz ( )
Egs. (2.20) and (2.22) may be expressed in terms of the mixture fraction by introducing Egs. (1.36)
and (1.37) and by specifying the temperature of the unburnt mixture by

T.(Z)=T>— Z(T» — Th), (2.23)

where T is the temperature of the oxidizer stream and T} that of the fuel stream. Equation Eq.
(2.23) describes mixing of the two streams with ¢, assumed to be constant. Equations Egs. (2.20)
and (2.22) then take the form

QrefYFl
Ty(Z) = Tu(2)+ 2 0ly 77
o(2) ( )+cpul’:WF ¢
0 (2.24)
rchOQQ
TyZ) = T,(Z ———(1—-72) Z>Zg4.
() = T+ SEEt-2) 222

The adiabatic temperature is plotted over mixture fraction in Fig. 2.1. The maximum temperature
at Z = Z, is calculated from either one of Eq. (2.24) as

YF,IZsthef

Ty = Tu(Zs
K (Zat) + cpVp Wi

(2.25)

YO272(1 - Zst)Qrcf

= T, (Zg)+
( t) CPI/OgWOz

For the combustion of a pure fuel (Yz; = 1) in air (Yo,,2 = 0.232) with T,, ;+ = 300 K values for T
are given in Tab. 2.3 using ¢, = 1.4kJ/kg/K.
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Figure 2.1: The adiabatic temperature over mixture fraction

Fuel st Tyt [K]
CH, | 0.05496 | 2263.3
CoHg | 0.05864 | 2288.8
CoHy | 0.06349 | 2438.5
CoHy | 0.07021 | 2686.7
CyHx | 0.06010 | 2289.7

Table 2.3: Stoichiometric mixture fractions and stoichiometric flame temperatures for some
hydrocarbon-air mixtures.
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2.1 Chemical Equilibrium

From the standpoint of thermodynamics, the assumption of complete combustion is an approxima-
tion because it disregards the possibility of dissociation of combustion products. A more general
formulation is the assumption of chemical equilibrium. In that context complete combustion rep-
resents the limit of an infinite equilibrium constant as will be shown below. Both approximations,
chemical equilibrium and complete combustion, are valid in the limit of infinitely fast reaction rates
only, a condition which will seldom be valid in combustion systems. We will consider finite rate
chemical kinetics in Lecture 2. Only for hydrogen diffusion flames complete chemical equilibrium
is a good approximation, while for hydrocarbon diffusion flames finite kinetic rates are needed. In
the latter the fast chemistry assumption overpredicts the formation of intermediates such as CO
and H, due to the dissociation of fuel on the rich side by large amounts. Nevertheless, since the
equilibrium assumption represents an exact thermodynamic limit, it shall be considered here.

2.1.1 The Chemical Potential and the Law of Mass Action

Differently from the enthalpy, the partial molar entropy of a chemical species in a mixture of ideal
gases depends on the partial pressure

S;i=8"—Rm i=12. .k (2.26)
Po
where py = 1 atm and
T c,
SY = S?ref+/ Piar, i=1,2,...,k (2.27)
' Tref T

depends only on temperature. Values for the reference entropy S; ,os are also listed in Tab. 2.1.

The partial molar entropy may now be used to define the chemical potential

pi=Hi —TS; =10 +RTImE, i=1,2,.. .k, (2.28)
DPo
where
g e
10 = Hiyor — TSY o +/ C,,dT — T/ FdT, i=12...k (2.29)
,Tref Tmf
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is the chemical potential at 1atm. As it is shown in standard textbooks of thermodynamics the

condition for chemical equilibrium for the [-th reaction is given by

k
ZVilNi:Oa l=1,2,...,r
i=1

Using Eq. (2.28) in Eg. (2.30) leads to

k K v
= vl =RTlnH(&) =12,
i=1 —1 Po

Defining the equilibrium constant K, by

k
RTIM Ky == vypd, 1=1,2,...r
=1

one obtains the law of mass action
k

TT(%)" = Ku@), 1=12,. .

i1 “Po

An approximation of equilibrium constants may be derived by introducing the quantity

Hirc'_ 9 Szorc' T i 1 T
= et TR 2 f+/ O’“dT——/ C,dT, i=1,2,... k.
R Trer

RT RT RT

Threr

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

For constant C,,, the second term in this expression would yield a logarithm of the temperature,

while the last term does not vary much if T >> T,.¢. Therefore 7;(T") may be approximated by

7T1(T) =mia+mpnT, i=1,2,... k.

Introducing this into Eq. (2.32) one obtains

Ql,rcf) o

Kp = By T"! eXP( RT
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Figure 2.2: Equilibrium constants of the elementary and global reactions
2H5 + Oy = 2H50, Og + Ny = 2NO and CO + H,O = Hy + COs.

where Eq. (2.19) was used and
k k
By = exp(z VinriA), Nyl = Z vpmig, =1,2,...,7. (2.37)
=1

=1

Values for m;4 and m;5 are also listed in Tab. 2.1. They were obtained by linear interpolation in
terms of In 7" for the values given in the JANAF-Tables [1] at 7" = 300 K and T" = 2000 K. In Fig. 2.2
equilibrium constants for the reactions 2H;+03 = 2H20, 024Ny = 2NO and CO+H30 = Hy+CO2
are plotted.

2.2 An Example: Equilibrium Calculation of the H,-Air System

Using the law of mass action one obtains for the reaction

(1) 2H, + Oy = 2H,0 (238)
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the relation between partial pressures

Ph,Po, = Pi,0Kp - PO, (2.39)

where
Ky = 0.0835 T~ 13955 exp(58171/T) (2.40)

was approximated using Eqgs. (2.36) and (2.37) the values from Tab. 2.1. Introducing the definition
li=—, i=12,....k (2.41)
the partial pressures are written with Eq. (1.18) as
pi =pX;, =pl,W, i=1,2,... k, (2.42)
where the mean molecular weight is
W = (Th, +To, + a0 +I'n,) L (2.43)

Furthermore, we need to consider the element mass balance. The element mass fractions of the

unburnt mixture are
Zu=Yr1Z, Zo=Yo,2(1-2), Zn=Yn,201—-2). (2.44)

These are equal to those in the equilibrium gas where

7z

W_H = 2FH2,b =+ 2FH20,b

ZH (2.45)
o

Wo 2To,, + 'm0,

while Zx remains unchanged. Combining Egs. (2.39)-(2.45) leads to the following nonlinear equa-
tion for I'r, 0.6
Zn )2( Zo

r = (I‘ AN (20 ¢ )
f(Tn,0.0) 00~ o) (g, ~ o

(2.46)

I'f Z Z
pl
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This equation has one root between I'y,0,, = 0 and the maximum values 'y, 0, = Zu/2Wy and
I'n,0 = Zo/Wo which correspond to complete combustion for lean and rich conditions in the
limit K,,; — oo, respectively. The solution, which is a function of the temperature, may be found
by successively bracketing the solution within this range. The temperature is then calculated by
employing a Newton iteration on Eq. (2.12) leading to the equation

k T
ﬁ%T):im-—Ejiﬁduﬂf—u/ Cp,dT. (2.47)
i=1 Tret

The iteration converges readily following

T=T +

(2.48)

where i is the iteration index. The solution is shown in Fig. 2.3 for a hydrogen-air flame as a
function of the mixture fraction for 7,, = 300 K. Tab. 2.4 shows equilibrium mass fractions of Hs, O,
and H2O at p = 1 bar and p = 10 bar at different temperatures.

Equilibrium temperature profiles for lean methane, acetylene and propane flames as a function

of the equivalence ratio for 7;, = 300 K are shown in Fig. 2.4.

2.3 The Heterogeneous Equilibrium

A reaction is called heterogeneous, if it occurs for instance at the gas-to-solid interface, while gas

phase reactions are called homogeneous. Since the chemical potential of the solid is independent

T D Y, Yo, Yn,0

(K] | [bar]
2000 1 0.0006 | 0.0049 | 0.9945
3000 1 0.0172 | 0.1364 | 0.8464
4000 1 0.0653 | 0.5180 | 0.4167
2000 | 10 0.0002 | 0.0022 | 0.9974
3000 | 10 0.0084 | 0.0664 | 0.9252
4000 | 10 0.0394 | 0.3127 | 0.6478

Table 2.4: Equilibrium compositions of the Hy/O5/H2O system for several temperatures and pres-
sures.
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Figure 2.3: Equilibrium flame temperature for a hydrogen-air flame.
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Figure 2.4: Adiabatic flame temperatures for lean methane, acetylene and propane flames as a
function of the equivalence ratio for 7}, = 300 K.
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of pressure

T T

Cp.i .

i = 1 = Hivot — TS et + CpidT — T/ 2Iar, i=1,2,....k (2.49)
Trcf Trcf T

only the partial pressures of the gaseous components will appear in the law of mass action. As an

example consider the reaction of solid carbon C; + O = CO4. Then the ratio of partial pressures

of CO5 and O4 becomes

0 0 0
Pco, (Nco2 — Mo, — Nog) -
= exp =K,. 2.50
PO, RT p ( )
Here the molar enthalpy Hc, .. of solid carbon is zero per definition while 74, c, = —9.979 and
mB.c. = 1.719.
Example 2.1

Calculate the equilibrium mole fraction of NO in air at 7' = 1000 K and 7' = 1500 K by assuming
that the mole fractions of O3 (Xo, = 0.21) and Ns (Xn, = 0.79) remain unchanged.

Solution

The equilibrium constant of the reaction

Ny + O3 = 2NO (2.51)
is with the values in Tab. 2.1
K, (T) = 17.38 T%%%7 exp(—21719/T) (2.52)
For the partial pressure of NO one has
pno = (PN,po, Kp)'/? (2.53)

Neglecting the consumption of No and O4 as a first approximation, their partial pressures may be

approximated with Eq. (1.18) as pn, = 0.79p, po, = 0.21 p in air. The equilibrium mole fraction of
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NO is then
Xno = 1.7 T%0123% exp(—10856/T). (2.54)

At T = 1000 K one obtains 38 ppv (parts per volume = X; - 10-%) and at 7' = 1500 K 230 ppv. This
indicates that at high temperatures equilibrium NO-levels exceed by far those that are accepted
by modern emission standards which are around 100 ppv or lower. Equilibrium considerations
therefore suggest that in low temperature exhaust gases NO is above the equilibrium value and

can be removed by catalysts.
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Lecture 3

Fluid Dynamics and Balance

Equations for Reacting Flows

The basic equations for calculating combustion processes in the gas phase are the equations of
continuum mechanics. They include in addition to balance equations for mass and momentum
those for the energy and the chemical species. Associated with the release of thermal energy and
the increase in temperature is a local decrease in density which in turn affects the momentum bal-
ance. Therefore, all these equations are closely coupled to each other. Nevertheless, in deriving
these equations we will try to point out how they can be simplified and partially uncoupled under

certain assumptions.

3.1 Balance Equations

Let us consider a general quality per unit volume f(x,t). Its integral over the finite volume V', with

the time-independent boundary A is given by
F(t) = / f(z, t)dV. (3.1)
14

The temporal change of F
oOF of
— = | =dV 3.2
=], o @2)

is then due to the following three effects (cf. Fig. 3.1):
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Or

Figure 3.1: A time-independent control volume V for a balance quality F'(t). The scalar product
between the surface flux ¢+ and the normal vector n determines the outflow through the surface
A, a source sy the rate of production of the balance quality.

1. by the flux ¢, across the boundary A. This flux may be due to convection or molecular

transport. By integration over the boundary A we obtain the net contribution

—/ bpndA, (3.3)
A

which is negative, if the normal vector is assumed to direct outwards.

2. by a local source o within the volume. This is an essential production of partial mass by

chemical reactions. Integrating the source term over the volume leads to
/ odV; (3.4)
14

3. by an external induced source s. Examples are the gravitational force or thermal radiation.

Integration of sy over the volume yields

/ spdV. (3.5)
v
We therefore have the balance equation
of
—dV = — ¢f~ndA+/ (of +s5)dV (3.6)
v Ot A v
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Changing the integral over the boundary A into a volume integral using Gauss’ theorem

/qbf-ndA:/ div ¢ dV (3.7)
A \4

and realizing that the balance must be independent of the volume, we obtain the general balance
equation in differential form
of

2t = —div ¢y + o5+ sy. (3.8)

3.2 Mass Balance

Set the partial mass per unit volume p; = pY; = f. The partial mass flux across the boundary

is piv; = ¢, Where v; is called the diffusion velocity. Summation over all components yields the

mass flow .
pY = Zpivi, (3.9)
i=1
where v is the mass average velocity. The difference between v; defines the diffusion flux
v —v =2 (3.10)
Pi
where the sum satisfies X
> ji=0. (3.11)
i=1
Setting the chemical source term
of = Thi = Wi Z Vi1 Wy (312)
=1

one obtains the equation for the partial density

Ip;
a—’; = —div (pv;) + 15, i=1,2,... k. (3.13)
The summation over i leads to the continuity equation

o .
Fri —div (pv). (3.14)
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Introducing the total derivative of a quantity A

DA 0A
Dr o TUERdA
a combination with the continuity equation yields

DA _ d(pA)
PDr T ot

+div (pvA).

Then Eq. (3.13) may also be written using Eg. (3.10)

DY;
Dt

Here 1h; is the chemical source term defined by
r
i = My viw,
=1

where w; are the chemical reaction rates.

3.3 Momentum Balance

:—divgz—i—mz, 221,2,,k

(3.15)

(3.16)

(3.17)

(3.18)

Set the momentum per unit volume pv = f. The momentum flux is the sum of the convective

momentum in flow pvv and the stress tensor

P=pl+T1

(3.19)

where I is the unit tensor and 7 is the viscous stress tensor. Therefore pvv + P = ¢;. There is

no local source of momentum, but the gravitational force from outside s; = pg where g denotes

the constant of gravity. The momentum equation then reads

0
(gtv) = —div (pvv + P) + pg
or with Eq. (3.16) for A = v
Dv .
pﬁ = —grad p — div 7 + pg.
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3.4 Kinetic Energy Balance

The scalar product of the momentum equation Eq. (3.20) with v provides the balance for the kinetic

energy

| @

1
(pv?) = —div (P-v + §vpv2) + P :grad v + pg-v, (3.22)

DN | =
D

t

where v2 = v-v.

3.5 Potential Energy Balance

The gravitational force may be written as the derivative of the time-independent potential

g = —grad v, %—f = 0. (3.23)

Then with the continuity equation Eq. (3.14) the balance for the potential energy is

@ = —div (pvv)) — pg-v. (3.24)

3.6 Total and Internal Energy and Enthalpy Balance

The first law of thermodynamics states that the total energy must be conserved, such that the local

source oy = 0. We set pe = f, where the total energy per unit mass is
1 2
e:u+§v + ). (3.25)
This defines the internal energy introduced in Eq. (2.1). The total energy flux ¢y = j. is
Je = pev + P-v + j, (3.26)

which defines the total heat flux j,. The externally induced source due to radiation is ¢p = sy.

Then the total energy balance
9(pe)
ot

= —div j. + 4r (3.27)
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may be used to derive an equation for the internal energy

d(pu)
ot

= —div (pvu+j,) — P : grad v + gr. (3.28)

Using Eq. (3.16) this may be written with the total derivative

Du

Por = —div j, — pdivv — 7 : grad v + ¢g. (3.29)

. - . . D 1 .
With the continuity equation Eq. (3.14) we may substitute div v by pﬁ(;) and may write the

balance in the form

D D 1 1 1

U p2 (5 = —[—divjq—i-qR} — Zr:gradv (3.30)
Dt Dt p p p

N ——

ocdu o« pdv o dq xdwpr

to illustrate the equivalence with the first law introduced in a global thermodynamic balance in Eq.

(2.1). With h = u + p/p the enthalpy balance equation reads

DR Dp . ) .
PDi =D = —div j, — 7 : grad v + ¢g. (3.31)

3.7 Transport Processes

In its most general form Newton’s law states that the viscous stress tensor is proportional to the
symmetric, trace-free part of the velocity gradient, more specifically

r= —u(2 [grad v]™™" — ; div v I). (3.32)

Here the suffix 3™ denotes that only the symmetric part is taken and the second term in the paren-
thesis subtracts the trace elements from the tensor. Newton'’s law thereby defines the dynamic
viscosity. Similarly Fick’s law states that the diffusion flux is proportional to the concentration gra-
dient. Due to thermodiffusion it is also proportional to the temperature gradient. The most general
form for multicomponent diffusion is written as

DT
pD;;W; grad X; — ngrad T, 1=1,2,... k. (3.33)

3| =
-

S5

2

Ji =

<SS
sl

45



For most combustion processes thermodiffusion can safely be neglected. For a binary mixture Eq.
(3.33) then reduces to

where D;; = Dj; is the binary diffusion coefficient. For multicomponent mixtures, where one
component occurs in large amounts, as for the combustion in air where nitrogen is abundant, all
other species may be treated as trace species and Eq. (3.34) with the binary diffusion coefficient

with respect to the abundant component may be used as an approximation
ji = —pDi grad Y;, Di = Di,Ng- (335)

A generalization for an effective diffusion coefficient D, to be used for the minor species in Eq.
(3.35) is

D; (3.36)

= k .
> Xi/Dij
j=1

J#i
Note that the use of Eq. (3.35) does not satisfy the condition Eq. (3.11). Finally, Fourier's law of

thermal conductivity states that the heat flux should be proportional to the negative temperature

gradient. The heat flux j, includes the effect of partial enthalpy transport by diffusion and is written

k
jo=—Agrad T+ hij; (3.37)

i=1
which defines the thermal conductivity A. In Eqg. (3.37) the Dufour heat flux has been neglected.
Transport coefficients for single components can be calculated on the basis of the theory of rarefied

gases [1].
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3.8 Different Forms of the Energy Equation

We start from the enthalpy equation and neglect in the following the viscous dissipation term

—7 : grad v and the radiative heat transfer term ¢z. Then, differentiating Eq. (2.4) as
k
dh = cpdT + " h;dYi, (3.38)
i=1
where ¢, is the heat capacity at constant pressure of the mixture, we can write the heat flux as
A u A
o= ——gradh+Y h (_7 + 2 grad Y) (3.39)
Cp i=1 Cp

For the special case that the diffusion flux can be approximated by Eq. (3.34) with an effective
diffusion coefficient D; we introduce the Lewis number

A
Le; = 3.40
=% (3.40)
and write the last term in Eq. (3.39) as
k 1y A
Zhi(l - Lei)ggrad Y. (3.41)

This term vanishes if the Lewis numbers of all species can be assumed equal to unity. This is an

interesting approximation because it leads to the following form of the enthalpy equation

p% = % +div (%grad h). (3.42)
If furthermore the pressure is constant as it is approximately the case in all applications except
in reciprocating engines, the enthalpy equation would be very much simplified. The assumption
of unity Lewis numbers for all species is not justified in many combustion applications. In fact,
deviations from that assumption lead to a number of interesting phenomena that have been studied
recently in the context of flame stability and the response of flames to external disturbances. We
will address these questions in some of the lectures below.

Another important form of the energy equation is that in terms of the temperature. With Egs.
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(3.38) and (3.17) the total derivative of the enthalpy can be written as

k
Dh DT .. .
PoE = Py + ;(_dw Ji +m;) hy. (3.43)
Then with Eq. (3.37), the enthalpy equation Eq. (3.31) without the second last term yields the
temperature equation

k
DT
pcp— +div (Agrad T') — Z cpiJicgrad T + or + g. (3.44)
Dt P
Here the last term describes the temperature change due to energy transfer by radiation and the

penultimate term the temperature change due to chemical reactions which may be written as

k T

k T
op ==Y tiihi ==Y vayWihiw = > Qw (3.45)
i=1 =1 i=1 =1
where the definition Eq. (3.18) has been used for each reaction. The second term on the right
hand side may be neglected, if one assumes that all specific heats c,; are equal. This assumption
is very often justified since this term does not contribute as much to the change of temperature as
the other terms in the equation, in particular the chemical source term. If one also assumes that
spatial gradients of ¢, may be neglected for the same reason, the temperature equation takes the
form
DT 1 Dp

) ~Q dr
=L 22 aiv (2 dT) g+ 1B 3.46
P Dt Cp Dt tdiv (cp gra +; Cp wi + Cp ( )

For a constant pressure it is very similar to Eq. (3.17) with an effective equal diffusion coefficient
D = \/p/c, for all reactive species and a spatially constant Lewis number Le; may be written as

DY; 1

"Dt T Le

A T
div (—grad YZ) +W; Z viwy. (3.47)
“p =1
For unity Lewis numbers this and the temperature equation are easily combined to obtain the
enthalpy equation Eq. (3.42). Since the use of Eq. (3.46) and Eq. (3.47) does not require the unity
Lewis number assumption, this formulation is often used when non-unity Lewis number effects

are to be analyzed. For flame calculations a sufficiently accurate approximation for the transport
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CH; | Oz | HoO | COq H @) OH | HO9
097|111 083|139 | 0.18 | 0.70 | 0.73 | 1.10

Hy | CO | H,Oy | HCO | CH20O | CHs | CH30
03| 110 | 112 | 1.27 | 1.28 | 1.00 | 1.30

Table 3.1: Lewis numbers of some reacting species occurring in methane-air flames.

properties is [2]

A 3 g T 0.7
2 _958.1071 (—) , 3.48
» cmsec \298 K ( )

a constant Prandtl number
Pr= % =0.75, (3.49)

and constant Lewis numbers. For a number of species occurring in methane-air flames approx-
imate values from [2] are listed in Tab. 3.1. A first approximation for other hydrocarbon species
can be based on the assumption that the binary diffusion coefficients of species i with respect to

nitrogen is approximately proportional to

Wi + W, \ 1/2
D; ~ 72) 3.50
( 2W; Wi, (3.50)
Then the ratio of its Lewis number to that of methane is
Le; W, W Wi, \ 1/2
i _ ( cH, + N?) . (3.51)
LeCH4 VVCH4 Wi + VVN2

3.9 Balance Equations for Element Mass Fractions

Summation of the balance equations for the mass fractions Eq. (3.17) according to Eq. (1.10)
leads to the balance equations for Z;

DZ k
p—t = ; i (3.52)

Here the summation over the chemical source terms vanishes

k r T k
Wj Z Z Qi VW = Wj Z wy Z QijVil = 07 (353)
=1 i=1

i=1 [=1
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since the last sum vanishes for each reaction. The diffusion term simplifies if one assumes that the
diffusion coefficients of all species are equal. If one further more assumes a unity Lewis number

this leads to
DZ;
Dt

— div (i grad Zj). (3.54)

Cp
A similar equation may be derived for the mixture fraction Z. Since Z is defined according to
Eqg. (1.35) as the mass fraction of the fuel stream, it represents the sum of element mass fractions

contained in the fuel stream. The mass fraction of the fuel is the sum of the element mass fractions

ke
Yeu=_ ZiF, (3.55)
j=1
where
W,
Zj F = aFJW;YFM' (356)

With Eq. (1.36) the mixture fraction may therefore be expressed as a sum of element mass frac-

tions

ke
> Zix
7=

3.57
Yoo (3.57)

Then, with the assumption of unit Lewis numbers such that A\/c, = pD, a summation over Eq.

(3.54) leads to a balance equation for the mixture fraction

DZ )
Por = div (pD grad Z). (3.58)

For a one-step reaction with the reaction rate w this equation can also be derived using Egs. (1.38)
and (3.47) for Yr and Yo, with Lep = Lo, = 1 as

DY;
pD—F = div (i grad YF)—VI/:WFW (3.59)
t ¢
DY
Pt = div (i grad Yo2)—y62W02w. (3.60)
Cp

Dividing the first of these by v, Wo, and subtracting yields a source-free balance equation for the

combination
Yr Yo,

/ =7
VFWF Vo, Wo2

(3.61)
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dZ/dn=0,dh/dn =0

dZ/dn=0,dh/dn =0

Figure 3.2: Coflow diffusion flame

which is a linear function of Z according to Eq. (1.35). This leads again to Eq. (3.58). For constant
pressure the enthalpy equation Eq. (3.42) has the same form as v(3.58) and a coupling relation
between the enthalpy and the mixture fraction may be derived

h=hy+ Z(h1 — hs) (3.62)

where h; is the enthalpy of the fuel stream and h, that of the oxidizer stream. Similarly, using Egs.

(3.54) and (3.58) the element mass fractions may be expressed in terms of the mixture fraction
Zj = Zja+ Z(Zj1 — Zj2), (3.63)

where Z;, and Z;, are the element mass fractions in the fuel and oxidizer stream, respectively.
It should be noted that the coupling relations Egs. (3.62) and (3.63) required a two feed system
with equivalent boundary conditions for the enthalpy and the mass fractions. A practical example
is a single jet as fuel stream with co-flowing air as oxidizer stream into an open atmosphere, such
that zero gradient boundary conditions apply everywhere except at the input streams as shown in
Fig. 3.2. Once the mixture fraction field has been obtained by numerical solution of Eq. (3.58) the
adiabatic flame temperature may be calculated using the methods of Lecture 2 as a local function
of Z.
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Lecture 4

Laminar Premixed Flame

Configuration

4.1 The Laminar Burning Velocity

The classical device to generate a laminar premixed flame is the Bunsen burner shown in Fig. 4.1.
Gaseous fuel from the fuel supply enters through an orifice into the mixing chamber, into which
air is entrained through adjustable openings from the outside. The cross sectional area of the
fuel orifice may be adjusted by moving the needle through an adjustment screw into the orifice.
Thereby the velocity of the jet entering into the mixing chamber may be varied and the entrainment
of the air and the mixing can be optimized. The mixing chamber must be long enough to generate a
premixed gas issuing from the Bunsen tube into the surroundings. If the velocity of the issuing flow
is larger than the laminar burning velocity to be defined below, a Bunsen flame cone establishes
itself at the top of the tube. It represents a steady premixed flame propagating normal to itself with
the burning velocity sy, into the unburnt mixture.

The kinematic balance of this process is illustrated for a steady oblique flame in Fig. 4.2. The
oncoming flow velocity vector v, of the unburnt mixture (subscript «) is split into a component
vt , Which is tangential to the flame and into a component v,, ,, normal to the flame front. Due to
thermal expansion within the flame front the normal velocity component is increased, since the

mass flow density puv,, through the flame must be the same in the unburnt mixture and in the burnt
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Figure 4.1: The Bunsen burner Figure 4.2: Kinematic balance for a steady
oblique flame.

gas (subscript b)

(pvn)u = (pvn)ba (41)
therefore
Upp = Un,up—u. 4.2)
Pb

The tangential velocity component v, is not affected by the gas expansion and remains the same
Ut,b = vt,u- (43)

Vector addition of the velocity components in the burnt gas in Fig. 4.2 then leads to v, which points
into a direction which is deflected from the flow direction of the unburnt mixture. Finally, since the
flame front is stationary in this experiment, the burning velocity sy, ,, with respect to the unburnt

mixture must be equal to the flow velocity of the unburnt mixture normal to the front.

SLu = Un,u (44)

With the Bunsen flame cone angle in Fig. 4.1 denoted by « the normal velocity is vy, , = v, sina

54



and it follows

SLu = Uy Sina. (4.5)

This allows to experimentally determine the burning velocity by measuring the cone angle o under
the condition that the flow velocity v, is uniform across the tube exit. If this is not the case the
flame angle also varies with radial distance, since the burning velocity s, ,, is essentially constant.

A particular phenomenon occurs at the flame tip. If the tip is closed, which is in general the
case for hydrocarbon flames (but not necessarily for lean hydrogen flames) the burning velocity at
the tip, being normal and therefore equal to the flow velocity, is by a factor 1/sin« larger than the
burning velocity through the oblique part of the cone.

5L,u|ﬂamctip = Uy (46)

This will be explained below by the strong curvature of the flame front at the tip leading to a
preheating by the lateral parts of the flame front and thereby to an increase in burning velocity. This
analysis also includes the effect of non-unity Lewis numbers by which, for instance, the difference
between lean hydrogen and lean hydrocarbon flames can be explained. Finally, it is shown in (Fig.
4.1) that the flame is detached from the rim of the burner. This is due to conductive heat loss to the
burner which leads in regions very close to the rim to temperatures, at which combustion cannot
be sustained. Another example for an experimental device to measure laminar burning velocities
is the combustion bomb (Fig. 4.3) within which a flame is initiated by a central spark. Spherical
propagation of a flame then takes place which may optically be detected through quartz windows
and the flame propagation velocity dr;/dt may be recorded. Now the flame front is not stationary.
If the radial flow velocities are defined positive in inward direction, the velocity of the front must be
subtracted from these in the mass flow balance through the flame front

pu(vu — (iiitj) =y (vb — (iiitj) 4.7)

At the flame front the kinematic balance between propagation velocity, flow velocity and burning

velocity with respect to the unburnt mixture is

dry

el Uy + SLou- (4.8)
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Figure 4.3: Laminar spherical flame propagation in a combustion bomb.

Similarly, the kinematic balance with respect to the burnt gas is

d
% = Uy + SL.b- (49)

In the present example the flow velocity v, in the burnt gas behind the flame is zero due to sym-
metry. This leads with Egs. (4.7) and (4.8) to

dry  pu
dt Pu — Pb

Vy = Uy + SLu (4.10)

from which the velocity in the unburnt mixture is calculated as

ve= 2 sp . (4.11)
Pu — Pb
This velocity is induced by the expansion of the gas behind the flame front. Furthermore it follows

that the flame propagation velocity is related to the burning velocity sy, ., by

de Pu
—L = — 5[ W 4,12
TR (4.12)

Measuring the flame propagation velocity dr,/d¢ then allows to determine s, ,,. Furthermore, from
Eqg. (4.9) it follows with v, = 0 that
dT‘f

—J _ . 4.13
g = SLo (4.13)

The comparison of Eqgs. (4.12) and (4.13) shows that the burning velocity with respect to the
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Figure 4.4: Flame structure of a laminar lean flame.

burnt gas is by a factor p.,,/p, larger than that with respect to the unburnt gas. This is equivalent to
Eq. (4.2). For convenience we will denote in the following the burning velocity with respect to the
unburnt gas by sy,

SL = SL,u; (4.14)

while we keep the notation s, ; for the burning velocity with respect to the burnt gas.

4.2 Governing Equations for Steady Premixed Flames, Numer-

ical Calculations and Experimental Data

Let us consider a planar steady state flame configuration normal to the z-direction with the unburnt
mixture at z — —oo and the burnt gas at z — +oc0. The flame structure is schematically shown in

Fig. 4.4 for the case of a lean flame with a one-step reaction
vpF + 15,02 = vpP. (4.15)

The fuel and oxidizer are convected from upstream with the burning velocity s; having the mass
fractions Yy, and Yo, , at z — —oo and diffuse into the reaction zone. Here the fuel is entirely
depleted while the remaining oxygen is convected downstream where it has the mass fraction

Yo, .». The chemical reaction forms the product P and releases heat which leads to a temperature

57



rise. The mass fraction Yp increases therefore in a similar way from zero to Y5 ;, as the temperature
from T, to T;. The products (not shown) diffuses upstream, and mix with the fuel and the oxidizer.
Heat conduction from the reaction zone is also directed upstream leading to a preheating of the
fuel/air mixture. Therefore the region upstream of the reaction zone is called the preheat zone.
We will now consider the general case with multi-step chemical kinetics. The fundamental
property of a premixed flame, the burning velocity s;, may be calculated by solving the governing

conservation equations for the overall mass, species and temperature.

Continuity
depw) _ . (4.16)
dx
Species
av;  dji

pu = + 1, (4.17)

Energy

k k
dr d , dT .dT" Op

— =—A\—) - hitg — i— = 4.18
pucpdx dx()\dx) ; mn ;ij dx+5)t ( )

For flame propagation with burning velocities much smaller than the velocity of sound, the pres-
sure is spatially constant and is determined from the thermal equation of state. Therefore spatial
pressure gradients are neglected in Eq. (4.18) while temporal pressure gradients have been re-
tained.

The continuity equation may be integrated once to yield

where the subscript « denotes conditions in the fresh, unburnt mixture, and where s; denotes the
burning velocity. The latter is an eigenvalue, which must be determined as part of the solution.
The system of Egs. (4.17)-(4.19) may be solved numerically with the appropriate upstream bound-
ary conditions for the mass fractions and the temperature and zero gradient boundary conditions
downstream.

As an example taken from [3] calculations of the burning velocity of premixed methane-air
flames using a mechanism that contains only C;-hydrocarbons and a mechanism that includes
the Cy-species are shown in Fig. 4.5 as a function of the equivalence ratio ¢. The two curves
are compared with compilations of various data from the literature. It is seen that the calculations

with the Cy-mechanism shows a better agreement than the C;-mechanism. As another example
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Figure 4.5: Burning velocities calculated with a starting C,;-mechanism and a starting C,- mecha-
nism, several data compiled by Warnatz [1], and recent data referenced by Law [2] for atmospheric
methane-air-flames.

burning velocities of propane flames taken from [8] are shown in Fig. 4.6. Calculated values of
burning velocities for lean flames based on Egs. (4.17)-(4.19) are compared with approximations
given in Lecture 6 in Figs. 6.6 and 6.7 for different pressures. Fig. 6.7 shows how s; decreases
with increasing pressure but increases with increasing preheat temperature.

The fundamental property of a premixed flame is its ability to propagate normal to itself with
a burning velocity that, to first approximation, depends on thermo-chemical parameters of the
premixed gas ahead of the flame only. In a steady flow of premixed gas a premixed flame will
propagate against the flow until it stabilizes itself such that locally the flow velocity normal to the
flame is equal to burning velocity. We have already discussed that for a Bunsen flame the condition
of a constant burning velocity is violated at the top of the flame and that additional influences such
as flame curvature must be taken into account. In this chapter we want to calculate flame shapes.
We then will consider external influences that locally change the burning velocity and discuss the

response of the flame to these disturbances.
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Figure 4.6: Burning velocity of propane-air flames vs. equivalence ratio ¢ obtained with an elemen-
tary mechanism containing only species up to C3 hydrocarbons and a reduced 9-step mechanism
[3]and from experimental results ( o: Metghalchi et al [4],

x: Smith et al. [5], o: Scholte et al. [6], ~: Yamaoka et al. [7], e: C.K. Law, [2]).
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Figure 4.7: Schematic illustration of a propagating flame with arbitrary shape.
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4.3 A Field Equation Describing the Flame Position

The kinematic relation Eq. (4.8) between the propagation velocity, the flow velocity, and the burning
velocity that was derived for spherical flame propagation may be generalized by introducing the
vector n normal to the flame and writing

dzy

i vt s, (4.20)

where x is the vector describing the flame position, dx¢/d¢ the flame propagation velocity, and v

the velocity vector. The normal vector points towards the unburnt mixture and is given by

vG

where G(x,t) can be identified as a scalar field whose level surfaces
G(z,t) = Gy, (4.22)

where G| is arbitrary, represent the flame surface (conf. Fig. 4.7). The flame contour G(x,t) = Gy
divides the physical field into two regions, where G > G is the region of burnt gas and G < Gy

that of the unburnt mixture. If one differentiates Eq. (4.22) with respect to ¢ at G = G, such as

oG dx
o + VG- W loa, = 0. (4.23)

Introducing Eg. (4.20) and Eq. (4.21) into Eg. (4.23) one obtains the field equation

%—f+v-VG:sL|VG|. (4.24)
It will be called G-equation in the following. If the burning velocity sy, is defined with respect to the
unburnt mixture, the flow velocity v in Eq. (4.24) is defined as the conditioned velocity field in the
unburnt mixture ahead of the flame. For a constant value of s;, the solution of Eq. (4.24) is non
unique, and cusps will be formed where different parts of the flame intersect. Even an originally
smooth undulated front in a quiescent flow will form cusps and eventually become flatter with time
as illustrated in Fig. 4.8. This is called Huygens’ principle.
As an example of a closed form solution of the G-equation let us consider the case of a slot

burner with a constant exit velocity u for premixed combustion, Fig. 4.9. This is the two-dimensional
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planar version of the axisymmetric Bunsen burner. The G-equation takes the form

22— () + ()

With the ansatz

G=xz+F(y)
and Gy = 0 one obtains
dF\2
u =Sy 1 + (d_y)

leading to

[u2 — 2
F=/ 2SL ly| + const.
s
L

As the flame is attached at © = 0,y = +b/2, where G = 0, this leads to the solution

u? — 52 b
G= L - = .
7 (lyl—3) +=
The flame tip lies with y = 0, G = 0 at
u? — s%
TFo = 2 s%
and the flame angle « is given by
2 _ o2
tana = = 4 ) °L
2z 57
With tan? o = sin® o/ (1 — sin? ) it follows that
. SL
smo = —
u

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

which is equivalent to Eq. (4.5). This solution shows a cusp at the flame tip z = zpo, y = 0. In

order to obtain a rounded flame tip, one has to take modifications of the burning velocity due to

flame curvature into account. This leads to the concept of flame stretch.
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4.4 Flame Stretch

Flame stretch consists of two contributions: One due to flame curvature and another due to flow
divergence. It may be shown (cf. [9])that for a one-step large activation energy reaction and with

the assumption of constant properties the burning velocity sy, is modified by these two effects as
sp =50 -8 Lk+Lm-Vv-n. (4.33)

Here s% is the burning velocity for an unstretched flame and £ is the Markstein length to the

presented below. The flame curvature « is defined as

VG
H:v.n:_v.(m), (4.34)
which may be transformed as
__V2G+n-V(n-VG) (4.35)

VG

63



The Markstein length £ appearing in Eq. (4.33) is of the same order of magnitude and proportional
to the laminar flame thickness ¢, their ratio £/{ is called the Markstein number. For the case
of a one-step reaction with a large activation energy, constant transport properties and a constant
heat capacity c,, the Markstein length with respect to the unburnt mixture reads, for example

— = —In
bp v 1—nv 2 2

-~ _ v/(1=7)
Lo 1,1 Ze(e-1)(1 7)/ In(l+a), (4.36)
0 xr

This expression was derived by Clavin and Williams (1982) [10] and Matalon and Matkowsky
(1982) [9]. Here Ze = E(T, —T.,)/(RTZ) is the Zeldovich number, where E is the activation energy
and R the universal gas constant, and Le is the Lewis number of the deficient reactant. Eq. (4.36)
is valid if sy, is defined with respect to the unburnt mixture. A different expression can be derived,
if both, s;, and £ are defined with respect to the burnt gas (cf. Clavin, 1985).[11]

We want to explore the influence of curvature on the burning velocity for the case of a spherical
propagating flame. Since the flow velocity is zero in the burnt gas, it is advantageous to formulate

the G-equation with respect to the burnt gas as in Eq. (4.13)

dry
_ 4.37
dt SL-,ba ( )

where r(¢) is the radial flame position. The burning velocity is then s%,b and the Markstein length
is that with respect to the burnt gas, £;, which differs from that given by Eq. (4.36) (cf. Clavin,
1985).[11] Here we assume L; > 0 to avoid complications associated with thermo-diffusive insta-

bilities. In a spherical coordinate system Eqg. (4.24) becomes

G OaG 2@@)’ (4.38)

ot e\ | T oy

where the entire term in round brackets represents the curvature in spherical coordinates. We
introduce the ansatz

G=r¢t)—r, (4.39)
to obtain at the flame front » = r
87’f 0 2£b
E = SL,b <1 — ?> . (440)

This equation may also be found in Clavin (1985) [11]. It reduces to Eq. (4.13) if L, is set equal to
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zero. It may be integrated to obtain

0 Ty — 2£b
t=rs— 2LyIn | L———2 ), 4.41

SLpt=TE TR0 T A4 <7"f,0 - 2517) (4.41)
where the initial radius at ¢ = 0 is denoted by ;. This expression has no meaningful solutions for
rro < 2Ly, indicating that there needs to be a minimum initial flame kernel for flame propagation
to take off. It should be recalled that Eq. (4.33) is only valid if the product £  is small compared to
unity. For r¢ o > 2L, curvature corrections are important at early times only.

4.5 Flame Front Instability

As it was discussed gas expansion in the flame front will lead to a deflection of a stream line
that enters the front with an angle. This is shown in Fig. 4.10, where a slightly undulated flame
front in the z, y-coordinate system is assumed. A stream tube with cross-sectional area Ay and
upstream flow velocity u_ ., widens due to flow divergence ahead of the flame. This divergence
effect is generated by the expansion at the front that induces a flow component normal to the flame
contour. As the stream lines cross the front they are deflected. At large distances from the front
the stream lines are parallel again, but the downstream velocity is uo. = (pu/pp) t—oo. At @ cross
section A;, where the density is still equal to p,, the flow velocity due to continuity and the widening
of the stream tube is

U = — U < U (4.42)

Since the unperturbed flame propagates with v_., = sz, ,, normal to itself the burning velocity is
larger than u; and the flame will propagate upstream and thereby enhances the initial perturbation.
In the following we will neglect viscous and gravity effects as well as compressibility in the burnt
and unburnt gas, nevertheless density is discontinuous at the flame front. While the influence of
the flame curvature on the burning velocity is retained, flame stretch due to flow divergence is

neglected (see [12]). The burning velocity is then given by
sp = 8% (1 —rL). (4.43)

The velocity components « and v will be normalized with the burning velocity sy, ,, (defined with
respect to the unburnt mixture), the coordinates = and y with the flame thickness /r and the

time with ¢r/sr .. As a reference value for the density we take p,, introduce the density rate
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Figure 4.10: lllustration of the hydro-dynamic instability.

r = pp/pu < 1 and normalize the pressure with pus%,u.

* * * p
uw =u/Spu, VS =0/Spu, P = s
/5L /5L pusl
. (4.44)
t =x/lp, f=yllp, tF= .
[tr, Yy =y/lr T /oia
The non-dimensional governing equations are then (with the asterisks removed)
ou v
4= = 0
Ox + y
ou ou ou 10p
il il e 4.45
8t+u8x+v6y p Oz ( )
v ov ov_ 1dp
ot Ox oy  poy’

where p = 1 and p = r in the unburnt and burnt mixture respectively. If G is a measure of the

distance to the flame front, the G-field is described by

G =uz— F(y,t). (4.46)
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With Egs. (4.21) and (4.23) the normal vector n and the normal propagation velocity then are

n:(—l, 8—F)/ 1+(8—F)2, - (4.47)

0 0
oy dy ' E’G:Go - B_IZ L+ (_F)2

Ay
Due to the discontinuity in density at the flame front, the Euler equations Eqgs. (4.45) are only

valid on either side of the front, but do not hold across it. Therefore jump conditions for mass and
momentum conservation across the discontinuity are introduced (conf. [13], p. 16):

d
(r—l)n-—m‘ =n-(roy —v_)
dt la=aG, (4.48)
(rog —v_)n dz =n (rvv —v_v_ — (py — )I) |
+ —U- A lea, — +V+ —V-V- — (P+ — P-

Here the subscripts + and — refer to the burnt and the unburnt gas respectively and denote the
properties immediately downstream and upstream of the flame front. In terms of the v and v
components the jump conditions are written

or oF
(T—l)a = ru+—u,—a—y(rv+—v,)
oF oF oF
(rug —u-)—r = ruq(us = a_yv'i') —u(u- — a—yv—) +p+ —p- (4.49)
oF oF oF oF
(TU+—U—)E = 7“U+(U+—8—yv+)—”—(u——8—yv—)—a—y(]9+—p—)-

With the coordinate transformation:

r=§(+F(n,1), y=n t=1 (4.50)

we fix the discontinuity at ¢ = 0. Under the assumption of small perturbations of the front, the
unknowns are expanded as

u=U+eu, v=ev
(4.51)
p=P+ep, F=¢f,
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where ¢ is an asymptotically small parameter. Inserting Egs. (4.50) and (4.51) into the jump
conditions one obtains to the leading order the steady-state solution

U.=1, P.=0

(4.52)
1 r—1
U+:_7 P+: 5
T T
and to first order
(7’—1)ﬁ = ruy—u
or + -
0 = 2(uy —u-)+ps—p- (4.53)
0 = v+—v_+1_rﬁ,
ron

where the leading order mass flux rn = rU, = U_ has been set equal to 1. To first order the
equations for the perturbed quantities on both sides of the flame front now read

@—F@*O
o8& O

ou ou 1@ B

Ejt 85+;8£_0 (4.54)

where p = 1 for £ < 0 (unburnt gas) and p = r for ¢ > 0 (burnt gas) is to be used. In case of
instability perturbations which are initially periodic in the n-direction and vanish for ¢ — oo would
increase with time. Since the system is linear, the solution may be written as

w=| v | =wyexp(af)exp(or — ikn), (4.55)
p

where ¢ is the non-dimensional growth rate, & the non-dimensional wave number and i the imagi-
nary unit. Introducing this into Eq. (4.54) the linear system may be written as

A-w=0, (4.56)
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where the matrix A is given by

o —ik 0
A=| o+aU 0 alp . (4.57)

0 o+aU —ik/p

The eigenvalues of A are obtained by setting det(A) = 0. This leads to the characteristic equation

det(A) = % (k2 — a?) (o + all) = 0. (4.58)
Here again U = 1/r, p=rfor¢ > 0and U = 1, p = 1 for £ < 0 should be considered. There
are three solutions of Eq. (4.58) for the eigenvalues «;,j = 1,2,3, where positive values of «;
satisfy the upstream (£ < 0) and negative values the downstream (£ > 0) boundary conditions of
Eq. (4.54). Therefore
E>0: ay=-—ro, as=—k
(4.59)
E<0: az=+k.
The corresponding eigenvectors wy ;,j = 1,2,3 are determined by introducing the eigenvalues
aj,7 =1,2,3into A and solving again

A(Oéj) Wy = 0, j = 1, 2, 3. (460)
This leads to
1
ro
j=1 wo,1 = 1¥
0
1
J=2: wop= i (4.61)
1+ ro
k
1
j=3: wo3z= —i
ag
_1-=
k
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In terms of the original unknowns u, v and p the solution is now

u 1 1
E>0: v | =4qa i% exp(—rol) +b i exp(—k&) » exp(or — ikn)
ro
p 0 14—
U 1
£<0: v | = c —i exp(ké + o1 — ikn).
o
p 1=
(4.62)
For the perturbation f(n, ) the form
f = fexp(or — ikn) (4.63)

will be introduced. Inserting Egs. (4.35), (4.46) and (4.51) into the non-dimensional G-equation

oG ~ 0G ~ 90G 0G\2  10G\2
(E + Uo + va—y) = \/(%) + (8_y) (1+ kL) (4.64)

satisfies to leading order Eq. (4.52) and x = 0_, = = 04 respectively and leads to first order to

_or_of
T or on?
(4.65)
_of_%rc
T oy onr’
With Eq. (4.63) the jump conditions Eq. (4.53) can be written as
(r—1of = r(a+b) —c
0 = 2a+b(1+r%)+c(%—1) (4.66)
1_rkf = ar—a—l—b—i—c
k
and Eq. (4.65) then reads
c=f(o+kL)
(4.67)

= k2L
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Since equation Eq. (4.66;) is linearly dependent of Eqs. (4.67,) it is dropped and the Egs.
(4.66, 3) and (4.67; 2) remain for the determination of a, b, ¢ and o (k). Dividing all equations by kf
one obtains four equations for @ = a/kf, b = b/kf, ¢ = ¢/kf and ¢ = o /k. The elimination of the

first three unknown yields the equation

2kL -1
(1 +7)+20(1 + kL) + — ! — =0 (4.68)
The solution may be written in terms of dimensional quantities as
ok 2k 1—172
o = 2L {\/1+k2,c2——‘c+ a —(1+k£>}- (4.69)
1+r r r

Here only the positive root of Eq. (4.68) has been taken, since it refers to possible solutions
with exponential growing amplitudes. Eq. (4.69) is the dispersion relation which shows that the
perturbation f grows exponentially in time only for a certain wave number range 0 < k& < k* with
k*=(r—1)/(2L).

For perturbations at wave numbers k& > k* a plane flame of infinitively small thickness, de-
scribed as a discontinuity in density, velocity and pressure is unconditionally stable. This is due to
the influence of the front curvature on the burning velocity. As one would expect on the basis of
simple thermal theories of flame propagation, the burning velocity increases when the flame front
is concave and decreases when it is convex towards the unburnt gas, so that initial perturbations
are smoothen. However, hydrodynamic and curvature effects are not the only influencing factors
for flame front stability. Flame stretch due to flow divergence, gravity (in a downward propagating
flame) and the thermo-diffusive effect with a Lewis number larger unity are stabilizing effects. A

more detailed discussion of these phenomena may be found in [11] and [13].

Exercise 4.1
Under the assumption of a constant burning velocity s, = sz the linear stability analysis leads to

the following dispersion relation

ok 1—172
g_SL_O{ 14" _1}. (4.70)
T+ r

Validate this expression by inserting £ = 0 in Eq. (4.69).
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What is the physical meaning of this result?
What effect has the front curvature on the flame front stability?

Solution

The dispersion relation for constant burning velocity s;, = sro, EQ. (4.70), shows that the pertur-
bation F' grows exponentially in time for all wave numbers. The growth rate o is proportional to
the wave number & and always positive since the density rate r is less than unity. This means
that a plane flame front with constant burning velocity is unstable to any perturbation. The front
curvature has a stabilizing effect on the flame front stability. As it is shown in Section 4.5, the linear
stability analysis for a burning velocity with the curvature effect retained leads to instability of the
front only for the wave number range 0 < k < k* = (r — 1)/(2£), whereas the front is stable to all
perturbations with & > k*.
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Lecture 5

The Thermal Flame Theory

5.1 Premixed Flames Based on One-step Asymptotics

A classical example of an asymptotic description of the structure of a premixed flame is due to
Zeldovich and Frank-Kamenetzki in 1938. It is known as the thermal flame theory and considers
the single one-step reaction Eq. (4.15). We will assume that the reaction rate is first order with

respect to fuel and to oxygen

pYr pYo, (—E)
= BP0 o (), 5.1
YT Wo, CPA\RT ®.1)

Alternative forms, in particular a rate which is first order with respect to the fuel only, may also be
considered. We will show that this case will be contained as a limit for extremely lean flames in
the expression above. In Eqg. (5.1) the most important feature is the Arrhenius type temperature
dependence, where the activation energy FE is assumed to be large. Both the activation energy
and the frequency factor B are adjustable parameters and cannot be deduced from elementary
kinetic data. The one-step model has widely been used in descriptions of flame stability, where
it essentially serves as model that produces a thin flame with a strong temperature sensitivity. In
this lecture we will derive an explicit expression for the burning velocity. This is to be compared
in lecture 7 to results derived from a four-step reduced mechanism for methane-air flames. The
flame structure shown schematically in Fig. 5.1. Since the reaction is assumed to be irreversible,
the reaction rate must vanish in the burnt gas. Therefore one of the reactants must be entirely

depleted: the fuel in the case of lean flames, the oxidizer for rich flames and both for stoichiometric
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Figure 5.1: The structure of a premixed laminar flame as calculated from one-step asymptotics.

flames. This leads to the condition in the burnt gas

Yrp - Yo, =0. (5.2)

The combustion of the reactants in the reaction zone leads to an increase in temperature and
therefore an increase of the reaction rate. In the analysis to be developed, the large temperature
dependence of the reaction rate, expressed by the large activation energy will play a crucial role.
Let us assume at first that Eq. (3.35) for the diffusion flux can be employed and that the Lewis
number is unity. The species balance equations Eq. (3.47) for the mass fractions of fuel and

oxygen read

dYr d /X dYp ,
e = (250
PusL dx dx(cp da:) S
(5.3)
dYO2 o d A dYO2) ,
Pusl™qy = dx(cp dx Vo, Wo, -

Then, using pu = p,sy these can be combined with the temperature equation Eq. (3.46) in the
form

Q
LYY

cp dx Cp
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This leads to algebraic coupling relations between the mass fractions and the temperature which
may be integrated from the burnt state to any state within the flame as

/
_ Vg WF Cp

Yr = 0 (T —Tp) + Yrp
e W (5.5)
o)
Yo, = _% (T —Tp) + Yo,

Here @) and ¢, have been assumed constant for simplicity. With Eq. (5.5) the reaction rate is a
function of temperature and only Eqg. (5.4) needs to be considered in the following.

In the small Mach number limit from the momentum equation one obtains the solution
p = const. (5.6)

With the aid of the thermal equation of state and Eq. (5.5) the density , the thermal conductivity
as well as the reaction rate can be expressed as a function of temperature. Again one obtains for
the solution of the continuity equation Eq. (4.16) the expression Eq. (4.19). The only differential

equation remaining describes the temperature profiles in z-direction.

puSLdT d ()\g) Q

cp dx Cp

Zeldovich and Frank-Kamenetzki introduce the following assumptions introducing the ignition tem-
perature T;:

1. in the preheat zone (T < T;) no reactions take place, therefore w = 0 is assumed.

2. inthe reaction zone (7' > T;) the convective term at the left side of Eq. (5.7) can be neglected
compared to the diffusion term and the reaction term.

In particular the admissibility of the second assumption is at first glance hard to accept. However
it will become apparent when on the basis of the asymptotic theory the character of the reaction
zone as a very thin boundary layer will be introduced. A mathematical justification can be given by
a singular asymptotic expansion.

Using the first assumption Eqg. (5.7) can be integrated in the pre heat zone. Considering the

boundary conditions d7/dz| _, _=0andT| =T, forthe first derivative we have

dT" ¢y pust
dz A

(T —T,). (5.8)
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With the second assumption Eq. (5.7) can be integrated once, if the temperature T is introduced
as an independent variable. One substitutes the heat conduction term with

d /Adl\ dT'd (AdT\ ¢, 1d A dT\? (5.9)
dr \c,dz ) dodl \c¢,dr ) AX2dT \c,dz /) ° '
After multiplication with \/c, from Eq. (5.7) it follows
=———"w(T). (5.10)

With the boundary conditions dT/dx‘Hoo =0and T\HOO = T, this equation can be integrated
for a first time

Ty

AT | (—AH)

=2 //\w(T)dT. (5.11)
T

Now at the position x; for T' = T; Zeldovich and Frank-Kamenetzki set the derivatives of the preheat
zone, Eq. (5.8), and the reaction zone, Eq. (5.11) equal to each other. This yields an equation for

the burning velocity

Ty
Cp’;i%”(n ST = |2 (_fQH) //\w(T) dr. (5.12)

This corresponds to a matching process to adjust the solutions from the preheat zone and the
reaction zone. An analysis of the integral in closed form is only possible, if further simplifying
assumptions are introduced. Expanding the term in the exponent of Eqg. (5.1) in a series around
T, and neglecting higher order terms, one obtains

E E E(T-T)

= . 5.13
RT ~ RT,  RI? (5.13)

Since in the reaction zone T and T, are only slightly different, it is useful to introduce the dimen-

sionless temperature
E(T -T)

O="Rm

(5.14)

which stays of the order O(1) for large E/(RT?). In the reaction zone for T' ~ T, in first approx-
imation and the properties can also assumed to be constant (p = p,, A = \;). Considering Egs.
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(5.2) and (5.3) the reaction rate can be written as

1y Iy I e RT2 (5.15)
[ VFYOsb | PO, TFb Vo, VBCp Ny o
{ ( Mo, + Mr )@ (CAME @]exp@.
Integration yields

T, 0

/)\wdT /\b /w

o opa O /

B )\bebch T, F vpYo,b . Vo, YFb . . (5.16)

= T CAHE exp “RT, Vo, + e (14+(0; —1)exp©;)

V6, Ve RTY 0?
+2 (—AME 1 1-0;+ 5 expO; | |.

Now a consideration is introduced which is obvious only for an asymptotic expansion for a large
activation energy. In the integral Eq. (5.16) ©; is substituted by ©,,, which may be interpreted as the
assumption that the solution is valid far into the preheat zone. That is equivalent with the physical
conception that underneath the temperature 7T; the integral in Eq. (5.16) is negligible because of
the strong dependence of the reaction rate on temperature. Then it makes no difference whether
integration is performed between T; and T, or T, and T}. Since O, takes large negative values for
large activation energies, all terms containing exp ©,, will finally be replaced by —co, so that they
disappear.

On the other hand on the left side of Eq. (5.12) T; is replaced by T, and \; by \,. This implies
the concept that the reaction zone is so thin, that the temperature in the preheat zone extends to
T, and that T; is hardly distinguishable from 7;. Eq. (5.12) then reads

Bp2 \R2T}! E
usp = |2 Jb ~~ s
Pust \/ (T, — T2 B2 “P\ "R,
VY0, b . Vo, YF b 21/621/{;chle2
Mo, My (—AH)E

(5.17)
[ -

The contribution of the individual terms in .S depends strongly on the equivalence ratio ¢ = 1/\:
in very lean or very fat mixtures respectively Yo, ; or Yr ; are large, while both vanish for stoichio-

79



metric mixtures. Therefore in stoichiometric mixtures the last term is predominant. It holds

!
% for ¢ <1,
O2
Qv Ve, RT?
S=( 702 FPTh g 5.18
SO 6=1, (518)
V0, YF b
—2 for 1.
My o>

Finally the assumptions introduced should be summarized:
1. In the preheat zone the reaction rate is neglected.
2. In the reaction zone the convective term is neglected

3. The reaction rate is approximated by an expansion around 73, where only the exponential

term is expanded. Properties are set constant and are evaluated at T,

4. The integration over the reaction zone leads to an expression that correspond to an integral

between the limits ' = —ccand T' = T;,.
5. In the solution of the preheat zone the ignition temperature 7; is equalized to T}.

Originally the thermal flame theory of Zeldovich and Frank-Kamenetzki was not derived for reaction
rates in the form of Eq. (5.1) being of first order both for the fuel and the oxidizer. Rather several
solutions were derived for the reaction rate of zeroth, first and second order. The comparison with
the result presented here, Egs. (5.17) and (5.18) shows that a reaction of first order is conform
with a very rich or very lean mixture, for which the component in-deficit determines the reaction
rate. In contrast the stoichiometric mixture relates to a reaction of second order, since here both

components are rate determining.

5.2 Flame Thickness and Flame Time

In Section 5.1 we have identified the burning velocity s; as an eigenvalue of the problem, which
results from the solution of the one-dimensional balance equations. Under the assumption of a
one-step reaction, in which only a chemical time scale has been introduced, and with the assump-

tion of Le = 1, by which the thermal diffusivity a = A\/(pc,) and mass diffusivity D are equal, with
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Figure 5.2: Graphical determination of the flame thickness.

Eq. (5.17) one obtains a relation for sz, which combines the parameters diffusivity and chemical
time as
s, =+/D/t.. (5.19)

Here the mass diffusivity D is related to the thermal diffusivity using p = p, and A = \, as

D= , (5.20)
Pulp
while the chemical time is given by
;= puZ62 o FE (5 21)
° = 2Bp2s “P\RT, '
Here the Zeldovich number, defined by
Ze = M (5.22)

RT?

appears squared. Since Ze is of the order of magnitude O(10), the chemical time ¢. is by two
orders of magnitude larger than a chemical time, which, irrespective of the density ratio p./ps,
would be calculated from the reaction rate for example for very lean flames ¢ < 1 as the reciprocal
of

pPYo.

exp( at T'="Ty, p=pv, Yo, = Y0,

=)
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Obviously t.. is not a time, which is solely determined by chemistry, but ¢. incorporates the structure
of the flame as well. This will become apparent, if from dimensional arguments one defines the

flame thickness as
tp= 2 N (5.23)
SL CpPuSL

Then one can further introduce the flame time

= E (5.24)
SL

This is the time, which the flame front requires, to propagate the distance of the thickness of the

flame. The comparison between Egs. (5.19) and (5.23) up to Eq. (5.24) show, that ¢, mit

=2y, (5.25)
ST, SL
is equal to the flame time.

The flame thickness can be descriptively constructed from the temperature profile, Fig. 5.2.
If one attaches a tangent to the turning point of the temperature profile and determines the inter-
section with the horizontal line at 7, and Ty, the length ¢/ can be taken at the abscissa. If one
substitutes in Eq. (5.8) the left side by (T, — T.,)/¢r and evaluates the right side at ' = T}, one

obtains
Ab

CpPuSL

lp = (5.26)

in accordance with Eq. (5.23).
In Eq. (6.17) in Lecture 6 we will introduce a normalized coordinate which eliminates all prop-

erties from the temperature equation, as will be shown in Eq. (7.5). This suggests

lp A
PuSL / —dx =1. (5.27)
o O

Assuming \/c, = (\/¢,)70, where TV is the inner layer temperature to be defined in Lecture 6,

one obtains a more suitable definition for /:

(ep)ro. (5.28)

é p—
B T (pse)u

Since the reaction zone was assumed to be thin, the flame thickness hence describes the thickness

of the preheat zone of the flame structure.
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The flame thickness also is a measure for the quenching distance d. This is the distance, for
whom a flame extinguishes, if it encounters a cold wall. Typically one has

d=clp, c=5...6.

Therefore a flame cannot pass through a metal grid, if the distance between the wires is smaller
than d. In former times this observation was used at pit lamps. These lamps consist of an open
flame encapsulated by a metal grid. If mine gas, normally methane, unexpectedly accumulated
in a gallery, it diffused through the metal grid with the result that the flame of the pit lamp burned
more lucidly. On the other hand there was no danger, that the mine gas got ignited by the pit lamp,
if the quenching distance was respected in choosing the proper grid spacing. In case of a brighter
pit lamp the miner knew that he has to seek shelter as fast as possible.
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Lecture 6

Asymptotic Structure of Four-Step
Premixed Stoichiometric Methane

Flames

In the previous lecture we have derived a description of premixed flames based on an assumed
one-step reaction. This has provided a basic understanding of the flame structure when a large
sensitivity to temperature was built into the model. There is no chemical basis for such a one-step
assumption and the results must be regarded with caution when conclusions are drawn about the
dependence of the burning velocity on pressure and reactant concentrations, as well as flamma-
bility and extinction limits. While numerical calculations based on full and reduced mechanisms
are able to predict these properties, they contribute little to the understanding of the fundamental
parameters that influence flame behavior. Therefore there is a need to fill the gap between the
numerical calculations based on mechanisms with elementary kinetics and asymptotic analysis
based on assumed chemistry models. The asymptotic description of stoichiometric methane-air
flames from [1], based on a four-step reduced mechanism, shall be presented in this lecture. Since
the basic chemical parameters were retained, this mechanism has been quite successful in de-
scribing the dependence of the burning velocity on pressure and preheat temperature. A similar
asymptotic analysis as in [1] was also carried out for lean methane flames [2]. This description
may, with some modifications, also serve as a model for other hydrocarbon flames. This will be
shown by using analytical approximation formulas [3] that are based on the asymptotic description
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of methane flames for flames of CoHg, CoHy, CoHy and CsHg in air.

6.1 The Four-Step Model for Methane-Air Flames

The four-step model for methane flames is

I CH4 +2H+H20 - CO+4H2
I CO + H>O = CO2+ Hsy

(6.1)
III H+H+M = Hy +M
I\ Os + 3Ho = 2H + 2H50.
The principle rates governing these global reactions are
Wr = w1, Wi =wy 6.2)
WIII = W5, WiV = W1
which correspond to the elementary reactions
11 CHys+H — CHj3 + Hy
9 CO+0OH = COy;+H
g (6.3)
5 H+0O2+M — HOy+M
1 H+ O, = OH+O.

We neglect the influence of the other reactions here in order to make the algebraic description
more tractable. Since OH and O appear in this formulation as reactants we need to express them
in terms of the species in the four-step mechanism by using the partial equilibrium assumption for

the reaction:
2 O+Hy, = OH+H

(6.4)
3 OH+Hs, = H;O+H
such that (H](OH]
or = K, [Ho,]
[H,0][H] (©5)
S N
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where K, and K3 are the equilibrium constants of reactions 2 and 3, respectively. This leads to
the following reaction rates of the global steps I-1V:

0%} = kll[CH4][H]
_ koy H] _ 1
R A ([CO][HQO] e [002][1{2]) on
wir = ks[H][O2][M]
[H] 1
wry =k e ([02][H2]3—K—W[H]2[H20]2)

which is explicit in terms of the concentrations of species appearing in the four-step mechanism.

The equilibrium constants in these rates are given by

Ks = 0.216 exp(7658/T)
Kin = 0.035 exp(3652/T) (6.7)
Ky = 1.48 exp(6133/7).

We now want to go one step further and assume steady state of the radical H. Adding reaction IV

to | and Ill leads to the three steps

I' CHy;+0>, = CO+Hy+H0
I CO+H,O = CO2 + Hs (6.8)
I Oy +2Hy, = 2H,0

with the first three rates of Eq. (6.6). The concentration of H must now be determined from the
steady state equation for H

WI + WIIT = WIv. (6.9)

This may be written as

B Es[M] k11 [CHy)\ /2
[H] - [Heq] (1 kl kl [02] ) 9 (610)
where [H,,] based on partial equilibrium of reaction IV
1/2 3/2
[He,] = Kll\éQM (6.11)

H>O

Eqg. (6.10) shows an interesting structure: At temperatures of 1400 K and above the second term
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Figure 6.1: Schematic illustration of the structure of a premixed methane-air flame.

in the brackets is small while the ratio k1 /k; is much larger than unity. It follows that [CHy4]/[O2]
must be much smaller than unity, if [H] is to remain real. This will be used to develop an asymptotic
description of the inner layer below but also shows that Eq. (6.10) cannot be valid in the preheat
zone upstream of the inner layer where CHy is entirely consumed. The structure of the flame
is schematically shown in Fig. 6.1. From Eq. (6.10) it follows that [H] vanishes in the preheat
zone which is therefore chemically inert. A further approximation that will reduce the three step
mechanism Eq. (6.8) effectively to a two-step mechanism is the assumption of partial equilibrium
of reaction Il. Assuming the concentrations of H,O and CO, to be known this leads to a coupling
between the concentrations of CO and H, of the form

[COJ = o [Ha], (6.12)
where
of = ES&} Ku(T). (6.13)

By introducing partial equilibrium of reaction Il one assumes that the effective rate coefficient
kys/K3 in the second equation of Eq. (6.6) tends to infinity while the term in parenthesis tends

to zero and wy; remains finite. Since wy is undefined, the rate wi; must be eliminated from the
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balance equations. In order to show this the balance equations for the three-step mechanism are
written in operator form

dv; 1 d/)\dy;
Speci LD = o o g (ogr) = Wi
pecies (Y3) PuSL T Le; dz \¢p dz ;’/lwl
= (6.14)
1r’
AT d /A dT 1
T t Lp(T) = u ___(__) S .
emperature T( ) PusSL dz dz Cp dx CplZI:’QlWZ

In terms of the variable T'; = Y; /W; the balance equations for the concentrations are written

Len,(Ten,) = —wr

Lo, (To,) = wrtwl

Ly, (T'n,) = wr+wn — 2w (6.15)
Leo(Tco) = wr—wn

Lu,0(T'm,0) = wr—wi+ 2w

Leco,(Tco,) = win

The rate wi; may be eliminated from Eq. (6.15) by combining the balance equations of Hs,
H,0, and CO; with that of CO

LH2 (FHz) + Lco (I‘CO) = 2w — 2wrr
Li,o(Tw,0) — Leo(Tco) = 2wm (6.16)
Lco,(T'co,) + Lco(Tco) = wr

We will anticipate that in the thin reaction layers to be considered below, the diffusive terms dom-
inate for the same reason as in the thin reaction zone for the one-step model. Therefore we will
neglect the convective terms in the operators Eq. (6.14) for the thin reaction zones and consider
only the diffusive terms. This suggests that the concentrations should be scaled with the Lewis

numbers. We introduce the non-dimensional variables

Y. YiWen, S Xi
" YomW: 7Y Lei’
T-T, ®
T = T T ° " = pusL/ %pdzzr, (6.17)
b— Lu 0
o AWen,wi Qr — QiYcH,u
L eYorw(pv)l TN (T, — Tu)Wen,
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and redefine the parameter o’

’ L6H2

With zco = axp, one obtains the following balance equations of the two-step mechanism (the
asterisks will be removed from here on)

 Poon,
dz? - I
_ d2 TO,y - o —w
a2 = I 111,
d2 TH, 2
- = ——(wr —wm),
da? 1
g ta (6.19)
d2 iele) 2c ( )
— = Wy — W
122 T+ ot 111);
d2 TH,0 2c
 da? N 1+0¢w1+ T+ amh
d2 TCO, 1—« 2
a2 N 1+o¢w1+ l—l—ozwIII
The stoichiometric coefficients are those of the two global reactions
2 2 1-
" CHy+ O = ——(Hy + aCO) + ——H,0 + —~CO0,,
14+« 14+« 14+«
5 5 5 (6.20)
«
I O+ ——(H CO) = H20O COo.
2+ 75 (He +aC0) = 72 H20 4 72 C0;

Here the combination Hs + «CO appears as an intermediate which is formed in I” and consumed
in III”. The rates of these reactions are still the same as of I and III in the four-step mechanism.
If the balance equations Egs. (6.19); and (6.19); are used to determine zcy, and zy,, all other

concentrations and the temperature can be determined deriving the following coupling equations
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from Eq. (6.19) and the corresponding temperature equation

d2
@[(1 + Oz)IH2 +4xcH, — 2x02] =0,
2
@[Ipb + 2I0H4 + IH20] =0,
2 (6.21)
@LTHQ + zcn, + zco,] =0,
d2
@[(QHz + aqco)zn, +ron, + 1] =0.
Here the reduced heats of reaction are
1
q, = 5% = 0.3116
L (6.22)
oo = FOmHQW o0,
Q
where (@ is the heat of reaction of the global step
CH, + 205 = CO3 + 2H50. (623)

In the following we approximate both gz, and qco by ¢ = 0.33 for simplicity.

6.2 The Asymptotic Structure

The flame structure of the two-step mechanism is shown in Fig. 6.1 and contains three layers
1. achemically inert preheat zone of order O(1) upstream,

2. an thin inner layer of order O(¢) in which the fuel is consumed and the intermediates H, and

CO are formed according to the global step 1”,

3. a thin oxidation layer of order O(e) downstream where H, and CO are oxidized according to
the global step III".

At first the inner layer shall be analyzed. We will denote quantities at the inner layer with a
subscript 0 but the inner layer temperature as T°. In this layer all concentrations except that of the

fuel, which is depleted may be assumed constant to leading order. Introducing Eq. (6.10) into the
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Eqg. (6.6); and neglecting the second term in the paranthesis of Eq. (6.10) this leads to

1/2
w1 = Da1$CH4 (1 — !T(i%) (624)

where the Damkohler number of reaction I is

2 3 \1/2
Pt Yen,u Mo (KivXo,Xq,)o 0
Da; = — L k11(T). 6.25
M7 2T Won, 6o Xu,0 eon (1) (6.25)
The small parameter § was defined as
k(T X,
5= P )Xo, 0 (6.26)

~ kn(T°)Lecn,

It denotes the ratio of the rate coefficients of reaction | and 1l and thereby describes the competition
of these two reactions in producing and consuming /HnR-radicals according to the global steps
IV and I. Since it happens that the reaction rate k; is typically smaller than k11, and since also
Xo, in the inner layer is smaller than unity, ¢ is around 0.1 and sufficiently small for an asymptotic
expansion. If ¢ is small, since w; must be real it follows from the term in paranthesis in Eq. (6.24)
that zcp, must not exceed the value of §. Fig. 6.1 shows that the fuel is of order O(1) in the
preheat zone but decreases rapidly towards the inner layer. In the inner layer zcy, is then of order
O(4) and one may introduce the scaling

y = ZCHa (6.27)
0
and the stretched variable
xr
= —. 6.28
=5 (6.28)

Introducing these into the equation of Eq. (6.19); leads to the differential equation that governs
the structure of the inner layer

dQ?J 2 1/2

Gz = (0"Dany(1 )% (6.29)

The downstream boundary condition of this equation is

y=0 as (— 40 (6.30)
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since reaction I is irreversible. The matching with the preheat zone should, as for the one-step
asymptotic problem, provide the second boundary condition. The solution for the fuel concentration
in the preheat zone is

xcn, = 1 — exp(Lecm, x), (6.31)

which leads to the expansion zcy, = —x around z = 0. It is shown in [1], however, that the
inner layer and the preheat zone are separated by an additional thin layer, the radical consumption
layer where the steady state approximation for the H-radical breaks down. This layer occurs at
y = 1, = —1 in terms of the inner layer variables. Since the fuel is not consumed in this radical
layer the slope of the fuel concentration is continuous and matching across this layer leads to

y=1, 3—2’:—1 at ¢ =—1. (6.32)

With the boundary conditions Egs. (6.30) and (6.32) Eqg. (6.29) can be integrated once to obtain
the eigenvalue
§?Day = 1_85 (6.33)

With Eq. (6.33) one could now determine the burning velocity sy, if the temperature 7° and all other
properties at the inner layer were known. In order to determine these, the structure of the oxidation
layer also must be resolved. In the oxidation layer ¢y, = 0 and therefore w; = 0. The temperature
varies only slowly in this layer and since the activation energy of ks is small, temperature variations
may be neglected. Since most of the chemical activity takes place in the vicinity of the inner layer,
all properties shall be evaluated at x = 0. Choosing x, as the dependent variable in the oxidation

layer and scaling it in terms of a new variable z as

(6.34)

EZ
THy = ————
=T 1t a)g

one may use the coupling relations Eq. (6.21) to show that the downstream boundary conditions
are satisfied by
xo, =€2/2q, T =1—c¢z. (6.35)

In these expansions ¢ is the small parameter related to the thickness of the oxidation layer. Intro-
ducing Egs. (6.34) and (6.36) into the third of Egs. (6.6) leads to

win = 2¢Dayye®z? (6.36)
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Figure 6.2: Normalized Hs-profile in the oxidation layer.

where the Damkohler number of reaction III is defined

pg YCH“L&(KI\/LG%2L6%2)1/2 k5[1\/1]

. 6.37
pisi Wems cpo N 2°(1+a)3 /o ¢* Xm0 (6.37)

Dayyy =
The concentration of the third body in reaction 5 may be determined approximately by using the
third body efficiencies evaluated at the burnt gas conditions. This leads to

~ 1.6p

M] = ==

(6.38)
which introduces a pressure dependence of Daj; and will finally determine the pressure depen-

dence of the burning velocity. Introduction of a stretched coordinate
2qx
n=—

(6.39)
g

then leads from the third equation of Eq. (6.19) with w; = 0 to the governing equation of the

oxidation layer
d?z

d_’l72 = (64Da111)23. (640)
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This suggests the definition
e = Daj/". (6.41)

It turns out that for p > 1 atm ¢ is smaller than unity but typically larger than §. Even though ¢ is not
very small, we will consider it as small enough to justify an asymptotic description of the oxidation
layer. The downstream boundary condition of Eq. (6.40) is

z=0 for n— o0 (6.42)

since reaction III is irreversible. The upstream boundary condition must be determined from jump
conditions across the inner layer. Since the fuel is depleted and H- is formed in the inner layer
following reaction 1”, the stoichiometry of this reaction also determines the change of slopes of the
H, in comparison of those of the fuel. This is written as

dICH4
dx

__dxCH4
0— dz

dIH2

1+ (da:H2
o+ 2 dx

0— dx 0+) (6.43)

Since the thickness of the preheat zone is of order O(1) and that of the oxidation layer of order
O(e) the upstream slope of the H, concentration d:chz/d:c\O+ can be neglected compared to the
downstream slope dtz/dxyof. It then follows with Egs. (6.34) and (6.39) that the upstream
boundary condition of Eq. (6.40) is

o1 at p=0. (6.44)

Then the solution of Eq. (6.40) with Eq. (6.41) is

21/2
with
20o=2Y% at n=0. (6.46)

The form of the solution is plotted in Fig. 6.2 showing a very slow decrease of z towards n — oc.
This may explain why in numerically and experimentally obtained concentration and temperature
profiles the downstream conditions are approached only very far behind the flame.
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Figure 6.3: The burning velocity for an undiluted stoichiometric methane-air flame at 7;, = 300 K.

6.3 An Analytic Expression for the Burning Velocity

The result Eq. (6.46) may now be used in Egs. (6.34) and (6.36) to determine the quantities
required in Eq. (6.25) and thereby the burning velocity s;. Also by dividing Eq. (6.25) by Eq.

(6.39) one can eliminate sy and obtain a relation of the form

k% (TO) —15p Lecn,

k11 (T9)ks(T0)/(RTO) ~ " Leo, (6.47)

Here the universal gas constant R must be used as R = 82.05 atmcm?®/mol/K in order to be
consistent with the units of the reaction rates and the pressure. Eq. (6.47) shows that with the
rate coefficients fixed, the inner layer temperature is function of the pressure only. It does not
depend on the preheat temperature, the dilution of the fuel concentration in the unburnt mixture
and thereby the adiabatic flame temperature. After some algebraic manipulations the expression

for the burning velocity reads

(6.48)

2_ 8 k1 YCH“Lﬁ(Le%QLe?{QKIV(TO))lﬂ(T3)2 (Tb—T0)4
2 =

15 k11 ¢4 X1,0 Wom, 6o N Lecm, 25(1 + ag)3 79) \T}y, — T,
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where Egs. (6.46) and (6.36) were used to relate ¢ to the difference between T, and 7°

T, —T°

The burning velocity calculated from Eq. (6.48) and the pressure from Eq. (6.47) are plotted in
Fig. 6.3 for an undiluted flame with T,, = 300 K as a function of 7° choosing p = 1 atm one obtains
a laminar burning velocity of 54 cm/s for stoichiometric methane flames. This value is satisfactory
in view of the many approximations that were made and the few kinetic rates that were retained.
In fact, it is seen from Egs. (6.47) and (6.48) that only the rates of reactions 1, 5, and 11 influence
the burning velocity in this approximation.

A further consequence of Eq. (6.48) is that the burning velocity vanishes as T° reaches T;,.
This is seen in Fig. 6.3 with T;, = 2320 K the pressure is larger than approximately 20 atm. Different
values of T}, would been obtained for a diluted or preheated flame. The fact that at a fixed pressure
TV is fixed by the rate of rate coefficients in Eq. (6.47) points towards the possibility to explain
flammability limits at least in terms of dilution for stoichiometric flames: if the amount of fuel is so
low that in the unburnt mixture the corresponding adiabatic flame temperature is lower than 7°, a
premixed flame cannot be established.

6.4 Relation to the Activation Energy of the One-step Model

Using the burning velocity expression Eq. (6.48) from the preceding section

L L BRNRT (B
Pusl =\ = (T, — Tw2E2 “P\ " RT,

- V6H4YO275 i VE)2YCH4,b 2V62V6H4CPRTZJ2
Mo, Mcn, (-AH)E ’

one may plot the burning velocity in an Arrhenius diagram over 1/7,. Then in the limit of a large

activation energy all pre-exponential dependencies on T, are small and the slope in this diagram

is given by
dIns? E
=—= 6.50
d(1/Ty) R ( )
or )
dIns? E
= — 6.51
dlnTb RT[, ( )
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Figure 6.4: Variation in the value of the effective Zeldovich number with ® for various values of p
at 7, = 300 K.

Applying this form to Eq. (6.48) with TV fixed leads to

dlns? AT, AT,
= — 6.52
dlnTb Tb —TO Tb —Tu ( )

Since the second of the terms is much smaller then the first, one obtains with Eq. (6.49), when 7°

approaches T;, and ¢ is small,

E 4Ty 1
— = — 6.53
RTb Tb — Tu €20 ( )
Therefore the Zeldovich number
Jeo — E(T, —T,)
- RTY
introduced in Eq. (5.22) may be expressed as
Ze = M = 4 (6.54)

RT'b2 EZ20

In the one-step model the thickness of the reaction zone was of the order of the inverse of the

Zeldovich number. This corresponds for the two-step model for methane flames to the thickness
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Figure 6.5: Variation of the adiabatic flame temperature T}, and the temperature at the inner layer
TP with equivalence ratio ® for various values of the pressure p and for T, = 300 K.

of the oxidation layer. Therefore the oxidation layer seems to play a similar role in hydrocarbon
flames as the reaction zone in one-step asymptotics. Values of the Zeldovich number for lean to
stoichiometric methane flames, obtained by asymptotic analysis in [2] are shown in Fig. 6.4. The
Zeldovich number measures the sensitivity of the burning velocity to perturbations of the maximum
temperature. Fig. 6.4 shows that this sensitivity increases as the mixture becomes leaner and
when the pressure increases. The flame will then become very sensitive to heat loss and flame

stretch effects.

6.5 Analytic Approximations of Burning Velocities for Lean
CH,, C>Hg4, CoH,4, CoH,, and Cs3Hg Flames

The burning velocity expression presented in Egs. (6.47) and (6.48) may be generalized by writing
an approximation formula for burning velocities as

T (Tb - TO)" (6.55)

S, = YI;tLuA(TO)ﬁ Tb — Tu

98



S0p——+——+——+——F——+——

fuel: CH 4 1
40+ T

Figure 6.6: Burning velocity sy, of methane vs. fuel-air-equivalence ratio ® for various pressures
with a fixed unburnt temperature 7, of 298 K (solid lines). The markers denote the values of
detailed numerical calculations.

and
p=P(T" (6.56)

where the functions A(7°) and P(7°) are determined by fitting numerical or experimental data and
the values m = 1/2 and n = 2 would correspond to the previous expressions for premixed methane
flames. Eq. (6.56) assumes that the inner layer temperature is a function of pressure only, and
it does not depend, for instance, on the equivalence ratio. This is a fairly crude approximation
as may be seen from Fig. 6.5 where inner layer temperatures obtained from asymptotic analysis
[2] are plotted together with the adiabatic temperatures as a function of the equivalence ratio. If
one would replace the curves for the inner layer temperature by a horizontal line, its intersection
with the curve for T, would yield a lower theoretical limit for the lean flammability limit. This will
be discussed in the next section. If the structure of any other hydrocarbon fuel is similar to that
of methane, these exponents should not differ very much from these numbers. Since A(T") and
B(T") contain essentially the temperature dependence due to rate coefficients, we express them
in Arrhenius form

A(T%) = Fexp(—G/T?) (6.57)
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Figure 6.7: Burning velocity s; of propane vs. pressure p for various unburnt gas temperatures
T, at stoichiometric mixture (solid lines). The markers denote the values of detailed numerical
calculations.

P(T°) = Bexp(—E/T"). (6.58)

This concept was tested in [3]. The basis of the approximation was a data set of 197, 223, 252,
248, and 215 premixed flames for CH4, CoHg, CoHy, CoHs and C3Hg, respectively in the range
between p = 1atm and 40 atm, T, between 298 K and 800 K, and the fuel-air equivalence ratio
between & = 0.4 and & = 1.0. A nonlinear approximation procedure was employed, yielding the

following values for the coefficients: The approximation was surprisingly the best for CoHs, yielding

fuel B [bar] E [K] F [em/s] G K] m n

CH, | 3.1557e8 | 23873.0 | 22.176 | -6444.27 | 0.565175 | 2.5158
CoH, | 56834.0 | 11344.4 | 37746.6 | 1032.36 | 0.907619 | 2.5874
CoH, | 3.7036e5 | 14368.7 | 9978.9 263.23 | 0.771333 | 2.3998
CyoHg | 4.3203e6 | 18859.0 | 1900.41 | -506.973 | 0.431345 | 2.1804
C3Hg | 2.2502e6 | 17223.5 | 1274.89 | -1324.78 | 0.582214 | 2.3970

Table 6.1: Approximation coefficients for the burning velocity.

a standard deviation for sy, of 2.3%, followed by CoH, with 3.2%, CoHg and C3Hg with 6.2%, and
CH,4 with 7.4%. These deviations may be considered extremely small in view of the fact that such

a large range of equivalence ratios, pressures and preheat temperatures has been covered with
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an approximation formula containing only six coefficients which for some hydrocarbons are given
in Tab. 6.1. A closer look at the exponents mand n shows that m is close to 1/2 for CH, and
C3Hg, but close to unity for CoHs and C3Hy, suggesting that the asymptotic model for these flames
should differ from the one for CH,4 in some important details. The exponent m lies around 2.5 and
thereby sufficiently close to 2 for all fuels.

Burning velocities for methane calculated from Egs. (6.55) and (6.56) are shown as a function
of equivalence ratio for different pressures at 77, = 298 K in Fig. 6.6 and compared with the values
obtained from the numerical computations. Generally the largest derivations from the numerical
computations occur around ® = 1. The pressure and unburnt temperature variation of sy at

stoichiometric mixture is shown in Fig. 6.7 for propane.

Example 6.1

From the approximation Eq. (6.55) calculate in comparison with Eq. (5.17) those activation energy,
which describes the change of the reaction rate as function of the change in T;,. Thereby T, and
TP should be considered constant.

Solution
If one writes Eq. (5.17) approximately as

(pusr)? = const exp(—E/RT})
and logarithmizes this expression

2In(pysz) = In(const) — I
b

one can determine the activation energy by differentiation with respect to 1/7; from

£ dln(puse)

d
— — 2 JEE—
R d(1/Ty) 2Ty 4, (n(puse)).
Using this in Eq. (6.55) for p,, = const, it follows

2nTb 2nTb
2T172 d—j_‘b(ln(puSL)) = Tb — TO — Tb — Tu .
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Therefore one obtains for the Zeldovich number Ze

Tb _Tu

Z =
e n(Tb—To

—1).

Here, following Eqg. (6.56) T° is only dependent on pressure, while T;, following Eq. (2.24) depends
both on T, and on the fuel-air ratio ¢ = 1/ via Eq. (1.55). If the difference T}, — 7° 550 is smalll
compared with T, — T}, the second term in the parenthesis can be neglected.
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Lecture 7

Flame Extinction and Flammability

Limits

Lean and rich flammability limits are a function of the temperature and the pressure of the original
mixture. Fig. 7.1 shows the flammability limits of methane and hydrogen for increasing temper-
atures as a function of 1/¢ the air-fuel equivalence ratio. It is seen, that in particular for lean
mixtures, which are on the r.h.s. of this diagram, the flammability limits of hydrogen extend to
much larger values than for methane. This shows that hydrogen leakage my cause safety haz-
ards more readily than, for instance, hydrocarbons which have flammability limits close to those of
methane. Many data on flammability limits are given in [1].

The theory developed in the previous lecture shows that, differently from the one-step reaction,
a flame cannot burn if the adiabatic flame temperature, which depends on the equivalence ratio
and on dilation, is lower than the inner layer temperature 7°, the latter being determined essentially
by kinetics, as eq. (6.47) shows.

7.1 Lean Flammability Limits of Hydrocarbon Flames

Flammability is the ability of a mixture, once it has been ignited, to enable flame propagation
without further heat addition. This requires that a sufficient amount of fuel is available to reach
a temperature, that, in view of the flame structure as shown in Fig. 6.1 should exceed the inner

layer temperature 7°. Le Chatelier in 1891 was the first to point towards a criterion that relates
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Figure 7.1: Flammability limits of hydrogen and methane as a function of the temperature.

the flammability limit to the thermodynamic properties of the fuel mixture. In 1898 Le Chatelier
and Boudouard investigated experimental data and wrote that the flammability limit of most hydro-
carbons corresponds to a heat of combustion close to 12.5 kcal- This is essentially Le Chatelier’s
famous mixing rule: It determines an adiabatic flame temperature and should be valid for mixtures
of hydrocarbons with inerts, too. Eqg. (6.55) now shows that the burning velocity vanishes if the
adiabatic flame temperature is equal to the inner layer temperature. A lower theoretical limit for the
lean flammability limit is therefore given by

T, =T°. (7.1)

In view of this criterion the adiabatic flame temperature identified by Le Chatelier and Boudouard
corresponds to the inner layer temperature and thus describes a chemical rather than a thermo-
dynamic property.

As the lean flammability limit is approached, the burning velocity drops sharply, but shows a
finite value at the limiting point. Egerton and Thabet [2] and Powling [3] report a value of 5 cm/s at
atmospheric pressure using flat flame burners. Experimental data for the lean flammability limit are
always influenced by external disturbances, such as radiative heat loss or flame stretch. Radiation

heat loss will be discussed in Section 7.2. We note that flame extinction occurs at a finite value of
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the burning velocity. Eqg. (7.1) may be used to calculate the limiting fuel mass fraction (Y#,,)..;. as
a quantity that determines the flammaubility limit. At the flammability limit it is accurate enough to
assume complete combustion and to use Eq. (2.20) to determine 7} as a function of Y ,, and T,,.

Then, with T, = T°, one obtains

(T° — T) ey We

Y w)l.l. =
(F7 )ll Qrcf

(7.2)

This indicates that the limiting fuel mass fraction decreases linearly with increasing T.,.

7.2 Extinction of a Plane Flame by Volumetric Heat Loss

An additional influence that affects the stability of flames is volumetric heat loss. In order to analyze
this effect we will compare the one-step model with a large activation energy and unity Lewis
number and the four-step model. We will assume that the volumetric heat loss ¢ is proportional

to the temperature difference 7' — T, and write
dr = _O‘(T - Tu)v (73)

where « is a heat loss coefficient. The one-dimensional temperature equation for a steady state
premixed flame is then written as

pusLd—T i()\ dT) +Qw—o¢(T—Tu). (7.4)

dz ~ dw adx Cp

In terms of the non-dimensional quantities defined in Eq. (6.17) this may be written (with the
asterisks removed)
dr 4T

Here M is the burning velocity of the plane flame with heat loss normalized by the reference

burning velocity sy, ..t of a plane flame without heat loss

M=k

(7.6)

SL ref
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Figure 7.3: Structure of a premixed flame with heat loss.
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The non-dimensional heat loss parameter is defined

Ao

mT=——>5">%5-
2 o2 2
puSL,repr

(7.7)
It will be assumed constant with A evaluated at 7 = 7°. It should be noted here that = increases
rapidly as sz, ,.r decreases. Therefore heat loss has a strong influence close to the flammability
limit when sy, .. is small. The structure of a premixed flame with heat loss is shown in Fig. 7.3.
We will treat = as a small expansion parameter and expand the temperature as

T =T°1+rz) (7.8)

where T is the leading order temperature for = — 0. The reaction term w in Eq. (7.4) can be
eliminated by coupling it with the Eq. (5.3) for the fuel mass fraction. In non-dimensional form one
then obtains the enthalpy

h=T+Y -1 (7.9)
governed by the equation
dh  d%h
M—=— —naT. 7.10
dr _dzz " ( )

This equation may be integrated across the thin reaction zone from z = —oo to x = 0. This leads

to

dh
Mh(04) = —

0+
— 7T/ T dx (7.11)
dz 04

— 00

since at x — —oo the enthalpy and its gradient vanishes. Introducing Eq. (7.8) into Eq. (7.9) at

x =0,,where T° = 1 and Y = 0 one obtains

The integral over the preheat zone in Eq. (7.11) may evaluated by integrating the temperature

equation Eq. (7.5) to leading order

dr®  a27°
M— = — 7.13
dx dax? ( )
leading to
T° = exp(Mz) for = <O0. (7.14)
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The downstream enthalpy gradient at the flame front is equal to the downstream temperature
gradient since Y = 0 for z > 0. It can be evaluated by realizing that the heat loss region behind

the flame is broad of order O(7~1). This suggest the introduction of a contracted coordinate

T =nmx (7.15)
into the downstream temperature equation
dr d?T

In the limit 7 — 0 the heat conduction term can now be neglected and with 7°(0..) = 1 one obtains

to leading order
_dr

0+_ dx

dh T
— = ——. 7.17
dz 04 M ( )

With Egs. (7.12), (7.14) and (7.17) inserted into Eq. (7.11) the flame temperature perturbation is

2(04) = —%. (7.18)

Since for a one step flame with a large activation energy the burning velocity depends according

to Eqg. (5.17) on the flame temperature as

52 ~ exp ( — Rin)’ (7.19)

a perturbation of the temperature at x = 0, behind the reaction zone will lead in terms of the
dimensional temperature to

M:exp{—%(ﬁ—%)} (7.20)

Using the expansion Eq. (7.8) in terms of the non-dimensional temperature one obtains with Eq.
(5.22)
M? = exp(n Ze 2(04)) (7.21)

When this is combined with Eq. (7.18) one obtains

M?1In M? = —2nZe. (7.22)
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A similar analysis may be performed for the four-step asymptotic analysis of methane flames.
Then, since with Eq. (6.48)
5% ~ (T, —T%)* (7.23)

one obtains with Egs. (6.49) and (6.54)

M? =

(Th = T° + Tymz(04))* (1 T %)4 (7.24)

(T, — T0)* 4

since T, = (T, — T°) = 1/(cz0) = Ze/4 to leading order. If this is now combined with Eq. (7.18
one obtains
M2(1 - M1/2) — n7e (7.25)

instead of Eq. (7.22). Both Egs. (7.22) and (7.25) are plotted in Fig. 7.4 showing a qualitatively
and even quantitatively very similar behavior. Only the upper branch of these curves represents a
stable solution. It shows a decrease of the burning velocity as the heat loss parameter 7 increases.
There is a maximum value for the product 7Ze for each of these curves beyond which no solution
exists. At these values heat loss extinguishes the flame. The non-dimensional burning rates
at which this happens are very close to each other: M., = 0.61 for the one step kinetics and
M., = 0.64 for the four-step kinetics. This is surprising because the kinetics for both cases are
fundamentally different. This supports the previous conclusion that the one-step large activation
energy model is a good approximation for the temperature sensitivity of hydrocarbon flames.
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Figure 7.4: The change of burning velocity and flame extinction due to heat loss for one-step and
four-step asymptotics.
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Lecture 8

Laminar Diffusion Flames: Basic

Theory

In this lecture we will consider systems, where fuel and oxidizer enter separately into the combus-
tion chamber. Mixing then takes place by convection and diffusion. Only where fuel and oxidizer
are mixed on the molecular level, chemical reactions can occur. Since the time scale of reaction is
much shorter than the time scale for diffusion, the latter processes is rate determining. This is why
flames in non-premixed combustion are called diffusion flames. A classical example of a diffusion
flame is a candle flame shown in Fig. 8.1.

Its structure is similar to that shown in the introduction, except that the flow entraining the air
into the flame is driven by buoyancy rather than by forced convection as in a jet flame. The paraffin
of the candle first melts due to radiative heat from the flame to the candle, mounts by capillary
forces into the wick where it then evaporates to become paraffin vapor, a gaseous fuel. In this
lecture we will focus on the structure of the combustion zones in a diffusion flame. These are best
described by an asymptotic expansion for very fast chemistry starting from the limit of complete
combustion. To leading order one obtains the adiabatic flame temperature which is a function of
mixture fraction only as already shown in Lecture 2. The asymptotic expansion around this limit
will then describe the influence of finite rate chemistry. If the expansion takes the temperature
sensitivity of the chemistry into account diffusion flame quenching can also be described. It will
be shown that by introducing the mixture fraction as an independent coordinate for all reacting
scalars, a universal coordinate transformation leads in the limit of sufficiently fast chemistry to a
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Figure 8.1: The candle flame as the classical example of a laminar diffusion flame.

one-dimensional problem for the reaction zone. This is the basis of the flamelet formulation for

non-premixed combustion.

8.1 Flamelet Structure of a Diffusion Flame

Under the condition that equal diffusivities of chemical species and temperature can be assumed
(an assumption that is good for hydrocarbon flames but much less realistic for hydrogen flames),
all Lewis numbers

Le; = A/(cppDy) =1, i=1,2,....k (8.1)

are unity, and a common diffusion coefficient D = A\/(pc,) can be introduced. In Cartesian coordi-

nates the balance equation for mixture fraction Z Eq. (3.58), temperature 7" Eq. (3.46)and species
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Figure 8.2: Schematic picture of a diffusion flame illustrating the flamelet transformation.

Y; Eq. (3.47) read

O 220 (pPZY
p ot Pl O0rea  Oxg p 0xq o
k .
oT or 0 ory . hi gr 1 0p (8.2)
pat +pvo‘8xa 0T, (pDaxa) a ;mch—i— Cp +cp ot’
aY; Y, 0 oYy N
p@t +pvaaxa _%(p 8Ia) my; 2_1127 ak

Here the low Mach number limit that leads to zero spatial pressure gradients has been employed,
but the temporal pressure change dp/0t has been retained. The heat capacity ¢, is assumed
constant for simplicity. The Egs. (3.47) for the mass fractions of the species could also have been
written down and can be analyzed in a similar way as the temperature equation. They are omitted
here for brevity. Eq. (8.2); does not contain a chemical source term, since the mixture fraction
Z represents the chemical elements originally contained in the fuel, and elements are conserved
during combustion. We assume the mixture fraction Z to be given in the flow field as a function of
space and time by solution of Eq. (8.2); as shown schematically in Fig. 3.2. Then the surface of
the stoichiometric mixture can be determined from

Z(20,t) = Zay. (8.3)

Combustion occurs in a thin layer in the vicinity of this surface if the local mixture fraction gradient

is sufficiently high ([1]). Let us locally introduce an orthogonal coordinate system x, x3, z3, t
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attached to the surface of stoichiometric mixture as shown in Fig. 8.1, where x; points normal
to the surface Z(x,,t) = Zs and xo and x5 lie within the surface. We replace the coordinate
x1 by the mixture fraction Z and zo, z3 and t by Zy = x5, Z3 = xz3 and t = 7. Thisis a
coordinate transformation of the Crocco type. (Crocco expressed the temperature in a flat-plate
boundary layer as functions of another dependent variable, the velocity.) Here the temperature T,
and similarly the mass fractions Y;, will be expressed as a function of the mixture fraction Z. By
definition, the new coordinate Z is locally normal to the surface of the stoichiometric mixture. With

the transformation rules

9 _ 0 0zo
ot  or Ot 9z’
0 0 oz 0

9.~ 07, Tomoz @23 84)
0 0z 0

— = — 4 —

8:101 8:101 0z

we obtain the temperature equation in the form

oT oT 8T) d(pD) OT  9(pD) T
8$2 822 (91'3 6Z3

p(% +'026—ZQ +'L}36—Z3

0Z N2 9°T 0z &*T 0z &*T 0T 82T}

DY 5 ) N (i RN Yl el
oD|(55.) 572 * 2o 5707 * 2oms 5707, 072 " 92 (8.5)

The transformation of the equation for the mass fraction is similar. If the flamelet is thin in the Z
direction, an order-of-magnitude analysis similar to that for a boundary layer shows that the second
derivative with respect to 7 is the dominating term on the left-hand side of Eq. (8.5). This term
must balance the terms on the right-hand side. All other terms containing spatial derivatives in
xo and z3 directions can be neglected to leading order. This is equivalent to the assumption that
the temperature derivatives normal to the flame surface are much larger than those in tangential
direction. The term containing the time derivative in Eq. (8.5) is important only if very rapid
changes, such as extinction, occur. Formally, this can be shown by introducing the stretched

coordinate ¢ and the fast time scale o

E=(Z—24))e, o=1/ (8.6)
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where ¢ is a small parameter, the inverse of a large Damkéhler number or a large activation energy;,
for example, representing the width of the reaction zone. If the time derivative term is retained, the

flamelet structure is to leading order described by the one-dimensional time-dependent equations

T xaO*T Qi dgr | 1 0p
o P e T X, T
=1 8.7)
85/1 X st 8}/1 .
_ — oy i=1,2,... .k
Por P2 0z et
Here
0Z \?2
Xt = 2D(_aa:a)st 8.8)

is the instantaneous scalar dissipation rate at stoichiometric conditions. It has the dimension
1/s and may be interpreted as the inverse of a characteristic diffusion time. It may depend on ¢
and Z and acts as a prescribed parameter in Eq. (8.7);, representing the flow and the mixture
field. As a result of the transformation, it implicitly incorporates the influence of convection and
diffusion normal to the surface of the stoichiometric mixture. In the limit x5, — 0, equations for
the homogeneous reactor, are obtained. The neglect of all spatial derivatives tangential to the
flame front is formally only valid in the thin reaction zone around Z = Z,,. This is shown in [9.1].
There are, however, a number of typical flow configurations where Eq. (8.7); is valid in the entire

Z-space. As example, we will analyze here the planar counterflow diffusion flame.

8.2 The Planar Counterflow Diffusion Flame

Counterflow diffusion flames are very often used experimentally because they represent an essen-
tially one-dimension diffusion flame structures. Fig. 8.3 shows two typical cases where counterflow
flames have been established between an oxidizer stream from above and a fuel stream from be-
low. The latter may either be a gaseous fuel or an evaporating liquid fuel. If one assumes that
the flow velocities of both streams are sufficiently large and sufficiently removed from the stagna-
tion plane, the flame is embedded between two potential flows, one coming from the oxidizer and
one from the fuel side. Prescribing the potential flow velocity gradient in the oxidizer stream by
a = —0v /0y, the velocities and the mixture fraction are there

Y00 Vs = —QY, Uso =ax, L =0. (8.9)
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Figure 8.3: A schematic illustration of the experimental configuration for counterflow flames for
gaseous and liquid fuels.

Equal stagnation point pressure for both streams requires that the velocities in the fuel stream are

Y= —00: Voo = —y4] ppoo ay, U—oo =,/ ppoo axr, Z=1. (8.10)

The equations for continuity, momentum and mixture fraction are given by

or T oy
pu% + pvg—Z - —% + a% (ug—ly‘), (8.11)
puZ—i—i—pvg—j = gy(ng_j)
Introducing the similarity transformation
a 1/2 7
= (2)" [otn €=a 6.12)
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one obtains the system of ordinary differential equations

n
f= [ ra
0
8f’ of B

T G =
0 /C oz 0z
a?(%a_n) U

in terms of the non-dimensional stream function

pv
(pi)ca

and the normalized tangential velocity

The boundary equations are

n=+occ: f'=1, Z=0
’[7:—00: f/: poo/pfoo, Z:1

An integral of the Z-equation is obtained as

7 L1(c0) — I(n)
2 I(c0)
where the integral I(n) is defined as
T Se n
I(n) = ; gexp{ —/O fSC/Cdn}dn
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For constant properties (p = p, C = 1) f = n satisfies Eq. (8.14) and
1
7= 5erfc(n/\/i). (8.22)

The instantaneous scalar dissipation rate is here

Va2 E)e(l2) =

where Eqgs. (8.12) and (8.18) have been used. When the scalar dissipation rate is evaluated with
the assumptions that led to Eq. (8.22) one obtains

X = %exp[—nz(Z)] = %exp(—?[erfcfl(QZ)]Q) (8.24)

where n(Z7) is obtained as inverse of Eq. (8.22). For small Z one obtains with 'Hospital’s rule

dz 1dl 1 dl A Sc
Y- - =  —_—fZ 8.25
dn 2dn I(0) dn I(c0) — I(n) Cf (8.25)

Therefore, in terms of the velocity gradient a the scalar dissipation rate becomes
X = 2af*Z*(Sc/C) (8.26)

showing that  increases as Z2 for small Z.

8.3 Steady State Combustion and Quenching of Diffusion Flam es

with One-Step Chemistry

If the unsteady term is neglected, Eq. (8.7) is an ordinary differential equation that describes
the structure of a steady state flamelet normal to the surface of stoichiometric mixture. It can be
solved for general reaction rates either numerically or by asymptotic analysis. In the following we
will express the chemistry by a one-step reaction with a large activation energy, assume constant
pressure and the radiative heat ¢z to be negligible. We will analyze the upper branch of the
S-shaped curve shown in Fig. 8.4. We will introduce an asymptotic analysis for large Damkohler
numbers and large activation energies. In the limit of large Damkoéhler numbers which corresponds

to complete combustion the chemical reaction is confined to an infinitely thin sheet around Z = Z,.
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Figure 8.4: The S-shaped curve showing the maximum temperature in a diffusion flame as a
function of the inverse of the scalar dissipation rate at stoichiometric mixture.

Assuming constant ¢, the temperature and the fuel, oxidizer, and product mass fraction profiles
are piecewise linear functions of Z. These are shown in Figs. 1.1 and 2.1. The temperature profile
is given by Eq. (2.24) with Eq. (2.23). This is called the Burke-Schumann solution. The coupling
relations Eq. (5.5) yield the corresponding profiles for Yr and Yo,:

lean mixture, Z < Z:

QYrF 1 Z
T(Z) =T, L 7 Yi=0,Yo, = Yo,2(1 - =), 8.27
(2) = Tu(2)+ SN2 Ve = 0.Yo, = Youa(1 - ) (8.27)
rich mixture, Z > Z;:
_ QY0o, 2 B - Z—Zy
T(2) = T(Z2) + 0P (1=2), Yo, = 0.%F = Vi (f=77) @
where
T.(Z)=To+ Z(Ty — To). (8.29)

The mass fractions of product species may be written similarly. We define the reaction rate as in
Eqg. (5.1) to show that Eq. (8.7) is able to describe diffusion flame quenching. For simplicity we will
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assume 77 = Ty = T,,. Then, for one reaction with

Q (Tst - Tu)V{JWF

. = T VeiZu (8.30)
Eqg. (8.7) is written as , /
% S 22 g”gzm_/f“) YrYo, exp (7_3_];) (8.31)
The temperature and the fuel and oxygen mass fraction are expanded around Z,; as
T = Tag—e(Ta—Tu)y
Yr = Yrie(Zay+§) (8.32)
Yo, = Yo,2e((1—Zs)y — &),

where ¢ is a small parameter to be defined during the analyses. The exponential term in the

reaction rate may be expanded as

exp (7;—?) = exp (7gTEst) = exp(—Zeey), (8.33)

where the Zeldovich number is defined as

E(Tst — Ty)

Z =
¢ RT2,

(8.34)

If all other quantities in Eq. (8.31) are expanded around their value at the stoichiometric flame
temperature one obtains

d2

dgg‘ =2Dac® (Zay + €)((1 — Zg)y — €) exp(—Zeey), (8.35)
where )
Bpsivo, Yr 1 -F
Da=—— 22"~ — 8.36
T e — Za) eXp(RT) (8.36)
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is the Damkdohler number. The differential equation Eqg. (8.35) is cast into the same form as the
one that governs Linn’s diffusion flame regime [2] by using the further transformation

z = 21 = Zy)Zg —§

)
Il

B = Ze/[2Zst(1 — Zst)]

to yield

d?z 30,2 _ ¢2

i =Dae’(2” — &%) exp[—LFe (z +7E)]. (8.38)
There are evidently two ways to define the expansion parameter ¢, either by setting 5¢ = 1 or by
setting Dae® = 1. The first one would be called a large activation energy expansion and the second
one a large Damkohler number expansion. Both formulations are interrelated if we introduce the

distinguished limit where the rescaled Damkdhler number
§ = Da/p? (8.39)

is assumed to be of order one. Thus a definite relation between the Damkdhler number and the

activation energy is assumed as ¢ goes to zero. We set
e=Da /3 =5"13/p (8.40)

to obtain Lifan’s equation for the diffusion flame regime

d?z

e = (- el +q6)) (8.41)

The boundary conditions are obtained by matching to the outer flow solution

j—z =1 for & — oo,

(8.42)
dz _ -1 for &€ — —
d¢e '

The essential property of this equation, as compared to the large Damkohler number limit (6 — o)
is that the exponential term remains, since § was assumed to be finite. This allows extinction to

occur if the parameter ¢ decreases below a critical value §,. Lifian gives an approximation of 4,
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Figure 8.5: Temperature and fuel mass fraction profiles over mixture fraction for diffusion flamelet
at increasing Damkdohler numbers.

in terms of |y|. For small values of Z,; extinction occurs at the transition to the premixed-flame
regime [2]. He obtains
dg =e(1—1]v]). (8.43)

Characteristic profiles for the temperature over Z are schematically shown in Fig. 8.5 with § as
a parameter. There is a limiting profile T, (Z) corresponding to J,. Any solution below this profile
is unstable, and the flamelet would be extinguished. The extinction condition § = ¢, defines with
Egs. (8.39) and (8.36) a maximum dissipation rate y, at the surface of stoichiometric mixture for a

flamelet to be burning, namely

8BpstV/02YF 1Z§t(1 - Zst)2 -F )
= - e . 8.44
Xa Wro,Ze" P (’RTSt (8.44)

We may interpret y,; as the inverse of a characteristic diffusion time. If y, is large, heat will be
conducted to both sides of the flamelet at a rate that is not balanced by the heat production due
to chemical reaction. Thus the maximum temperature will decrease until the flamelet is quenched
at a value of x, = x4. This is shown in Fig. 8.4. Burning of the flamelet corresponds to the
upper branch of the S-shaped curve. If x4 is increased, the curve is traversed to the left until
Xq is reached, beyond which value only the lower, nonreacting branch exists. Thus at x. = x4

the quenching of the diffusion flamelet occurs. The transition from the point Q) to the lower state
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corresponds to the unsteady transition. Auto-ignition, which would correspond to an unsteady
transition from the point I to the upper curve, is unlikely to occur in open diffusion flames, since
the required very large residence times (very small values of ;) are not reached. An example for
auto-ignition in non-premixed systems is the combustion in a Diesel engine. Here interdiffusion of
the fuel from the Diesel spray with the surrounding hot air leads to continuously decreasing mixture
fraction gradients and therefore to decreasing scalar dissipation rates. This corresponds to a shift

on the lower branch of the S-shaped curve up to the point I where ignition occurs.

8.4 Time and Length Scales in Diffusion Flames

We will define the chemical time scale at extinction as
te =221 - Zs)*/xq (8.45)

This definition is motivated by expression Eq. (8.44) for x,. By comparing this with the time scale

of a premixed flame with the same chemical source term one obtains

o SN ey (6.46)
2(Pu5L)§t
where p, s1, has been calculated using Egs. (5.17) and (5.18) for a stoichiometric premixed flame.
This indicates that there is a fundamental relation between a premixed flame and a diffusion flame
at extinction: In a diffusion flame at extinction the heat conduction out of the reaction zone towards
the lean and the rich side just balances the heat generation by the reaction. In a premixed flame
the heat conduction towards the unburnt mixture is such that it balances the heat generation by the
reaction for a particular burning velocity. These two processes are equivalent. A diffusion flame,
however, can exist at lower scalar dissipation rates and therefore at lower characteristic flow times.
The flow time in a premixed flow is fixed by the burning velocity, which is an eigenvalue of the
problem. Therefore combustion in diffusion flame offers an additional degree of freedom: that of
choosing the ratio of the convective to the reactive time, represented by the Damkdhler number
defined in Eq. (8.36) as long as x: is smaller than x,. This makes non-premixed combustion to be
better controllable and diffusion flames more stable. It is also one of the reasons why combustion
in Diesel engines which operate in the non-premixed regime is more robust and less fuel quality

dependent than that in spark ignition engines where fuel and air are premixed before ignition.
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Egs. (8.45) and (8.24) may now be used to calculate chemical time scales for diffusion flames.
The inverse complementary error function erfc_1(2Zst) is 1.13 for methane-air flames with Z,;, =
0.055 and 1.34 for Hy-air flames with Z,; = 0.0284. Extinction of the H»-air diffusion flame occurs at
a strain rate a, = 14260/s and that of the CH,-air flame at 420/s. This leads to t. = 0.64 - 1075 s for
hydrogen-air/diffusion flames and to ¢. = 0.29 - 10~3s for methane-air/diffusion flames. The latter
estimate is of the same order of magnitude as ¢. for stoichiometric premixed methane flames.

In diffusion flames, in contrast to premixed flames, there is no velocity scale, such as the
burning velocity, by which a characteristic length scale such as the premixed flame thickness /g
could be defined. There is, however, the velocity gradient a, the inverse of which may be interpreted
as a flow time.

Based on this flow time one may define an appropriate diffusive length scale. Dimensional
analysis leads to a diffusive flame thickness

lp = % (8.47)
a
Here the diffusion coeffcient D should be evaluated at a suitable reference condition, conve-
niently chosen at stoichiometric mixture. Assuming a one-dimensional mixture fraction profile in
y-direction as for the insteady mixing layer the flame thickness in mixture fraction space may be
defined

(AZ)p = (‘Z—j)FeF. (8.48)

Here (0Z/0y)r is the mixture fraction gradient normal to the flamelet. This flamelet thickness
contains the reaction zone and the surrounding diffusive layers. Eq. (8.48) leads with Egs. (8.47)

and (8.8) to

Xref
AZ)p = 8.49
(AZ)Fp 5y (8.49)

where .t represents the scalar dissipation rate at the reference condition. If x,.¢ is evaluated at
Zg and Eqg. (8.26) is used, it is seen that (AZ)p is of the order of Z,,, if Z,, is small. With an
estimate (AZ)r = 2Z, the flame thickness would cover the reaction zone and the surrounding

diffusive layers in a plot of the flamelet structure in mixture fraction space.
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Figure 8.6: Temperature profiles of methane-air diffusion flames for « = 100/s and a = 400/s as a
function of mixture fraction.
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Figure 8.7: Fuel and oxygen mass fractions for « = 100/s and a = 400/s as a function of mixture
fraction.
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8.5 Diffusion Flame Structure of Methane-Air Flames

The one-step model with a large activation energy is able to predict important features such as
extinction, but for small values of Z,, it predicts the leakage of fuel through the reaction zone.
This was schematically shown in Fig. 8.5. Experiments of methane flames, on the contrary, show
leakage of oxygen rather than of fuel through the reaction zone. A numerical calculation with the

four-step reduced mechanism

CH4 +2H 4+ H,O = CO + 4H,
CO + H-20 = COx+Hy
(8.50)
H+H+M = Ho+M
02 + 3H, = 2H+ 2H,0

has been performed [3] for the counter-flow diffusion flame in the stagnation region of a porous
cylinder. This flow configuration, initially used by Tsuji and Yamaoka [4], will be presented in the
next lecture 9 in Fig. 9.1.

Temperature and fuel and oxygen mass fractions profiles are plotted in Figs. 8.6 and 8.7 for
the strain rates of « = 100/s and a = 400/s as a function of mixture fraction. The second value
of the strain rate corresponds to a condition close to extinction. It is seen that the temperature in
the reaction zone decreases and the oxygen leakage increases as extinction is approached. An
asymptotic analysis [5] based on the four-step model shows a close correspondence between the
different layers identified in the premixed methane flame in Lecture 6 and those in the diffusion
flame. The structure obtained from the asymptotic analysis is schematically shown in Fig. 8.8.
The outer structure of the diffusion flame is the classical Burke-Schumann structure governed
by the overall one-step reaction CH4 + 20, — CO, + 2H,0, with the flame sheet positioned at
7 = Zg. The inner structure consists of a thin H, — CO oxidation layer of thickness O(e) toward
the lean side and a thin inner layer of thickness O(4) slightly toward the rich side of Z = Z;.
Beyond this layer the rich side is chemically inert because all radicals are consumed by the fuel.
The comparison of the diffusion flame structure with that of a premixed flame shows that the rich
part of the diffusion flame corresponds to the upstream preheat zone of the premixed flame while
its lean part corresponds to the downstream oxidation layer. The maximum temperature which
corresponds to the inner layer temperature of the asymptotic structure, is shown in Fig. 8.9 as a

function of the inverse of the scalar dissipation rate. This plot corresponds to the upper branch
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Figure 8.8: lllustration of the asymptotic structure of the methane-air diffusion flame based on the
reduced four-step mechanism [5]. The dotted line is the Burke-Schumann solution.
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Figure 8.9: Inner flame temperature T° plotted as a function of y_;*: A numerical calculations using
the four-step mechanism [3]; o experimental data quoted in [5].
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of the S-shaped curve shown in Fig. 8.4. The calculations agree well with numerical [3] and
experimental [6] data and also show the vertical slope of T° versus x.;' which corresponds to
extinction.
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Lecture 9

Laminar Diffusion Flame

Configurations:

Different Flame Geometries and Single Droplet Burning

In this lecture we want to present solutions for the velocities and the mixture fraction fields
for some typical laminar flame configurations. Based on the assumption of fast chemistry we
will then be able to calculate the flame contour defined by the condition Z(x,t) = Z . We will
for simplicity always assume the Lewis number to be equal to unity and the heat capacity to be
constant. The first case to be considered is the flame stagnation point boundary layer, which is
similar to the counterflow flow of the previous lecture but with different boundary conditions. We
then will investigate a laminar plane jet diffusion flame and determine its flame length. The third
example will include the effect of buoyancy in a vertical plane diffusion flame. Finally we will also

calculate the combustion of a single droplet surrounded by a diffusion flame.

9.1 Diffusion Flames in a Stagnation Point Boundary Layer:

The Tsuji Flame

Let us consider the flame configuration shown in Fig. 9.1. Gaseous fuel from a sinter metal tube
is injected into the surrounding air which flows vertically upwards. Below the tube a stagnation
point is formed. This burner is known as the Tsuiji burner [1]. If the Reynolds number based on the

cylinder radius and the free stream velocity is large, the flow field may be split into an inviscid outer
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flow and a boundary layer close to the surface. The potential flow solution for the flow around a
cylinder then yields the velocity gradient at the stagnation point

L 20y

a= 2 (9.1)

where v, is the velocity very far from the cylinder. The free-stream velocities at the edge of the
boundary layer are

Ue = AT, Ve = —ay. (9.2)

If the kinematic viscosity is small, the boundary layer thickness § is proportional to the viscous
length
Ve

L =./2, (9.3)

a
where v, is the kinematic viscosity at the edge of the boundary layer. In case the boundary layer
thickness is thin compared to the cylinder radius the curvature of the cylinder surface may be
neglected and the boundary may be treated as two-dimensional allowing the usage of a Cartesian

coordinate system. The equations describing the boundary layer flow are the

continuity
859”;) + ag’y“) =0, (9.4)
momentum
pu% + pvg—z = —j—i . + %(pu%), (9.5)

mixture fraction

0z oz 0 ¥4
il = = = ==). 9.6
puax—i—pvay 8y(p ay) (9-6)
The pressure gradient at the boundary layer edge is obtained from Bernoulli’s equation
due  dp| 9
pelic g~ =~ | = peaa. (9.7)
The boundary conditions are
. 0z
u=0, rmy = (pv)wa (pD)wa_‘ = mw(Zw - 1) at y =0, (9.8)
Y lw
and
u=ax, Z=0 at y— oo. (9.9)
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Figure 9.1: Schematic diagram of a stagnation point diffusion flame in front of a porous cylinder.

Here u = 0 is the symmetry condition at the surface. The mass flow rate »,, of fuel issuing
through the porous metal into the boundary layer is imposed. The boundary condition for the
mixture fraction equation represents the integrated mixture fraction balance at the surface of the
porous metal by assuming that the mixture fraction gradient within the metal is zero. The continuity

equation is satisfied by introducing the stream function «) such that

. 010
Introducing the similarity variable .
n= (Vie)w 0 idy (9.11)
a non-dimensional stream function f(n), that depends on the similarity variable n only, is then
defined as
o) =t 9.12)
such that the velocities are
w= axg—£, v = —%(al/e)l/Qf(n). (9.13)
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One obtains the similarity equations

15 - B3

dn? p dp/ Jdn\" dn?

(9.14)

dz d CdZz

o = @lsw)
Here Sc = v/ D is the Schmidt number and C' is the Chapman-Rubesin parameter
2

C - p2 v (9.15)

peye

Since v changes with temperature as 7" and p as 7', this quantity changes less than the viscosity

itself in a flow with strong heat release. The boundary conditions for the similar solution are

fw:—%, =0, %%wsz(l—Z) at n=0 (9.16)
f'(0)=1 for n— oco. (9.17)
The mixture fraction equation may be transformed into
din[ln (%i—i)} - —% (9.18)
which can formally be solved as ; ;
Z = fu 71@ - 1((;)2)) (9.19)
where
I(n) = /On %exp(— On %dn)dn. (9.20)
The mixture fraction at the surface is given by
Ty = % (9.21)

This indicates that the mixture fraction varies between Z = 0 and Z = Z,, rather than between
0 and 1. The boundary condition for the fuel and oxidizer fractions satisfy the Burke-Schumann
solution at Z,,, as may easily be shown. The boundary condition for the temperature at the surface
is to be imposed at Z = Z,,.
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Figure 9.2: Velocity profiles for the Tsuji geometry.
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Figure 9.3: Mixture fraction and temperature profiles for the Tsuji geometry.
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Figure 9.4: Chapman-Rubesin parameter and temperature profiles for the Tsuji geometry.

If the mass flow rate at the surface is increased and f,, takes large negative values, the mix-
ture fraction at the surface tends towards unity. This is the limit of a counter-flow diffusion flame
detached from the surface. Egs. (9.14) have been solved numerically using the Burke-Schumann
solution for combustion of methane in air Eqs. (2.24), (2.25) with Z,, = 0.055, T,, = 300K, and
Ty = 2263 K. The profiles of u = ax, v, T, Z, p = p., and C are shown in Figs. 9.2, 9.3 and 9.4.

9.2 The Round Laminar Diffusion Flame

In many applications fuel enters into the combustion chamber as a round jet, either laminar or
turbulent. To provide an understanding of the basic properties of jet diffusion flames, we will
consider here the easiest case, the laminar axisymmetric jet flame without buoyancy, for which
we can obtain approximate analytical solutions. This will enable us to determine, for instance,
the flame length. The flame length is defined as the distance from the nozzle to the point on the
centerline of the flame where the mixture fraction is equal to Z,,. The flow configuration and the
flame contour of a vertical jet diffusion flame are shown schematically in Fig. 9.5.

We consider a fuel jet issuing from a nozzle with diameter d and exit velocity u into quiescent

air. The indices 0 and oo denote conditions at the nozzle and in the ambient air, respectively. Using
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Figure 9.5: Schematic representation of a vertical laminar jet flame into quiescent air.

the boundary layer assumption with constant pressure we obtain a system of two-dimensional

axisymmetric equations, in terms of the axial coordinate = and the radial coordinate 7:

continuity
8(8"27") + a(g:” —0, (9.22)
momentum in z direction
pur% + pvrgu % (ur%) (9.23)
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mixture fraction

02 L w22 = O (L£,9%)
pur por Scr(?r

ox or _ or (9.24)

scalar flux we have replaced D by introducing the Schmidt number Sc = v/D. The dimensionality

of the problem may be reduced by introducing the similarity transformation

n=—_, =2 Lrdr, €=+, (9.25)
5 0 Poo
which contains a density transformation defining the density weighted radial coordinate 7. The new
axial coordinate ¢ starts from the virtual origin of the jet located at x = —xq. Introducing a stream
function ¢ by
N N

pur = o, pUr=——o (9.26)

we can satisfy the continuity equation. The convective terms in the momentum equation and in the
equation for the mixture fraction may be expressed using the transformation rules

o 9 o o oo
oz 0¢ Tozom’ or oroy (9.27)

which leads to

0 a Onrop o oo
P o TP = Br(an 9~ 9E an)' (9.28)
For the diffusive terms one obtains
0 a\ _ Ond 0
Here the Chapman-Rubesin-parameter
2
c=_ P (9.30)
2,u00/ prdr
0

was introduced. For constant density with © = 1., one obtains C' = 1. The axial and radial velocity
components may now be expressed in terms of the nondimensional stream function F'(¢, n) defined
by

¥ = poo EF(,m) (9.31)
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as

oF
O oo OF OF
w= L2 pur = — oo (E— + F — =—n). 9.32
0 ot P ju (565 an”) (9.32)
For the mixture fraction the ansatz
Z=Zcr(§)w(n) (9.33)

is introduced, where Z~, stands for the mixture fraction on the centerline.
For a jet into still air a similarity solution exists if the nondimensional stream function F' and
Chapman Rubesin parameter C' are no function of £. Introducing Egs. (9.25)-(9.33) into Egs.

(9.22)-(9.24) one obtains the ordinary differential equations, valid in the similarity region of the jet:

d (FdF d (g, d(Ldr
wGw) - %(C”%(EED (9:34)
) = ()

To derive an analytical solution we must assume that C' is a constant in the entire jet. With a

constant value of C' one obtains from Eg. (9.34) the solutions

__C(m)? B 1 28c
F(n) = Wa w(n) = (W) . (9.35)

The axial velocity profile then is obtained from Eq. (9.32) as

20~y 1 2
= , 9.36
3 (1+(777/2)2) 556
where the jet spreading parameter
3-Re?  po
2 _
N = 61 O (9.37)

is obtained from the requirement of integral momentum conservation along the axial direction:

o0
/ pulrdr = pouid? /8 (9.38)
0
Here pq is the density of the fuel and Re = poouod/ oo is the Reynolds number. Similarly, conser-
vation of the mixture fraction integral across the jet yields the mixture fraction on the centerline

Re(1+25¢c) po d
32 pPcC €

Zor = (9.39)
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such that the mixture fraction profile is given by

5

1+2Sc)dRe po 1 2S¢
£ 32px0) (1 n (777/2)2) : (9.40)

From this equation the flame length L can be calculated by setting Z = Z,, atx = L, r = 0:

L+ To (1 + 2SC) £0 UQd
_ 9.41
d 32-Zsg pocC v ( )

This shows that the flame length of a laminar round jet increases linearly with increasing exit

velocity ug.

9.3 Single Droplet Combustion

In many practical applications liquid fuel is injected into the combustion chamber resulting in a
fuel spray. By the combined action of aerodynamical shear, strain, and surface tension the liquid
spray will decompose into a large number of single droplets of different diameters. The fuel will
then evaporate and a non-homogeneous fuel air mixture will be formed in the flow field surround-
ing the droplets. When the spray is ignited, the droplets will burn either as a cloud surrounded
by a enveloping flame or as single droplets, each being surrounded by its own diffusion flame.
The former will the case if the fuel air mixture between different droplets is fuel rich such that the
surface of stoichiometric mixture will surround the droplet cloud. We will consider here the latter
case, where the surface of stoichiometric mixture surrounds the single droplet. We will further-
more consider very small droplets which follow the flow very closely and assume that the velocity
difference between the droplet and the surrounding fuel is zero. Therefore we may consider the
case of a spherically symmetric droplet in a quiescent surrounding. We assume the evaporation

and combustion process as quasi-steady and can therefore use the steady state equations (cf. [2])
continuity

di(T‘Qp’U) =0 (9.42)

mixture fraction
(9.43)

temperature
(9.44)



In these equations r is the radial coordinate, and v is the flow velocity in radial direction. Here
again a unity Lewis number leading to A\ = pc,D and a one step reaction with fast chemistry
will be assumed. The reaction rate w is then a J¢-function at the flame surface located at 7 =
Z. The expected temperature and mixture fraction profiles are schematically shown in Fig. 9.6.
The boundary conditions for Egs. (9.42)and (9.44) at the droplet surface » = R are obtained by
integrating the balance equations once in radial direction. Since temperature and concentration
gradients within the droplet are assumed negligible, the convective flux through the surface equals
the diffusive flux in the gas phase at the droplet surface. The convective heat flux through the
boundary involves a change of enthalpy, namely the enthalpy of evaporation k. Therefore

dT
r=R: \\— = (p’l})R hr. (945)
dr Ir

Here (pv)g is the convective mass flux through the surface. The mixture fraction of the convec-
tive flux involves the difference between the mixture fraction within the droplet, which is unity by

definition, and that in the gas phase at the droplet surface, where Z = Zg. This leads to

dz
r=R: pDE .~ (pv)r(Zr —1). (9.46)

The changes of temperature and mixture fraction at the surface are also shown in Fig. 9.6. The

boundary conditions in the surrounding air are
r—oo: T=1T Z=0. (9.47)

In addition, we assume that the temperature at the droplet surface is equal to the boiling tempera-
ture of the liquid
T="T;. (9.48)

Then the temperature equation must satisfy three boundary conditions. This leads to an eigen-

value problem for the mass burning rate
m = 47 R%(pv)r (9.49)
of the droplet which thereby can be determined. Integration of the continuity equation leads to

pur? = R*(pu)g (9.50)
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Figure 9.6: Temperature and mixture fraction profiles at the surface and in the surroundings of a
burning spherical droplet.

We will now introduce the nondimensional coordinate

- / Y esep(—C)dr, (9.51)
where
¢ = / L= (pDrQ)fldT. (9.52)
Between 7 and ¢ there is the relation
d dn/dr
d—z - dgdr = exp(—0). (9.53)

This may be integrated with the boundary conditions at» — oo : { = 0, 7 = 0 to yield
n=1-exp(—() (9.54)
andatr =R

nr =1 —exp(—(r). (9.55)
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Transformation of Egs. (9.43)and (9.44) with their boundary conditions leads to

d2z
d—772 = (9.56)
dz
n=nr: (Mr— 1)d— =Zr—1 (9.57)
n
. _ dp\2d°T  Q
dT  h
n=nr: (-1 ="" Ta=Tp (9.59)
n Cp
n—0 : T=1T, (9.60)

The solution of the mixture fraction equation with its boundary condition is readily seen to be

Z =n (9.61)

If this is introduced into the temperature equation and the scalar dissipation rate for the present
problem is defined as

dz\2 dn\2
x = 2D(5) - 2D(E) (9.62)
one obtains )
x d°T Q
AZ - __ X% 9.63
Poazz = ¢” (9.63)

which reducescompares to Eq. (8.7) if the steady state, negligible heat loss, and one-step chem-
istry was assumed. We therefore find that the one-dimensional droplet combustion problem sat-
isfies the laminar flamelet assumptions exactly. Here we want to consider the Burke-Schumann
solution Eqg. (2.24). Then, in the fuel rich region between » = R and r = rr (conf. Fig. 9.6) we

have
Y0,2Q

T Z)=Te+ Z(Th — T
A =R AR o,

(1-2). (9.64)
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Here T3 is by definition the temperature at Z = 1, which does not exist in the present problem. We
know, however, from the boundary conditions Eq. (9.59) the slope and the value at Z = Z where

Y0,2Q

T, =T+ Zg(Ty — T 1—-Zg). 9.65
L » + Zr(Th 2) + CpVé)zWOz( R) ( )
Introducing Egs. (9.64) and (9.65) into Eq. (9.59) one obtains
=T — h—L (9.66)
Cp

This is a hypothetical temperature corresponding to the fuel if one considers the droplet as a point
source of gaseous fuel. The heat of vaporization then decreases the temperature of the liquid fuel
by the amount hr/c,. It should be used in flamelet calculations if one wishes to calculate flamelet
profiles in the range 0 < Z < 1 rather than 0 < Z < Zi. The boundary condition Eq. (9.59) may
also be used with Egs. (9.64) and (9.55) to calculate the non-dimensional mass burning rate

Cp(TQ — TL) + YOQ,QQ/V/02W02) (9 67)

CR:In(1+ =

From this, the mass burning rate may be determined using Eq. (9.52). We will introduce radially
averaged properties pD defined by

_ > dr
D)"'=R — 9.68
(pD) oD (9.68)
to obtain
m = 4npDR(R. (9.69)

Now it is possible to determine the time needed to burn a droplet with initial radius Ry at time
t = 0. The droplet mass is m = 47p;, R?/3, where p;, is the density of the liquid. Its negative time
rate of change equals the mass loss due to the mass burning rate

UL L

i il (9.70)

Introducing Eq. (9.69) and assuming pD independent of time one obtains by separation of vari-
ables

dt = ——L_RdR, t= R? - R?. (9.71)
CrpD
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R/R,

Figure 9.7: Droplet radius versus time (d2-Law) for single droplet combustion Eq. (9.72).

Integrating from R = R, to R = 0 one obtains the burnout time

PL 2
b = d (9.72)
8CrpD

where d = 2R, is the initial droplet diameter. This is called the d2-law of droplet combustion and
shown in Fig. 9.7. It represents a very good first approximation for the droplet combustion time
and has often be confirmed by experiments.

Finally, we want to calculate the radial position of the surrounding flame. Evaluating Eq. (9.54)

for Z = Z,; = ns One obtains

1-— Zst = eXp(—Cst), (973)
where with Egs. (9.50) and (9.52) .
m

= —— 9.74

ot 4wpDrg; ( )

Here pD is defined as in Eq. (9.68) but averaging by an integration from r, to oo rather than from

R to co. If both are assumed equal one may use Eq. (9.69) to determine the flame radius as

Tst o CR
R "Wl Zy) ©79)
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For sufficiently small values of Z,; the denominator of Eq. (9.75) may be approximated by 7, itself
showing that ratio r,; /R may take quite large values.

Exercise 9.1
Determine the non-dimensional mass burning rate and r,, /R for a Diesel fuel where hy/c, =
160K, T, = 560K, T, = 800K and T, — T, (Zst) = 2000K, Z = 0.036.

Solution
Using the Burke-Schumann solution the non-dimensional mass burning rate may be written as

(r=In [1 1 Dot T mTlZa)/ A= Zu)) _ g gy (9.76)
hL/Cp
The ratio of the flame radius to the droplet radius is then
Tst o 75. (9.77)

Exercise 9.2
Compare the evaporation rate for the same droplet as in problem Fig. 9.1 to that of the mass

burning rate.

Solution
The non-dimensional evaporation rate of a droplet may be obtained in a similar way as Eq. (9.67).
It follows from Eq. (9.67) in the limit @ = 0, therefore

Ty - 1Ty,
hr/cp

Cr=Tn(1+ ) =0.916 (9.78)

The combustion rate is approximately three times faster than the evaporation rate.
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Lecture 10

Turbulent Combustion: The State of
the Art

10.1 What is Specific about Turbulence with Combustion?

Since the flow is turbulent in nearly all engineering applications, the urgent need for resolving
engineering problems has led to preliminary solutions called turbulence models. These models
use systematic mathematical derivations based on the Navier-Stokes equations up to a certain
point, but then they introduce closure hypotheses that rely on dimensional arguments and require
empirical input. This semi-empirical nature of turbulence models puts them into the category of an
art rather than a science.

The apparent success of turbulence models in solving engineering problems for non-reactive
flows has encouraged similar approaches for turbulent combustion which consequently led to the
formulation of turbulent combustion models. This is, however, where problems arise. Combustion
requires that fuel and oxidizer are mixed at the molecular level. How this takes place in turbulent
combustion depends on the turbulent mixing process. The general view is that once a range of
different size eddies has developed, strain and shear at the interface between the eddies enhance
the mixing. During the eddy break-up process and the formation of smaller eddies, strain and shear
will increase and thereby steepen the concentration gradients at the interface between reactants,
which in turn enhances their molecular interdiffusion. Molecular mixing of fuel and oxidizer, as a
prerequisite of combustion, therefore takes place at the interface between small eddies.
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—»
DaQ Dal Da

Figure 10.1: The S-shaped curve showing the maximum temperature in a well-stirred reactor as a
function of the Damkdhler number.

There remains, however, the question to what extend we can expect an interaction between
chemical and turbulent scales. Here, we must realize that combustion differs from isothermal

mixing in chemically reacting flows by two specific features:

e heat release by combustion induces an increase of temperature which in turn

e accelerates combustion chemistry. Due to the competition between chain branching and

chain breaking reactions this process is very sensitive to temperature changes.

Heat release combined with temperature sensitive chemistry leads to typical combustion phe-
nomena like ignition and extinction. This is illustrated in Fig. 10.1 where the maximum temperature
in a homogeneous flow combustor is plotted as a function of the Damkdhler number, which here
represents the ratio of the residence time to the chemical time. This is called the S-shaped curve
in the combustion literature. The lower branch of this curve corresponds to a slowly reacting state
of the combustor prior to ignition, where the short residence times prevent a thermal runaway. If
the residence time is increased by lowering the flow velocity, for example, the Damkdhler number
increases until the ignition point T is reached. For values larger than Da; thermal runaway leads to
a rapid unsteady transition to the upper close-to-equilibrium branch. If one starts on that branch
and decreases the Damkohler number, thereby moving to the left in Fig. 10.1, one reaches the
point Q where extinction occurs. This is equivalent to a rapid transition to the lower branch. The
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middle branch between the point T and Q is unstable. In the range of Damkohler numbers be-
tween Daq and Da;j, where two stable branches exist, any initial state with a temperature in the
range between the lower and the upper branch is rapidly driven to either one of them. Due to the
temperature sensitivity of combustion reactions the two stable branches represent strong attrac-
tors. Therefore, only regions close to chemical equilibrium or close to the non-reacting state are

frequently accessed.

10.2 Statistical Description of Turbulent Flows

The aim of stochastic methods in turbulence is the description of the fluctuating velocity and scalar
fields in terms of their statistical distributions. A convenient starting point for this description is the
distribution function of a single variable of the velocity component u, for instance. The distribution

function F,,(U) of u is defined by the probability p of finding a value of u < U
F,(U)=pu<U) (10.1)

where U is the so-called sample space variable associated with the random stochastic variable w.
The sample space of the random stochastic variable « consists of all possible realizations of w.

The probability of finding a value of » in a certain interval U_ < u < U, is given by
p(U- <u<Uy)=F,(Uy) - F,(U-). (10.2)

The probability density function (pdf) of « is now defined as

_dR,(U)

P.U) = 55

(10.3)

It follows that P, (U)dU is the probability of finding u in the range U < u < U + dU. If the possible

realizations of v range from —oo to +o0, it follows that
+oo
/ P, (U)dU =1 (10.4)

which states that the probability of finding the value u between —co and +cc is certain, i.e. it has
the probability unity. It also serves as a normalizing condition for P,.
In turbulent flows the pdf of any stochastic variable depends, in principle, on the position  and
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on time ¢. These functional dependencies are expressed by the following notation

P.(U;,t). (10.5)

The semicolon used here indicates that P, is a probability density in U-space and a function of x
and t. In stationary turbulent flows it does not depend on ¢ and in homogeneous turbulent fields
not on x. In the following we will, for simplicity of notation, not distinguish between the random
stochastic variable v and the sample space variable U, drop the index and write the pdf as

P(u;x,t). (10.6)

Once the pdf of a variable is known one may define its moments by

—+oo

u(x, )" :/ u" P(u; x, t)du. (10.7)
— 00

Here the overbar denotes the average or mean value, sometimes also called expectation, of u".

The first moment (n = 1) is called the mean of u

+oo
u(x,t) = / u P(u;x, t)du. (10.8)

— 00

Similarly, the mean value of a function g(u) can be calculated from

+oo
g(x,t) = / g(u)P(u;x, t)du. (10.9)

— 00

For flows with large density changes as they occur in combustion, it is often convenient to
introduce a density-weighted average «, called the Favre average, by splitting u(x,t) into a(x,t)
and v’ (x,t) as

uw(z, t) = a(x,t) + u”’(z, ). (10.10)

This averaging procedure is defined by requiring that the average of the product of u” with the
density p (rather than v” itself) vanishes

pu’" = 0. (10.11)
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The definition for @ may then be derived by multiplying Eq. (10.10) by the density p and averaging

U = pu + pu’ = pa. (10.12)

Here the average of the product pu is equal to the product of the averages p and @, since @ is
already an average defined by
u = pu/p. (10.13)

This density-weighted average can be calculated, if simultaneous measurements of p and u are
available. Then, by taking the average of the product pu and dividing it by the average of p one ob-
tains 4. While such measurements are often difficult to obtain, Favre averaging has considerable
advantages in simplifying the formulation of the averaged Navier-Stokes equations in variable den-
sity flows. In the momentum equations, but also in the balance equations for the temperature and
the chemical species, the convective terms are dominant in high Reynolds number flows. Since
these contain products of the dependent variables and the density, Favre averaging is the method
of choice. For instance, the average of the product of the density p with the velocity components u

and v would lead with conventional averages to four terms
PUD = puv+ pu'v + p'u'v + plv'u + p'u'v’. (10.14)

Using Favre averages one writes

puv = pla+a") (T +")
(10.15)
= puv+ pu”"v + pv"u + pu'v".
Here fluctuations of the density do not appear. Taking the average leads to two terms only
v = pud + puv’. (10.16)

This expression is much simpler than Eq. (10.14) and has formally the same structure as the

conventional average of uv for constant density flows

v=uv+u

v (10.17)

Difficulties arising with Favre averaging in the viscous and diffusive transport terms are of less
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importance since these terms are usually neglected in high Reynolds number turbulence.

The introduction of density weighted averages requires the knowledge of the correlation be-
tween the density and the other variable of interest. A Favre pdf of « can be derived from the joint
pdf P(p,u) as

pPu) = [ " Pl u)dp = / " pP(olu) P(u)dp = {plu) P(us). (10.18)

Pmin Pmin

Multiplying both sides with « and integrating yields

—+o0 . —+oo
ﬁ/ uP(u)du:/ (pluyuP(u)du (10.19)

— 00 —00
which is equivalent to pi = pu. The Favre mean value of  therefore is defined as

+oo
= P(u)du. (10.20)

— 00

10.3 Navier-Stokes Equations and Turbulence Models

In the following we will first describe the classical approach to model turbulent flows. It is based on
single point averages of the Navier-Stokes equations. These are commonly called Reynolds Av-
eraged Navier-Stokes Equations (RANS). We will formally extend this formulation to non-constant
density by introducing Favre averages. In addition we will present the most simple model for turbu-
lent flows, the k- model. Even though it certainly is the best compromise for engineering design
using RANS, the predictive power of the k-¢ model is, except for simple shear flows, often found
to be disappointing. We will present it here, mainly to be able to define turbulent length and time
scales.

For non-constant density flows the Navier-Stokes equations are written in conservative form
(cf. Lecture 3)

Continuity
dp
— 4+ V-(pv)=0 (10.21)
ot
Momentum
0
(aLt”) LV (pvv) = —Vp— V-7 +pg . (10.22)

In Eq. (10.22) the two terms on the left hand side (l.h.s.) represent the local rate of change
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and convection of momentum, respectively, while the first term on the right hand side (r.h.s.) is
the pressure gradient and the second term on the r.h.s. represents molecular transport due to

viscosity. Here 7 is the viscous stress tensor (cf. Lecture 3, Eq. (3.32))
2
T=—U {25 — gv-v} (10.23)

and
S = %(w + VoT) (10.24)

is the rate of strain tensor, where Vv” is the transpose of the velocity gradient and p is the
dynamic viscosity. It is related to the kinematic viscosity v as y = pv. The last term in Eq. (10.22)
represents forces due to buoyancy.
Using Favre averaging on Egs. (10.21) and (10.22) one obtains
p

o7 TV (p0) =0 (10.25)

o)
ot

+ V- (p90) = —Vp— V-7 — V- (p0"v") + pg. (10.26)

Eqg. (10.26) is similar to Eq. (10.22) except for the third term on the I.h.s. containing the correlation
—/317’717’, which is called the Reynolds stress tensor.
An important simplification is obtained by introducing the kinematic eddy viscosity v, which

leads to the following expression for the Reynolds stress tensor

— -~ 9 2 .
—pv'v" = puy {25 — gv-f;I} + gﬁk. (20.27)
Here I is the unit tensor. The kinematic eddy viscosity v, is related to the Favre average turbulent

kinetic energy
-] ——
b= 5 v v (10.28)

and its dissipation ¢ by

7.2
v =cy % , ¢, = 0.09. (10.29)

The introduction of the Favre averaged variables % and ¢ requires that modeled equations are

available for these quantities. These equations are given here in their most simple form
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Turbulent kinetic energy

= +pf;~V/~c:V~(0_—kV2;) — o' Vb — pE, (10.30)
Turbulent dissipation
_0E . - 7 _E N &2
p— +pv-VE=V-| p—VE | —caap=v"v" : VU — ceop—=. (10.31)
t O¢ k k

In these equations the two terms on the I.h.s. represent the local rate of change and convection,
respectively. The first term on the r.h.s. represents the turbulent transport, the second one turbu-
lent production and the third one turbulent dissipation. As in the standard k-¢ model, the constants
or = 1.0, 0. = 1.3, ¢.1 = 1.44 and c¢.o = 1.92 are generally used. A more detailed discussion
concerning additional terms in the Favre averaged turbulent kinetic energy equation may be found
in Libby and Williams (1994) [1].

10.4 Two-Point Velocity Correlations and Turbulent Scales

A characteristic feature of turbulent flows is the occurrence of eddies of different length scales. If
a turbulent jet shown in Fig. 10.2 enters with a high velocity into initially quiescent surroundings,
the large velocity difference between the jet and the surroundings generate a shear layer instability
which after a transition, becomes turbulent further downstream from the nozzle exit. The two shear
layers merge into a fully developed turbulent jet. In order to characterize the distribution of eddy
length scales at any position within the jet, one measures at point « and time ¢ the axial velocity
u(x, t), and simultaneously at a second point (x + r, t) with distance r apart from the first one, the

velocity u(x + 7, t). Then the correlation between these two velocities is defined by the average

R(z,r,t) = u/'(x, t)u'(x + 7, t). (10.32)

For homogeneous isotropic turbulence the location « is arbitrary and r» may be replaced by its
absolute value r = |r|. For this case the normalized correlation

F(r,t) = R(r,t) /a2 (D) (10.33)

is plotted schematically in Fig. 10.3.
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Figure 10.2: Schematic representation of two-point correlation measurements in a turbulent jet.

Kolmogorov’'s 1941 theory for homogeneous isotropic turbulence assumes that there is a steady
transfer of kinetic energy from the large scales to the small scales and that this energy is being
consumed at the small scales by viscous dissipation. This is the eddy cascade hypothesis. By
equating the energy transfer rate (kinetic energy per eddy turnover time) with the dissipation ¢ it
follows that this quantity is independent of the size of the eddies within the inertial range. For
the inertial subrange, extending from the integral scale ¢ to the Kolmogorov scale 7, ¢ is the only
dimensional quantity apart from the correlation co-ordinate r that is available for the scaling of

f(r,t). Since ¢ has the dimension [m?/s3], the second order structure function defined by

Fy(r,t) = (W (x,t) —u'(z 4+ r,t))%2 =2u2(t)(1 — f(r,1)) (10.34)
with the dimension [m?/s2] must therefore scale as
Fy(r,t) = C(er)?/3 (10.35)

where C is a universal constant called the Kolmogorov constant.
There are eddies of a characteristic size which contain most of the kinetic energy. At these
eddies there still is a relatively large correlation f(r,¢) before it decays to zero. The length scale of
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Figure 10.3: The normalized two-point velocity correlation for homogeneous isotropic turbulence
as a function of the distance r between the two points.

these eddies is called the integral length scale ¢ and is defined by

o) = /0 h Fr,t)dr. (10.36)

The integral length scale is also shown in Fig. 10.3.

We denote the root-mean-square (r.m.s.) velocity fluctuation by

v =+/2k/3 (10.37)
which represents the turnover velocity of integral scale eddies. The turnover time ¢/v’" of these

eddies is then proportional to the integral time scale

k
T=—.
€

(10.38)

For very small values of r only very small eddies fit into the distance between x and « + r. The
motion of these small eddies is influenced by viscosity which provides an additional dimensional
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quantity for scaling. Dimensional analysis then yields the Kolmogorov length scale

1/4
n = (”—3) (10.39)

g

which is also shown in Fig. 10.3.
The range of length scales between the integral scale and the Kolmogorov scale is called the

inertial range. In addition to n a Kolmogorov time and a velocity scale may be defined as

1/2
ty = (g) vy = (ve)t/t (10.40)
According to Kolmogorov’'s 1941 theory the energy transfer from the large eddies of size ¢ is equal
to the dissipation of energy at the Kolmogorov scale n. Therefore we will relate ¢ directly to the
turnover velocity and the length scale of the integral scale eddies
1/3

~ — 10.41
en o (10.41)

We now define a discrete sequence of eddies within the inertial subrange by

by = >n

l
—>n, n=12 ... (10.42)
2n

Since ¢ is constant within the inertial subrange, dimensional analysis relates the turnover time ¢,,

and the velocity difference v,, across the eddy 4, to ¢ in that range as

vz v 2
~ o 10.43
R ) (10.43)
This relation includes the integral scales and also holds for the Kolmogorov scales as
2 3
e=n_ (10.44)
ty n

A Fourier transform of the isotropic two-point correlation function leads to a definition of the kinetic
energy spectrum E(k), which is the density of kinetic energy per unit wave number k. Here, rather
than to present a formal derivation, we relate the wave number & to the inverse of the eddy size 7,
as

k=01 (10.45)

n
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Figure 10.4: Schematic representation of the turbulent kinetic energy spectrum as a function of
the wave number k.

The kinetic energy v2 at scale /,, is then
V2~ (e0,)23 = 23723 (10.46)
and its density in wave number space is proportional to

—n o~ 238, (10.47)

Bk) = 3

This is the well-known k~5/3 law for the kinetic energy spectrum in the inertial subrange.

If the energy spectrum is measured in the entire wave number range one obtains a behavior
that is shown schematically in a log-log plot in Fig. 10.4. For small wave numbers corresponding
to large scale eddies the energy per unit wave number increases with a power law between k2
and k*. This range is not universal and is determined by large scale instabilities which depend
on the boundary conditions of the flow. The spectrum attains a maximum at a wave number that
corresponds to the integral scale, since eddies of that scale contain most of the kinetic energy.
For larger wave numbers corresponding to the inertial subrange the energy spectrum decreases

following the k—%/3 law. There is a cut-off due to viscous effects at the Kolmogorov scale 7. Beyond
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this cut-off, in the range called the viscous subrange, the energy per unit wave number decreases
exponentially due to viscous effects.

In one-point averages the energy containing eddies at the integral length scale contribute the
most to the kinetic energy. Therefore RANS averaged mean quantities essentially represent av-
erages over regions in physical space that are of the order of the integral scale. In Large Eddy
Simulations (LES) the filtering over smaller regions than the integral length scale leads to different

mean values and, in particular, to smaller variances.

10.5 Balance Equations for Reactive Scalars

For simplicity, we will assume that the specific heat capacities ¢, ; are all equal and constant, the
pressure is constant and the heat transfer due to radiation is neglected. Then the temperature

equation becomes (cf. Lecture 3, Eq. (3.46))

T
Py +pv-VT = V-(pDVT) +w, (10.48)

Here Eq. (3.44) with unity Lewis number was used and the heat release (cf. Lecture 3, Eq. (3.44))
due to chemical reactions is written as

k
1
wp = _C_ Z hlml (1049)
P =1

This form of the temperature equation is similar to that for the mass fractions of species i (cf.

Lecture 3, Eqg. (3.17)), which becomes with the binary diffusion approximation

0Y;
P ot

+ pv-VY; = V- (pD;VY;) + 1. (10.50)

If, in addition, a one-step reaction and equal diffusivities (D; = D) were assumed, coupling re-
lations between the temperature and the species mass fractions can be derived (cf. Williams,
(1985)a [2]). These assumptions are often used in mathematical analyzes of combustion prob-
lems.

In the following we will use the term “reactive scalars” for the mass fraction of all chemical

species and temperature and introduce the vector

IZJ: (Y17}/27"'7Yk7T)' (1051)
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Here k is the number of reactive species. For simplicity of notation, the balance equation for the
reactive scalar v; will be written

0v;
ary

where ¢ = 1,2,...,k + 1. The diffusivities D; (i = 1,2,...,k) are the mass diffusivities for the
species and Dy.1 = D denotes the thermal diffusivity. Similarly, o; (: = 1,2, ..., k) are the species
source terms i, ¢ = 1,2, ...,k (cf. Lecture 3, Eq. (3.12)) and o1 is defined as wr Eq. (10.49)

(cf. Lecture 3, Eg. (3.46)). The chemical source term will also be written as

10.6 Moment Methods for Reactive Scalars

Favre averaged equations for the mean and the variance of the reactive scalars can be derived by

splitting ;(x, t) into a Favre mean and a fluctuation
vi(e,t) = Pi(@,t) + ;" (2, 1) . (10.54)

When this is introduced into Eq. (10.52) one obtains in a similar way as for the momentum equation
after averaging

s

L 59V = V(D) — V(") + S (10.55)

p
In this equation the terms on the I.h.s. are closed, while those on the r.h.s. must be modeled. In
high Reynolds number flows the molecular transport term containing the molecular diffusivities D;
are small and can be neglected. Closure is required for the second term on the r.h.s., the turbulent
transport term, and for the last term, the mean chemical source term.

The modeling of the mean chemical source term has often been considered as the main prob-
lem of moment methods in turbulent combustion. In order to discuss the difficulties associated with
the closure of this term, we assume that coupling relations exist between the chemical species and
the temperature. As noted before, such coupling relations can easily be derived for the case of a
one step reaction and equal diffusivities. With this assumption we consider the following form of

the heat release rate

wr(T) = pSr(T) = pB(T, — T) exp <—%) . (10.56)

162



Here B contains the frequency factor and the heat of reaction, T is the adiabatic flame tempera-
ture, E the activation energy and R the universal gas constant. Introducing T' = T + T" into Eq.

(10.56) the argument of the exponential term may be expanded around T for small T” as

E B ET”

—_—= = = . 10.57
RT RT RT2 ( )
If the expansion is also introduced into the preexponential term, the quantity S+ becomes
- T" ET"
St(T)=8r(T)(1—- — | ex — | . 10.58
r = s )< Tb—T) p(RT?) (1059

Typically, the grouping E/RT is of the order of 10 in the reaction zone of a flame and the absolute
value of T" /T varies between 0.1 -/- 0.3. Therefore the exponential term in Eq. (10.58) causes
enhanced fluctuations of the chemical source term around its mean value evaluated with the mean
temperature T. It may be concluded that moment methods for reactive scalars will fail due to the
strong nonlinearity of the chemical source term.

10.7 Dissipation and Scalar Transport of Non-Reacting Scal ars

As an example for a nonreactive scalar we will use the mixture fraction Z Eq. (3.58). It is gen-
eral practice in turbulent combustion to employ the gradient transport assumption for non-reacting

scalars. The scalar flux then takes the form
—W'Z" =D,V Z. (10.59)

Here D, is a turbulent diffusivity which is modeled by analogy to the eddy viscosity as

Vvt

D, = 2+
t SCt’

(10.60)

where Sc; is a turbulent Schmidt number. The equation for the mean mixture fraction then reads

Z - _
Py + 0 VZ =V (pD:iV ), (10.61)

where the molecular term has been neglected. In order to derive an equation for 7' we first must

derive an equation for Z”. By subtracting Eqgs. (10.55) and (10.52), when the source terms have
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been removed and D; is set to D, and after both have been divided by p and p, respectively, an
equation for the fluctuation Z” is obtained:

oz"
ot

+(@+v")VZ" 4v'VZ= lV-(pDVZ)
p (10.62)

1 —
=5 V-(pDVZ) + V- (0" 2").

Also the continuity equation was used. If derivatives of p and D and their mean values are ne-
glected for simplicity, the first two terms on the r.h.s. of Eq. (10.62) can be combined to obtain a
term proportional to D;V2Z". Introducing this and multiplying Eq. (10.62) by 2pZ" one obtains an

equation for Z”2. With the use of the continuity equation and averaging one obtains

02" —~
p 5 —|—ﬁ'l~)'VZ”2 — —V'(ﬁ'UNZ”Q)

(10.63)
+ 2p(—v"Z")-VZ — p¥.

As before, the terms on the r.h.s. describe the local change and convection. The first term on the
r.h.s. is the turbulent transport term. The second term on the r.h.s. accounts for the production
of scalars fluctuations. The mean molecular transport term has been neglected for simplicity but
the molecular diffusivity still appears in the dissipation term. The Favre scalar dissipation rate is
defined as

Y =2D(VZ")2. (10.64)

An integral scalar time scale can be defined by

7
Tz = —=. (1065)
X

It is often set proportional to the flow time 7 = l%/é

= ey 7z, (10.66)
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where the constant of proportionality ¢, is of order unity but its value varies between 1.5 and 3.0.
Avalue ¢, = 2.0 is often used. Combining Egs. (10.65) and (10.66) leads to the model

7. (10.67)

10.8 The Eddy Break Up and the Eddy Dissipation Model

An early attempt to provide a closure for the chemical source term is due to Spalding (1971) [3] who

argued that since turbulent mixing may be viewed as a cascade process from the integral down to

the molecular scales, the cascade process also controls the chemical reactions as long as mixing

rather than reaction is the rate determining process. This model was called the Eddy-Break-Up
model (EBU). The turbulent mean reaction rate of products was expressed as

e /—\1/2

wp = pCopur (Y};’Q) (10.68)

where @ is the variance of the product mass fraction and Crpy is the Eddy-Break-Up constant.

This model has been modified by Magnussen and Hjertager (1977) [4] who replaced (@)1/2

simply by the mean mass fraction of the deficient species (fuel for lean or oxygen for rich mixtures)

calling it the Eddy Dissipation Model (EDM). The model takes the minimum of three rates, those
defined with the mean fuel mass fraction

Tp = pA Y % , (10.69)

with the mean oxidizer mass fraction

AYo, €
To, = P2, (10.70)
and with the product mass fraction
A-B — ¢

Wwp =p Yp - 10.71
wp P(l I V) P A ) ( )

in order to calculate the mean chemical source term. In Egs. (10.69)-(10.71) A and B are modeling
constants and v is the stoichiometric oxygen to fuel mass ratio defined in Eq. (1.32).

The Eddy Break-Up model and its modifications are based on intuitive arguments. The main
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idea is to replace the chemical time scale of an assumed one-step reaction by the turbulent time
scale 7 = k/e. Thereby the model eliminates the influence of chemical kinetics, representing the
fast chemistry limit only. When these models are used in CFD calculations, it turns out that the
constants Cggy or A and B must be “tuned” within a wide range in order to obtain reasonable
results for a particular problem.

10.9 The Pdf Transport Equation Model

Similar to moment methods, models based on a pdf transport equation for the velocity and the
reactive scalars are usually formulated for one-point statistics. Within that framework, however,
they represent a general statistical description of turbulent reacting flows, applicable to premixed,
nonpremixed and partially premixed combustion. A joint pdf transport equation for the velocity
and the reactive scalars can be derived, which is equivalent to an infinite hierarchy of one-point
moment equations for these quantities, Pope (1990) [5].

For simplicity, we will consider here the transport equation for the joint pdf of velocity and
reactive scalars only. Denoting the set of reactive scalars, such as the temperature and the mass
fraction of reacting species by the vector v, P(v,; z,t)dvdqp is the probability of finding at point
x and time ¢ the velocity components and the reactive scalars within the intervals v — dv/2 < v <
v+dv/2and ¢ — dy/2 < ¢ <+ dip/2.

There are several ways to derive a transport equation for the probability density P(v,;x,t)
(cf. O'Brien (1980) [6]). We refer here to the presentation in Pope (1985) [7] cf. also Pope (2000)
[8], but write the convective terms in conservative form

9(pP)
ot

- V-(poP) + (g — VD) VP + Y a%[wi Pl =
= (10.72)

Vo (= + Vo, )P Zaw {(pPDV i) v, ) P).

In deriving this equation, the equations for all reactive scalars, including that for temperature have
been cast into the form Eq. (10.52), for simplicity. The symbol V, denotes the divergence op-
erator with respect to the three components of velocity. The angular brackets denote conditional

averages, conditioned with respect to fixed values of v and . For simplicity of presentation we
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do not use different symbols for the random variables describing the stochastic fields and the
corresponding sample space variables which are the independent variables in the pdf equation.

The first two terms on the l.Lh.s. of Eq. (10.72) are the local change and convection of the
probability density function in physical space. The third term represents transport in velocity space
by gravity and the mean pressure gradient. The last term on the I.h.s. contains the chemical
source terms. All these terms are in closed form, since they are local in physical space. Note that
the mean pressure gradient does not present a closure problem, since the pressure is calculated
independently of the pdf equation using the mean velocity field. For chemical reacting flows it is
of particular interest that the chemical source terms can be treated exactly for arbitrarily complex
chemical kinetics. It has often been argued that in this respect the transported pdf formulation has
a considerable advantage compared to other formulations.

However, on the r.h.s. of the transport equation there are two terms that contain gradients of
quantities conditioned on the values of velocity and composition. Therefore, if gradients are not
included as sample space variables in the pdf equation, these terms occur in unclosed form and
have to be modeled. The first unclosed term on the r.h.s. describes transport of the probability
density function in velocity space induced by the viscous stresses and the fluctuating pressure
gradient. The second term represents transport in reactive scalar space by molecular fluxes. This
term represents molecular mixing.

When chemistry is fast, mixing and reaction take place in thin layers where molecular transport
and the chemical source term balance each other. Therefore, the closed chemical source term and
the unclosed molecular mixing term, being leading order terms in a asymptotic description of the
flame structure, are closely linked to each other. Pope and Anand (1984) [9] have illustrated this for
the case of premixed turbulent combustion by comparing a standard pdf closure for the molecular
mixing term with a formulation, where the molecular diffusion term was combined with the chemical
source term to define a modified reaction rate. They call the former distributed combustion and the
latter flamelet combustion and find considerable differences in the Damkohler number dependence
of the turbulent burning velocity normalized with the turbulent intensity.

From a numerical point of view, the most apparent property of the pdf transport equation is
its high dimensionality. Finite-volume and finite-difference techniques are not very attractive for
this type of problem, as memory requirements increase roughly exponentially with dimensional-
ity. Therefore, virtually all numerical implementations of pdf methods for turbulent reactive flows
employ Monte-Carlo simulation techniques (cf. Pope (1981), (1985) [10, 7]). The advantage of

Monte-Carlo methods is that their memory requirements depend only linearly on the dimensional-
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ity of the problem. Monte-Carlo methods employ a large number, N, of particles. In the Lagrangian
algorithm (Pope (1985) [7]) the particles are not bound to grid nodes. Instead, each particle has
its own position and moves through the computational domain with its own instantaneous velocity.
The particles should be considered as different realizations of the turbulent reactive flow problem
under investigation. The state of the particle is described by its position and velocity, and by the
values of the reactive scalar that it represents as a function of time. These particles should not be

confused with real fluid elements, which behave similarly in a number of respects.

10.10 The Laminar Flamelet Concept

The view of a turbulent diffusion flame as an ensemble of stretched laminar flamelets is due to
Williams (1975) [11]. Flamelet equations based on the mixture fraction as independent variable,
using the scalar dissipation rate for the mixing process, were independently derived by Peters
(1980) [12] and Kuznetsov (1982) [13]. A first review of diffusion flamelet models was given by
Peters (1984) [14]. For premixed and diffusion flames the flamelet concept was reviewed by Peters
(1986) [15] and Bray and Peters (1994) [16].

Flamelets are thin reactive-diffusive layers embedded within an otherwise non-reacting turbu-
lent flow field. Once ignition has taken place, chemistry accelerates as the temperature increases
due to heat release. When the temperature reaches values that are of the order of magnitude of
those of the close-to-equilibrium branch in Fig. 10.1, the reactions that determine fuel consump-
tion become very fast. For methane combustion, for example, the rate determining reaction in the
fuel consumption layer is the reaction of CH, with the H°’-radical. Since the chemical time scale
of this reaction is short, chemistry is active only within a thin layer, namely the fuel consumption or
inner layer. If this layer is thin compared to the size of a Kolmogorov eddy, it is embedded within
the quasi-laminar flow field of such an eddy and the assumption of a laminar flamelet structure
is justified. If, on the contrary, turbulence is so intense, that Kolmogorov eddies become smaller
than the inner layer and can penetrate into it, they are able to destroy its structure. Under these
conditions the entire flame is likely to extinguish.

The location of the inner layer defines the flame surface. Differently from moment methods or
methods based on a pdf transport equation, statistical considerations in the flamelet concept focus
on the location of the flame surface and not on the reactive scalars themselves. That location is
defined as an iso-surface of a non-reacting scalar quantity, for which a suitable field equation is
derived. For nonpremixed combustion the mixture fraction Z is that scalar quantity, for premixed
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combustion the scalar G will be introduced. Once equations that describe the statistical distribu-
tions of Z and G are solved, the profiles of the reactive scalars normal to the surface are calculated
using flamelet equations. These profiles are assumed to be attached to the flame surface and are
convected with it in the turbulent flow field. Therefore the statistical moments of the reactive scalars
can be obtained from the statistical distribution of the scalar quantities Z and G. Details of this

procedure will be discussed in Lecture 12.

10.11 The BML-Model and the Coherent Flamelet Model

For premixed combustion, flamelet models are typically based on the progress variable ¢. The

progress variable ¢ is defined as a hormalized temperature or normalized product mass fraction

T-T, or Yp
CcC = C = —
Tb — Tu YP,b

(10.73)

which implies a one-step reaction A — P and a corresponding heat release raising the temperature
from T, to T;. In flamelet models based on the progress variable the flame structure is assumed
to be infinitely thin and no intermediate values of temperature between T,, and T, are resolved.
This corresponds to the fast chemistry limit. The progress variable therefore is a step function that
separates unburnt mixture and burnt gas in a given flow field.

The classical model for premixed turbulent combustion, the Bray-Moss-Libby (BML) model was
initiated by Bray and Moss (1977) [17] by assuming the pdf of the progress variable ¢ to be a two
delta function distribution. This assumption only allows for entries at ¢ = 0 and ¢ = 1 in a turbulent
premixed flame, but it illustrates important features, like counter-gradient diffusion of the progress
variable. This appears in the equation for the Favre mean progress variable ¢

oc

P + pv-Vé+ V- (pv'd") =W, (10.74)

where the molecular diffusion term has been neglected. This equation requires the modeling of
the turbulent transport term v”¢" and the mean reaction term .. Libby and Bray (1981) [18]
and Bray et al. (1981) [19] have shown that the gradient transport assumption Eq. (10.59) is not
applicable to v¢". This is due to gas expansion effects at the flame surface and is called counter-
gradient diffusion. Counter-gradient diffusion has been found in many experiments and in many

one-dimensional numerical analyzes. However, there is no model available that could be used in
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three-dimensional calculations solving Eq. (10.74) with counter-gradient diffusion included.

Models for the mean reaction rate by Bray et al. (1984a) [20] and Bray and Libby (1986) [21]
focus on a time series of step function events of the progress variable. This makes the mean
source term proportional to the flamelet crossing frequency. Further modeling, discussed in more
detail in Bray and Libby (1994) [22], then leads to the expression

We = pusrloX (1075)

where sy, is the laminar burning velocity, I, is a stretch factor and ¥ is the flame surface density
(flame surface per unit volume).

A model for ¥ has been proposed by Candel et al. (1990) [23]. This is called the Coherent
Flame Model (CFM). A comparison of the performance of different formulations of the model for
one-dimensional turbulent flames was made by Duclos et al. (1993) [24]. Modeling based on DNS
data has led Trouvé and Poinsot (1994) [25] to the following equation for the flame surface density
pIN

% 32

N 9
o7 TV (08) = V(D V) + C1 7% = Cos 7.

(10.76)

The terms on the l.h.s. represent the local change and convection, the first term on the r.h.s.
represents turbulent diffusion, the second term production by flame stretch and the last term flame
surface annihilation. The stretch term is proportional to the inverse of the integral time scale

T = k/e which is to be evaluated in the unburnt gas.

10.12 Combustion Models used in Large Eddy Simulation

Turbulence models based on Reynolds Averaged Navier-Stokes Equations (RANS) employ turbu-
lent transport approximations with an effective turbulent viscosity that is by orders of magnitude
larger than the molecular viscosity. In particular if steady state versions of these equations are
used, this tends to suppress large scale instabilities which occur in flows with combustion even
more frequently than in non-reacting flows. If those instabilities are to be resolved in numerical
simulations, it is necessary to recur to more advanced, but computationally more expensive meth-
ods such as Large Eddy Simulation (LES).

Large Eddy Simulation does not intend to numerically resolve all turbulent length scales, but
only a fraction of the larger energy containing scales within the inertial subrange. Modeling is

then applied to represent the smaller unresolved scales which contain only a small fraction of
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the turbulent kinetic energy. Therefore the computed flows are usually less sensitive to modeling
assumptions. The distinction between the resolved large scales and the modeled small scales is
made by the grid resolution that can be afforded. The model for the smaller scales is called the sub-
grid model. In deriving the basic LES equations, the Navier-Stokes equations are spatially filtered
with a filter of size A, which is of the size of the grid cell (or a multiple thereof) in order to remove
the direct effect of the small scale fluctuations (cf. Ghosal and Moin (1995) [26]). These show
up indirectly through nonlinear terms in the subgrid-scale stress tensor as subgrid-scale Reynolds
stresses, Leonard stresses, and subgrid-scale cross stresses. The latter two contributions result
from the fact that, unlike with the traditional Reynolds averages, a second filtering changes an
already filtered field. In a similar way, after filtering the equations for non-reacting scalars like
the mixture fraction, one has to model the filtered scalar flux vectors which contain subgrid scalar
fluxes, Leonard fluxes, and subgrid-scale cross fluxes.

The reason why LES still provides substantial advantages for modeling turbulent combustion
is that the scalar mixing process is of paramount importance in chemical conversion. Nonreac-
tive and reactive system studies show that LES predicts the scalar mixing process and dissipation
rates with considerably improved accuracy compared to RANS, especially in complex flows. For
example, to study the importance of turbulent scalar dissipation rate fluctuations on the combus-
tion process and to highlight the differences between RANS and LES, [27] compared the results
of two different LES simulations using unsteady flamelet models in which the scalar dissipation
rate appears as a parameter. The only difference between the simulations was that only the
Reynolds-averaged dissipation rate was used in one simulation [28], whereas the other consid-
ered the resolved fluctuations of the filtered scalar dissipation rate predicted by LES. The results
show substantially improved predictions, especially for minor species, when fluctuations are con-
sidered. Another such example is the simulation of a bluff-body stabilized flame [29], where a
simple steady-state diffusion flamelet model [14] in the context of an LES with a recursive filter
refinement method led to excellent results. Such accuracy has not been achieved with RANS
simulations of the same configuration [30], [31]. Both studies are discussed in more detail below.
Similar arguments can be made for premixed turbulent combustion LES.

In RANS modeling it has long been realized that the direct closure of the mean chemical source
term in the averaged species transport equations can hardly be accomplished, and conserved
scalar methods have been used in many applications. Using so-called coupling functions, the rate
of mixing of fuel and oxidizer can be described by a nonreactive scalar, the mixture fraction. Differ-

ent definitions have been used for the mixture fraction [32], [33], but essentially the mixture fraction
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is a measure of the local equivalence ratio. Hence, the mixture fraction is a conserved scalar, in-
dependent of the chemistry. This leads to the so-called conserved scalar method, which forms
the basis for most of the combustion models for nonpremixed turbulent combustion. Considering
the simplest case of infinitely fast chemistry, all species mass fractions and the temperature are
a function of mixture fraction only. If the subfilter probability distribution of the mixture fraction is

known, the Favre-filtered mass fractions Y; , for instance, can then be obtained as
N 1
Yy, = / Yi(2)£(2)dZ, (10.77)
0

where 7 is the mixture fraction and f(Z) is the marginal density-weighted filter probability density
function (FPDF) of the mixture fraction. Applications of simple conserved scalar models in LES
have been based on infinitely fast irreversible chemistry [34] and equilibrium chemistry [35]. The
flamelet model is a conserved scalar model that can account for finite-rate chemistry effects. Many
models that have been formulated for LES are variants of these and some are discussed below.
These models essentially provide state relationships for the reactive scalars as functions of mixture
fraction and other possible parameters, such as the scalar dissipation rate. Filtered quantities are
then obtained by a relation similar to Eqg. (10.77), but using a presumed joint FPDF of the mixture
fraction and, for example, the scalar dissipation rate.

Because the probability density function (PDF) plays a central role in most models for non-
premixed combustion, it is necessary to emphasize the special meaning of the FPDF in LES.
Here, the example of the marginal FPDF of the mixture fraction is discussed, but similar argu-
ments can be made for the joint composition FPDF. In Reynolds-averaged methods, a one-point
PDF can be determined by repeating an experiment many times and recording the mixture fraction
at a given time and position in space. For a sufficiently large number of samples, the PDF of the
ensemble can be determined with good accuracy. In LES, assuming a simple box filter, the data of
interest is a one-time, one-point probability distribution in a volume corresponding to the filter size
surrounding the point of interest. If an experimentally observed spatial mixture fraction distribution
is considered at a given time, the FPDF cannot simply be evaluated from these data, because the
observed distribution is characteristic of this particular realization and it is not a statistical prop-
erty. As a statistical property, the FPDF must be defined by an ensemble that can potentially have
an arbitrary large number of samples. In the context of transported PDF model formulations for
LES, which are discussed below, [5] introduced the notion of the filtered density function (FDF),

which describes the local subfilter state of the considered experiment. The FDF is not an FPDF,
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because it describes a single realization. The FPDF is defined only as the average of the FDF
of many realizations given the same resolved field [36]. It is important to distinguish between the
FDF and the FPDF, especially in using direct numerical simulation (DNS) data to evaluate models,
and in the transported FDF models discussed below. Only the FDF can be evaluated from typical
DNS data, whereas the FPDF is required for subfilter modeling. For conserved scalar models,
a presumed shape of the FPDF has to be provided. Similar to RANS models, a beta-function
distribution is usually assumed for the marginal FPDF of the mixture fraction, and parameterized
by the first two moments of the mixture fraction. The filtered mixture fraction is determined by the
solution of a transport equation, whereas algebraic models are mostly used for the subfilter scalar
variance. The beta-function is expected to be a better model for the FPDF in LES than for the PDF
in RANS, because the FPDF is generally more narrow, and hence the exact shape is less impor-
tant. It can also be expected that intermittency, which is a main source of error when using the
beta-function in RANS, will mostly occur on the resolved scales. The validity of the beta-function
representation of the FPDF of the mixture fraction has been investigated by several authors using
DNS data of nonpremixed reacting flows of both constant and variable density [35], [37], [38]. The
main conclusion of these studies is that the beta-function distribution provides a good estimate for
the FPDF of the mixture fraction and that this estimate is even better in LES than in RANS models.
Furthermore, the model is particularly good when evaluated using the mixture fraction variance
taken from DNS data, suggesting that the beta-function as a model for the statistical distribution
of the mixture fraction performs much better than the commonly used subgrid-scale models for
the mixture fraction variance. However, recent studies by [39] and [40] show that the FPDF often
substantially deviates from the beta-function. This is discussed in more detail below.

In the following, different variants of the flamelet model are discussed. Because all such mod-
els require the scalar dissipation rate, modeling of this quantity is discussed first. We follow the

presentation in [41].

10.13 Modeling the Scalar Dissipation Rate

Although different conceptual ideas and assumptions are used in the combustion models dis-
cussed here, most of them need a model for the scalar dissipation rate. The dissipation rate of
the mixture fraction is a fundamental parameter in nonpremixed combustion, which determines
the filtered reaction rates, if combustion is mixing controlled. High rates of dissipation can also
lead to local or global flame extinction. Models based on presumed FPDFs also require a model
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for the subfilter scalar variance. Here, the most commonly used model formulations for LES are
reviewed briefly, differences with the typical RANS models are pointed out, and potential areas of
improvement are discussed.

An illustration of the importance of the scalar variance and dissipation rate in LES of non-
premixed combustion modeling is given by the following example. [43] pointed out that LES is an
incomplete model if the filter size can be arbitrarily specified. This is an important issue, especially
for combustion LES, because of the importance of the subfilter models. To fix the arbitrariness of
the filter, [29] proposed a recursive filter refinement method, where the local filter width is deter-
mined such that the ratio of subfilter scalar variance to the maximum possible variance is smaller
than a specified value. The maximum possible variance can be expressed in terms of the resolved
mixture fraction as Z(1 — Z). It was demonstrated in the simulation of a bluff-body stabilized
flame that this method better resolves high scalar variance and dissipation regions, which leads to
significant improvement in results. Some of these results are shown in Fig. 10.5.

In RANS models, typically a transport equation is solved for the scalar variance (Z'?), in which
the Reynolds-averaged scalar dissipation rate x appears as an unclosed sink term that requires
modeling. The additional assumption of a constant ratio of the integral timescale of the velocity 7
and the scalar fields leads to the expression

() = com(2), (10.78)

Tt

where ¢ is the so-called timescale ratio.

In the models most commonly used in LES [45, 34], the scalar variance transport equation
and the timescale ratio assumption are actually used in the opposite sense. Instead of solving the
subfilter variance equation, the assumption that the scalar variance production appearing in that

equation equals the dissipation term leads to an algebraic model for the dissipation rate of the form
X =2D(VZ)?, (10.79)

where an eddy diffusivity model was used for the subfilter scalar flux in the production term. D, =
(cZV)25‘ is the eddy diffusivity, where ¢z can be determined using a dynamic procedure and
S = 128;;S;;/'/? is the characteristic Favre-filtered rate of strain. Writing Eq. (10.78) for the

subfilter scales and combining it with Eqg. (10.79) then leads to the model for the scalar variance

Z”? = cy AX(VZ)?, (10.80)
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Figure 10.5: Results from large-eddy simulation of the Sydney bluff-body flame [29]. Flame rep-
resentation from simulation results (left) and time-averaged radial profiles of temperature and CO
mass fraction at x = 30 mm and z = 120 mm, which are in and downstream of the recirculation
region, respectively. The left figure shows computed chemiluminescence emissions of CH® col-
lected in an observation plane with a ray tracing technique (M. Herrmann, private communication).
Experimental data are taken from [42]. Courtesy of [41].

where 7 A ~ 1/9 is assumed, and a new coefficient ¢y is introduced, which can be determined
dynamically following [34]. From Egs. (10.78) and (10.79), and the dynamically determined coeffi-
cients of the eddy diffusivity and the scalar variance, the timescale ratio ¢, can be determined as
cp = 2% /cy.

Pitsch and Steiner (2000) [28, 46] used the Lagrangian flamelet model (LFM) [33] as a subfilter
combustion model for LES in an application to a piloted methane/air diffusion flame [44] using a
20-step reduced chemical scheme based on the GRI 2.11 mechanism [47]. The unsteady flamelet
equations are solved coupled with the LES solution to provide the filtered density and other filtered
scalar quantities using a presumed FPDF of the mixture fraction. The scalar dissipation rate x
required to solve the flamelet equation Eq. (8.7)2

oY;  x 0%,

Par ~P3 a2 =y, 1=1,2,...,k (10.81)

is determined from the LES fields as a cross-sectional conditionally averaged value using a model
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Figure 10.6: Results from large-eddy simulation of Sandia flame D ([27], [28]) using the Eulerian
flamelet model (solid lines) and the Lagrangian flamelet model (dashed lines) compared with ex-
perimental data of [44]. Temperature distribution (left), scalar dissipation rate distribution (center),
and comparison of mixture fractionconditioned averages of temperature and mass fractions of NO,
CO, and H, at /D = 30. Courtesy of [41].

similar to the conditional source term estimation method by [48], which is described below. The
unconditional scalar dissipation rate was determined from a dynamic model [34]. This study is the
first demonstration of combustion LES of a realistic configuration using a detailed description of
the chemistry. The results are promising, especially for NO, but because of the cross sectional
averaging of the scalar dissipation rate, local fluctuations of this quantity are not considered and
the potential of LES is not fully realized. Also, this model cannot be easily applied in simulations
of more complex flow fields. In a more recent formulation, the Eulerian flamelet model [27], the
flamelet equations are rewritten in an Eulerian form, which leads to a full coupling with the LES
solver, and thereby enables the consideration of the resolved fluctuations of the scalar dissipation
rate in the combustion model. Examples of the results are shown in Fig. 10.6. The resolved scalar
dissipation rate field is dominated by features occurring on the large scale of the turbulence. Layers
of high dissipation rate alternate with low dissipation rate regions. In the LFM results, as well as
in several earlier RANS-type modeling studies [51], where these fluctuations are not considered,
some heat release occurs on the rich partially premixed side of the flame, which leads to strong

CO formation in these regions. Accounting for the richness of the predicted spatial distribution of
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Figure 10.7: Large-eddy simulation of a modern Pratt & Whitney gas turbine combustor ([49, 50]).
The combustor bulkhead is to the left of the flame. Fuel and air enter the combustor through the
injector/swirler assembly, which has three different air passages. Fuel droplets are shown in green.
The remaining color representation shows iso-surfaces of the temperature. Dilution by secondary
air occurs to the right of the figure and is not shown. Courtesy of [41].

the scalar dissipation rate substantially improves the comparison with the experimental data by

suppressing the heat release in the rich regions, and hence the formation of CO.

10.14 LES of Real Combustion Devices

Several investigators have reported simulations of real combustion devices with LES. Most of these
use either structured or block-structured curvi-linear meshes, which cannot deal with very com-
plex geometries. Simulations of gas turbines, for instance, typically require unstructured meshing
strategies, for which the formulation of energy conserving and accurate numerical algorithms, of
particular importance for combustion LES, proves to be even more difficult. Among the few fully
unstructured multiphysics LES codes are the AVBP code of CERFACS, which has been applied in
many studies on combustion instabilities and flashback in premixed gas turbines [52, 53], and the
Stanford CDP codel CDP solves both low-Ma number variable-density and fully compressible LES

equations using the unstructured collocated finite volume discretization of [54] and its subsequent
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improvements by [55]. It applies Lagrangian particle tracking with adequate models for breakup,
particle drag, and evaporation for liquid fuel sprays. Closure for subfilter transport terms and other
turbulence statistics is accomplished using dynamic models. The FPV combustion model is ap-
plied to model turbulence/chemistry interactions. The code is parallelized with advanced load
balancing procedures for both gas and particle phases. Computations have been conducted with
over two billion cells using several thousand processors. A state-of-the-art simulation of a section
of a modern Pratt & Whitney gas turbine combustor that uses all these capabilities has been per-
formed [49, 50] and is shown in Fig. 10.7. The figure shows the spray and temperature distribution
and demonstrates the complexity of the geometry and the associated flow physics.
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Lecture 11

Premixed Turbulent Combustion:

The Regime Diagram

11.1 Regimes in Premixed Turbulent Combustion

Diagrams defining regimes of premixed turbulent combustion in terms of velocity and length scale
ratios have been proposed by Borghi (1985) [1], Peters (1986) [2], Abdel-Gayed and Brandley
(1989) [3], Poinsot et al. (1990) [4] and many others. For scaling purposes it is useful to assume
equal diffusivities for all reactive scalars, a Schmidt number Sc = v/D of unity and to define the

flame thickness ¢ and the flame time ¢ as

lp = (11.1)

D
) tp =
SL

S

Then, using v = D and the turbulent intensity v" and the turbulent length scale ¢ introduced in

Lecture 10, we define the turbulent Reynolds number as

!
Re = ¢ (11.2)
SLZF
and the turbulent Damkohler number
Da = L (11.3)
U’ﬂp
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Furthermore, with the Kolmogorov time, length, and velocity scales defined in Lecture 10, we
introduce two turbulent Karlovitz numbers, the first one defined as

tp 12 z

ty n ST,
measures the ratios of the flame scales in terms of the Kolmogorov scales. Using the definitions
Egs. (10.39)—(10.40) with » = D and Eq. (10.43) taken as equality it is seen that Eqgs. (11.2)—
(11.4) can be combined to show that

Re = Da’*Ka?. (11.5)

Referring to the discussion about the appropriate reaction zone thickness ¢ in premixed flames, a
second Karlovitz number Kas may be introduced as

’s
772

Kas = 2 = §°K (11.6)

where /s = 6 {r has been used.

In the following we will discuss a regime diagram, Fig. 11.1, for premixed turbulent combustion,
where the logarithm of v’ /s, is plotted versus the logarithm of ¢/¢r. Using Egs. (11.1) and (11.2)
and the definition of the Kolmogorov length scale Eq. (10.39) where, for scaling purposes, ¢ is set

equal to v3/¢, the ratios v' /s, and ¢/¢r may be expressed in terms of the two non-dimensional

/ -1 1/3
v Re( ¢ ) = Ka2/? (%) . (11.7)

Sr, éF F

numbers Re and Ka as

Using these relations the lines Re = 1, Ka = 1 represent boundaries between different regimes of
premixed turbulent combustion in Fig. 11.1. Other boundaries of interest are the line v'/s;, = 1,
which separates the wrinkled flamelets from the corrugated flamelets, and the line denoted by
Kags = 1, which separates thin reaction zones from broken reaction zones.

The line Re = 1 separates all turbulent flame regimes characterized by Re > 1 from the regime
of laminar flames (Re < 1), which is situated in the lower-left corner of the diagram. As stated in the
introduction, we will consider turbulent combustion in the limit of large Reynolds numbers, which
corresponds to a region sufficiently removed from the line Re = 1 towards the upper right in Fig.
11.1. We will not consider the wrinkled flamelet regime, because it is not of much practical interest.
In that regime, where v' < sz, the turn-over velocity v" of even the large eddies is not large enough

to compete with the advancement of the flame front with the laminar burning velocity s;. Laminar
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flame propagation therefore is dominating over flame front corrugations by turbulence. We will also
not consider the broken reaction zones regime in any detail for reasons to be discussed at the end
of this lecture.

Among the remaining two regimes, the corrugated flamelets regime is characterized by the
inequalities Re > 1 and Ka < 1. In view of Eq. (11.4) the latter inequality indicates that /r < n,
which means that the entire reactive-diffusive flame structure is embedded within eddies of the
size of the Kolmogorov scale, where the flow is quasi-laminar. Therefore the flame structure is not
perturbed by turbulent fluctuations and remains quasi-steady.

The boundary of the corrugated flamelets regime to the thin reaction zones regime is given by
Ka = 1, which, according to Eqg. (11.4), is equivalent to the condition that the flame thickness is
equal to the Kolmogorov length scale. This is called the Klimov-Williams criterion. From Eq. (11.4)
also follows that for Ka = 1 the flame time is equal to the Kolmogorov time and the burning velocity
is equal to the Kolmogorov velocity.

The thin reaction zones regime is characterized by Re > 1, Kas < 1, and Ka > 1, the last
inequality indicating that the smallest eddies of size n can enter into the reactive-diffusive flame
structure since < ¢r. These small eddies are still larger than the inner layer thickness ¢s and
can therefore not penetrate into that layer. The non-dimensional thickness ¢ of the inner layer in a
premixed flame is typically one tenth, such that ¢; is one tenth of the preheat zone thickness, which
is of the same order of magnitude as the flame thickness /. Using Eq. (11.6) we see that the line
Kas = 1 corresponds with § = 0.1 to Ka = 100. This value is used in Fig. 11.1 for the upper limit
of the thin reaction zones regime. It seems roughly to agree with the flamelet boundary obtained
in numerical studies by Poinsot et al. (1991) [5], where two-dimensional interactions between a
laminar premixed flame front and a vortex pair were analyzed. These simulations correspond to
Ka = 180 for cases without heat loss and Ka = 25 with small heat loss. The authors argued that
since quenching by vortices occurs only for larger Karlovitz numbers, the region below the limiting
value of the Karlovitz number should correspond to the flamelet regime.

We will now enter into a more detailed discussion of the two flamelet regimes. In the regime of
corrugated flamelets there is a kinematic interaction between turbulent eddies and the advancing

laminar flame. Here we have with Ka < 1
v’ > 8L = Up. (11-8)

To determine the size of the eddy that interacts locally with the flame front, we set the turn-over
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Figure 11.1: Kinematic interaction between a propagating flame front and an eddy of the size
{, = . The dashed line marks the thickness of the preheat zone.

velocity v, in Eq. (10.43) equal to the burning velocity s;. This determines the corresponding
length ¢,, as the Gibson scale (cf. Peters (1986) [2])

)y (11.9)

Only eddies of size ¢, which have a turnover velocity v,, = s can interact with the flame front.
This is illustrated in Fig. 11.2. Since the turn-over velocity of the large eddies is larger than
the laminar burning velocity, these eddies will push the flame front around, causing a substantial
corrugation. Smaller eddies of size /,, < ¢ having a turnover velocity smaller than sz, will not even
be able to wrinkle the flame front. Replacing ¢ by v3 /¢ one may also write Eq. (11.9) in the form

%G - (2—6)3 (11.10)
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Figure 11.2: Kinematic interaction between a propagating flame front and an eddy of the size
{, = . The dashed line marks the thickness of the preheat zone.

A graphical derivation of the Gibson scale ¢/ within the inertial range is shown in Fig. 11.3. Here,
following Kolmogorov scaling in the inertial range given by Eq. (10.43), the logarithm of the velocity
vy, 1S plotted over the logarithm of the length scale /,,. We assume v and ¢ and thereby ¢, and also
v and thereby v, and 7 to be fixed. If one enters on the vertical axis with the burning velocity sy,
equal to v, into the diagram, one obtains /¢ as the corresponding length scale on the horizontal
axis. The laminar flame thickness ¢, which is smaller than » in the corrugated flamelets regime
is also shown. This diagram illustrates the limiting values of /4: If the burning velocity is equal
to v/, £¢ is equal to the integral length scale £. This case corresponds to the borderline between
corrugated and wrinkled flamelets in Fig. 11.1. Conversely, if sy, is equal to the Kolmogorov velocity
vy, La is equal to n, which corresponds to the line Ka = 1 in Fig. 11.1.

It has been shown by Peters (1992) [6] that the Gibson scale / is the lower cut-off scale of the
scalar spectrum function in the corrugated flamelets regime. At that cut-off there is only a weak
change of slope in the scalar spectrum function. This is the reason why the Gibson scale is difficult
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to measure. The stronger diffusive cut-off occurs at the Obukhov-Corrsin scale defined by

3\ 1/4
(o = (%) . (11.11)

Since we have assumed D = v this scale is equal to the Kolmogorov scale 7.

The next flamelet regime in Fig. 11.1 is the regime of thin reaction zones. As noted earlier,
since n < /p in this regime, small eddies can enter into the preheat zone and increase scalar
mixing, but they cannot penetrate into the inner layer since n > ¢5. The burning velocity is smaller
than the Kolmogorov velocity which would lead to a Gibson scale that is smaller than . Therefore
the Gibson scale has no meaning in this regime.

A time scale, however, can be used in the thin reaction zones regime to define a characteristic
length scale using Kolmogorov scaling in the inertial range. That time scale should represent the
response of the thin reaction zone and the surrounding diffusive layer to unsteady perturbations.
The appropriate time is the as the flame time ¢z. Combining ¢z with the diffusivity D, the resulting

diffusion thickness /p

tp =+/Dtr (11.12)

is then of the order of the flame thickness /. By setting t,, = tz in Eq. (10.45), one obtains the
length scale
U = (et3)'/2. (11.13)

An appropriate interpretation is that of a mixing length scale, which has been advocated based on
the concept of thin reaction zones by Peters (1999) [7]. It is the size of an eddy within the inertial
range which has a turnover time equal to the time needed to diffuse scalars over a distance equal
to the diffusion thickness ¢p. During its turnover time an eddy of size /,, will interact with the
advancing reaction front and will be able to transport preheated fluid from a region of thickness ¢
in front of the reaction zone over a distance corresponding to its own size. This is schematically
shown in Fig. 11.4. Much smaller eddies will also do this but since their size is smaller, their
action will be masked by eddies of size /,,. Larger eddies have a longer turn-over time and would
therefore be able to transport thicker structures than those of thickness ¢p. They will therefore
corrugate the broadened flame structure at scales larger than 7,,,. The physical interpretation of
L., is therefore that of the maximum distance that preheated fluid can be transported ahead of the
flame. As a mixing length scale /,,, had already been identified by Zimont (1979) [8].

Differently from the Gibson length scale the mixing length scale can be observed experimen-
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Figure 11.3: Graphical illustration of the Gibson scale ¢ within the inertial range for the corrugated
flamelets regime.

tally. Changes of the instantaneous flame structure with increasing Karlovitz numbers have been
measured by Buschmann et al. (1996) [9] who used 2D-Rayleigh thermometry combined with
2D laser-induced fluorescence on a turbulent premixed Bunsen flame. They varied the Karlovitz
number between 0.03 and 13.6 and observed at Ka > 5 thermal thicknesses that largely exceed
the size of the smallest eddies in the flow.

The derivation of ¢, also is illustrated in a diagram in Fig. 11.5, showing Eq. (10.45) in a
log-log plot of ¢,, over Z,,. If one enters the time axis at tp = t,,, the mixing length scale ¢,,, on the
length scale axis is obtained. If ¢r is equal to the Kolmogorov time ¢,, Fig. 11.5 shows that ¢, is
equal to the Kolmogorov scale 7. In this case, one obtains ¢,, = {p ~ (¢ at the border between
the thin reaction zones regime and the corrugated flamelets regime. Similarly, from Fig. 11.5, if
the flame time ¢ is equal to the integral time = = k/e = ¢/v', ¢, is equal to the integral length
scale. This corresponds to Da = 1, which Borghi (1985) [1] interpreted as the borderline between
two regimes in turbulent combustion. However, it merely sets a limit for the mixing scale ¢,,, which
cannot increase beyond the integral scale /.
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Figure 11.4: Transport of preheated gas from a region of thickness ¢, by an eddy of size ¢,, = ¢,,
during half a turnover time ¢,, = t,.

The diffusion thickness /p, lying between n and /,,, is also marked in Fig. 11.5. There also
appears the Obukhov-Corrsin scale /-, which is the lower cut-off scale of the scalar spectrum in
the thin reaction zones regime. Since we have assumed v = D, the Obukhov-Corrsin scale /¢ is
equal to the Kolmogorov length scale 7.

As a final remark related to the corrugated flamelets regime and the thin reaction zones regime,
it is important to realize that turbulence in high Reynolds number turbulence is intermittent and
the dissipation ¢ has a statistical distribution. This refinement of Kolmogorov’s theory has led to
the notion of intermittency or “spottiness” of the activity of turbulence in a flow field (cf. Monin
and Yaglom (1975) [10]). This may have important consequences on the physical appearance
of turbulent flames at sufficiently large Reynolds numbers. One may expect that the flame front
shows manifestations of strong local mixing by small eddies as in the thin reaction zones regime

as well as rather smooth regions where corrugated flamelets appear. The two regimes discussed
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Figure 11.5: Graphical illustration of the mixing scale £,,, within the inertial range for the thin reac-
tion zones regime.

above may therefore both be apparent in the same experimentally observed turbulent flame.

Beyond the line Kas; = 1 there is a regime called the broken reaction zones regime where
Kolmogorov eddies are smaller than the inner layer thickness /5. They may therefore enter into
the inner layer and perturb it with the consequence that chemistry breaks down locally due to
enhanced heat loss to the preheat zone followed by temperature decrease and the loss of radicals.
When this happens the flame will extinguish and fuel and oxidizer will interdiffuse and mix at lower
temperatures where combustion reactions have ceased.

In a series of papers Mansour et al. (1992) [11], Chen et al. (1996) [12], Chen and Mansour
(1997) [13] and Mansour et al. (1998) [14] have investigated highly stretched premixed flames on
a Bunsen burner, which were surrounded by a large pilot. Among the flames F1, F2 and F3 that
were investigated, the flame F1 with an exit velocity of 65m/s was close to total flame extinction
which occured on this burner at 75m/s. A photograph of the flame is shown in Chen et al. (1996)
[12]. Mansour (1999) [15] has reviewed the recent results obtained from laser-diagnostics applied
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Figure 11.6: Line cuts of one-dimensional temperature and CH concentration profiles in the images
presented in Mansour et al. (1998).

to turbulent premixed and partially premixed flames.

Mansour et al. (1998) [14] have shown that the flame F1 is on the borderline to the broken
flamelets regime in Fig. 11.1 having a Karlovitz number of Ka = 91. In simultaneous temperature
and CH measurements shown in Fig. 11.6 they found a thin reaction zone, as deduced from the
CH profile and steep temperature gradients in the vicinity of that zone. There also was evidence
of occasional extinction of the reaction zone. This corresponds to instantaneous shots where the
CH profile was absent as in the picture on the upper r.h.s. in Fig. 11.6. Such extinction events
do not occur in the flame F3 which has a Karlovitz number of 23 and is located in the middle
of the thin reaction zones regime. It can be expected that local extinction events would appear
more frequently, if the exit velocity is increased and the flame enters into the broken reaction
zones regime. This will occur at an exit velocity close to 75 m/s so frequently that the entire flame
extinguishes. Therefore one may conclude that in the broken reaction zones regime a premixed
flame is unable to survive.

The pictures in Fig. 11.6 also show strong perturbations of the temperature profile on the
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unburnt side of the reaction zone. This is most evident in the picture on the lower |.h.s., where
the temperature reaches more than 1100 K but falls back to 800 K again. This seems to be due to
small eddies that enter into the preheat zone and confirms the concept of the thin reaction zones

regime.

11.2 Regimes in Premixed Combustion LES

A similar diagram as in Fig. 11.1 can be constructed for LES using the filter size A as the length
scale and the subfilter velocity fluctuation v/y as the velocity scale. Such a representation intro-
duces both physical and modeling parameters into the diagram. A change in the filter size, how-
ever, also leads to a change in the subfilter velocity fluctuation. This implies that the effect of the
filter size, which is a numerical or model parameter, cannot be studied independently. In response
to this issue, an LES regime diagram for characterizing subfilter turbulence/flame interactions in
premixed turbulent combustion was proposed by Pitsch & Duchamp de Lageneste (2002) [16],
and recently extended by Pitsch (2005) [17]. This diagram is shown in Fig. 11.7. In contrast to the
RANS regime diagrams, A//r and the Karlovitz number Ka are used as the axes of the diagram.
The Karlovitz number, defined as the ratio of the Kolmogorov timescale to the chemical timescale,
describes the physical interaction of flow and combustion on the smallest turbulent scales. It is
defined solely on the basis of physical quantities, and is hence independent of the filter size.

The subfilter Reynolds and Damkohler numbers and the Karlovitz number relevant in the dia-

gram are defined as

/ 2 13 1/2
val sL Eo (i (11.14)

Rea = SLAKF’ Daa = 'U/A—ZF’ and Ka= P N
where 7 is the Kolmogorov scale.

In LES, the Karlovitz number is a fluctuating quantity, but for a given flow field and chemistry
it is fixed. The effect of changes in filter size can therefore easily be assessed at constant Ka
number. An additional benefit of this regime diagram is that it can be used equally well for DNS if
A is associated with the mesh size. In the following, the physical regimes are briefly reviewed and
relevant issues for LES are discussed.

The three regimes with essentially different interactions of turbulence and chemistry are the
corrugated flamelet regime, the thin reaction zones regime, and the broken reaction zones regime.

In the corrugated flamelet regime, the laminar flame thickness is smaller than the Kolmogorov
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Figure 11.7: Regime diagram for large-eddy simulation (LES) and direct numerical simulation of
premixed turbulent combustion (Pitsch (2006) [18]). Conditions for the simulation correspond to
flame F3 of Chen et al. (1996). Courtesy of [18].

scale, and hence Ka < 1. Turbulence will therefore wrinkle the flame, but will not disturb the
laminar flame structure. In the thin reaction zones regime, the Kolmorogov scale becomes smaller
than the flame thickness, which implies Ka > 1. Turbulence then increases the transport within the
chemically inert preheat region. In this regime, the reaction zone thickness /s is still smaller than
the Kolmogorov scale. Because the reaction zone, which appears as a thin layer within the flame,
can be estimated to be an order of magnitude smaller than the flame thickness, the transition to the
broken reaction zones regime occurs at approximately Ka = 100. The thin reaction zone retains
a laminar structure in the thin reaction zones regime, whereas the preheat region is governed
by turbulent mixing, which enhances the burning velocity. In the broken reaction zones regime,
the Kolmogorov scale becomes smaller than the reaction zone thickness. This implies that the
Karlovitz number based on the reaction zone thickness, Ka;s , becomes larger than one.

Most technical combustion devices are operated in the thin reaction zones regime, because
mixing is enhanced at higher Ka numbers, which leads to higher volumetric heat release and

shorter combustion times. The broken reaction zones regime is usually avoided in fully premixed
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systems. In this regime, mixing is faster than the chemistry, which leads to local extinction. This
can cause noise, instabilities, and possibly global extinction. However, the broken reaction zones
regime is significant, for instance, in partially premixed systems. In a lifted jet diffusion flame,
the stabilization occurs by partially premixed flame fronts, which burn fastest at conditions close
to stoichiometric mixture. Away from the stoichiometric surface toward the center of the jet, the
mixture is typically very rich and the chemistry slow. Hence, the Ka number becomes large. This
behavior has been found in the analysis of DNS results of a lifted hydrogen/air diffusion flame
(Mizobuchi et al. (2002) [19]).

The effect of changing the LES filter width can be assessed by starting from any one of these
regimes at large A//r. As the filter width is decreased, the subfilter Reynolds number, Rea,
eventually becomes smaller than one. Then the filter size is smaller than the Kolmogorov scale,
and no subfilter modeling for the turbulence is required. However, the entire flame including the
reaction zone is only resolved if A < §. In the corrugated flamelets regime, if the filter is decreased
below the Gibson scale /¢, which is the smallest scale of the subfilter flame-front wrinkling, the
flame-front wrinkling is completely resolved. It is apparent that in the corrugated flamelet regime,
where the flame structure is laminar, the entire flame remains on the subfilter scale, if A/¢r is
larger than one. This is always the case for LES. In the thin reaction zones regime, the preheat
region is broadened by the turbulence. Peters (1999) [7] estimated the broadened flame thickness
from the assumption that the timescale of the turbulent transport in the preheat zone has to be
equal to the chemical timescale, which for laminar flames leads to the burning velocity scaling
given in the beginning of this section. From this, the ratio of the broadened flame thickness ¢,,, and
the filter size can be estimated as (Pitsch (2006) [18])

b (UALRN32 lp 39
== (SLA ) = Ka = Da,""” (11.15)

Hence, the flame is entirely on the subfilter scale as long as Daax > 1, and is partly resolved
otherwise. Itis important to realize that the turbulence quantities, especially v/, , and hence most of
the nondimensional numbers used to characterize the flame/turbulence interactions, are fluctuating
gquantities and can significantly change in space and time. To give an example, the variation of
these quantities from a specific turbulent stoichiometric premixed methane/air flame simulation is
shown in Fig. 11.7. This simulation was done for an experimental configuration with a nominal Ka
number of Ka = 11, based on experimentally observed integral scales. The simulated conditions

correspond to flame F3 of Chen et al. (1996) [12], and details of the simulation can be found in
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Pitsch & Duchamp de Lageneste (2002) [20]. For a given point in time, the Ka number has been
evaluated using appropriate subfilter models for all points on the flame surface. Because of the
spatially varying filter size, but also because of heat losses to the burner, which locally lead to
changes in /g, there is a small scatter in A/¢r. Although the flame is mostly in the thin reaction
zones regime, there is a strong variation in Ka number, ranging from the corrugated to the broken

reaction zones regime.
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Lecture 12

The Level Set Approach for

Turbulent Premixed Combustion

A model for premixed turbulent combustion, based on the non-reacting scalar G rather than on the
progress variable, has been developed in recent years. It avoids complications associated with
counter-gradient diffusion and, since G is non-reacting, there is no need for a source term closure.

An equation for G' can be derived by considering an iso-scalar surface
G(x,t) = Gy. (12.1)

As shown in Fig. 12.1 this surface divides the flow field into two regions where G > Gy is the
region of burnt gas and G < Gy is that of the unburnt mixture. The choice of G is arbitrary, but
fixed for a particular combustion event. This is called the level set approach (cf. Sethian (1996)
[1]).
We introduce the vector normal to the front in direction of the unburnt gas, as shown in Fig.
12.1, by
vG

In a general three-dimensional flow field the propagation velocity dx;/dt of the front is equal to the

sum of the flow velocity and the burning velocity in normal direction

d
% —wvs+nsg. (12.3)
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Figure 12.1: A schematic representation of the flame front as an iso-scalar surface G(x,t) = Go.

A field equation can now be derived by differentiating Eq. (12.1) with respectto ¢

a_G_i_VG.% =

12.4
ot dt 0 ( )

and by introducing Eq. (12.3) and VG = —n|V G| to obtain the field equation

%+Uj"VG:SL|VG|. (12.5)
This equation was introduced by Williams (1985b) [2] and is known as the G-equation in the com-
bustion literature. It is applicable to thin flame structures which propagate with a well-defined
burning velocity. It therefore is well-suited for the description of premixed turbulent combustion in
the corrugated flamelets regime, where it is assumed that the laminar flame thickness is smaller
than the smallest turbulent length scale, the Kolmogorov scale. Therefore, the entire flame struc-
ture is embedded within a locally quasi-laminar flow field and the laminar burning velocity remains
well-defined. Eqg. (12.5) contains a local and a convective term on the I.h.s, a propagation term with
the burning velocity sz, on the r.h.s but no diffusion term. G is a scalar quantity which is defined at
the flame surface only, while the surrounding G-field is not uniquely defined. This originates simply
from the fact that the kinematic balance Eq. (12.3) describes the dynamics of a two-dimensional
surface while the G-equation Eq. (12.5) is an equation in three-dimensional space. In this respect
G(z,t) differs fundamentally from the mixture fraction Z(x,t) used in nonpremixed combustion,
which is a conserved scalar that is well defined in the entire flow field.
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The distance z,, from the flame surface in normal direction, however, can be uniquely defined
by introducing its differential increase towards the burnt gas side by

\4€

(12.6)

Here dx is a differential vector pointing from the front to its surroundings, as shown in Fig. 12.1. If

we consider a frozen G-field, a differential increase of the G-level is given by
dG = VG- -de. (12.7)

Introducing this into Eq. (12.6) it is seen that the differential increase dx,, is related to dG by

dG

- var (12.8)

dx,,
In the following the absolute value of the gradient of G at G(x,t) = G, will be denoted by
o= |VG]|. (12.9)

Its value depends on the ansatz that is introduced in solving a particular problem using the G-
equation.

For illustration purpose we choose as ansatz for the G-field
G(x,t) — Gy =x + F(y, z,1). (12.10)

Thereby the flame front displacement F'(y, z, t) is assumed to be a single-valued function of y and
z as shown for the two-dimensional case in Fig. 12.2. This assumption does not allow for multiple
crossings of the flame surface. Note that z is the co-ordinate normal to the mean flame surface. In
Fig. 12.2 G is measured in z-direction. It is also seen that the angle 3 between the flame normal
direction —n and the z-axis is equal to the angle between the tangential direction ¢ and the y-axis.

In the corrugated flamelets regime the reactive-diffusive flame structure is assumed to be thin
compared to all length scales of the flow. Therefore it may be approximated by a jump of tem-
perature, reactants and products. For such a very thin flame structure the iso-scalar surface
G(x,t) = Gy is often defined to lie in the unburnt mixture immediately ahead of the flame structure.

Since Eqg. (12.5) was derived from Eq. (12.3), the velocity v; and the burning velocity s, are

values defined at the surface G(x,t) = Go. In numerical studies values for these quantities must
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Figure 12.2: Graphical interpretation of the G-field. The movement of the instantaneous flame
front position G = G is related to spatial fluctuations F.

be assigned in the entire flow field. The flow velocity v; can simply be replaced by the local flow
velocity v, a notation which we will adopt in the following.

The burning velocity sy, appearing in Egs. (12.3) and (12.5) may be modified to account for the
effect of flame stretch as already has been discussed in Lecture 4, Section 4.4. Performing two-
scale asymptotic analyses of corrugated premixed flames Pelce and Clavin (1982) [3] and Matalon
and Matkowsky (1982) [4] derived first order correction terms for small curvature and strain. The

expression for the modified burning velocity s;, becomes
sp =80 —s9LKk— LS. (12.11)

Here s? is the burning velocity of the unstretched flame, « is the curvature and S is the strain rate.

The flame curvature « is defined in terms of the G-field as

VG V2G —n-V(n-VG)
- Vn-Vv.[_ = _ 12.12
AR E ) va (242
where V(|VG|) = =V (n-VG) has been used. It is positive if the flame is convex with respect to

203



the unburnt mixture. The strain rate imposed on the flame by velocity gradients is defined as

S=-n-Von. (12.13)

Strain due to flow divergence can be interpreted as stream line curvature. Since strain and
curvature have similar effects on the burning velocity they may be summarized as flame stretch (cf.
Matalon (1983) [5]). The concept of stretch was generalized to account for finite flame thickness
(cf. de Goey and Ten Thije Boonkhamp (1997) [6], de Goey et al. (1997) and Echekki (1997)
[7]). In these papers a quasi-one-dimensional analysis of the governing equations was performed
to identify different contributions to flame stretch. Experimental studies of stretched flames were
performed by Egolfopoulos et al. (1990a) [8], (1990b) [9], Erard et al. (1996) [10], Deshaies and
Cambray (1990) [11] and many others.

The Lewis number is approximately unity for methane flames and larger than unity for fuel-rich
hydrogen and all fuel-lean hydrocarbon flames other than methane. Therefore, since the first term
on the r.h.s. of Eq. (4.36)

— =—-In

L, 1. 1 Ze(Le — 1) (1 — ) /W—v) In(1+ )
+ - @7
lp v 11—y 2 v Jo

dw (12.14)

x

is always positive, the Markstein length is positive for most practical applications of premixed hy-
drocarbon combustion, occuring typically under stoichiometric or fuel-lean conditions. Whenever
the Markstein length is negative, as in lean hydrogen-air mixtures, diffusional-thermal instabilities
tend to increase the flame surface area. This is believed to be an important factor in gas cloud
explosions of hydrogen-air mixtures. Although turbulence tends to dominate such local effects
the combustion of diffusional-thermal instabilities and instabilities induced by gas expansion could
lead to strong flame accelerations.

If Eq. (12.11) is introduced into the G-equation Eq. (12.5) it may be written as

%—f +v-VG =5 |VG| — Dex| VG| — LS|VG|. (12.15)

Here
Dy = s%,c (12.16)

is defined as the Markstein diffusivity. The curvature term adds a second order derivative to the
G-equation. This avoids the formation of cusps that would result from Eq. (12.5) for a constant
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value s9. If £ > 0, the mathematical nature of Eq. (12.15) is that of a Hamilton-Jacobi equation
with a parabolic second order differential operator coming from the curvature term. While the
solution of the G-equation Eq. (12.5) with a constant s! is solely determined by specifying the
initial conditions, the parabolic character of Eq. (12.15) requires that the boundary conditions for
each iso-surface G must be specified. For the iso-surface G(x,t) = Gy in particular, the flame
front position at the boundaries is that where the flame is anchored.

As an illustration of the level set approach, in Lecture 4 Section 4.3 we already presented an

examples of laminar flames to determine the flame front position by solving the G-equation.

12.1 The Level Set Approach for the Thin Reaction Zones Regim

Eq. (12.15) is suitable for thin flame structures in the corrugated flamelets regime, where the
entire flame structure is quasi-steady and the laminar burning velocity is well defined, but not for
the thin reaction zones regime. We now want to derive a level set formulation for the case, where
the flame structure cannot be assumed quasi-steady because Kolmogorov eddies enter into the
preheat zone and cause unsteady perturbations. The resulting equation will be valid in the thin
reaction zones regime.

Since the inner layer shown in Fig. 6.1 is responsible for maintaining the reaction process alive,
we define the thin reaction zone as the inner layer. Its location will be determined by the iso-scalar
surface of the temperature setting T'(x, t) = T°, where TV is the inner layer temperature. We now

consider the temperature equation

T
Par +pv-VT =V-(pDVT) + wr, (12.17)

where D is the thermal diffusivity and wr the chemical source term. Similar to Eq. (12.4) for the

scalar G the iso-temperature surface T'(z, t) = T satisfies the condition

I vr.d2

=0. 12.18
ot dt 0 ( )

T=T9°

Gibson (1968) [12] has derived an expression for the displacement speed s, for an iso-surface

of non-reacting diffusive scalars. Extending this result to the reactive scalar 7 this leads to

dx

o =" +nsg, (12.19)

T=T9°
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where the displacement speed s, is given by

. [V-(pDVT)—i—wT} 0

12.20
oV (12.20)

Here the index 0 defines conditions immediately ahead of the thin reaction zone. The normal

vector on the iso-temperature surface is defined as

T

= 12.21
VT (12.21)

T=T9°

We want to formulate a G-equation that describes the location of the thin reaction zones such that
the iso-surface T'(z,t) = T° coincides with the iso-surface defined by G(z,t) = Go. Then the
normal vector defined by Eq. (12.21) is equal to that defined by Eq. (12.2) and also points towards
the unburnt mixture. Using Egs. (12.2) and (12.4) together with Eq. (12.20) leads to

oG _ [V-(pDVT) + wr
E +v- VG = p|VT|

VG, (12.22)

where the index 0 is omitted here and in the following for simplicity of notation.

Echekki and Chen (1999) [13] and Peters et al. (1998) [14] show that the diffusive term ap-
pearing in the brackets in this equation may be split into one term accounting for curvature and
another for diffusion normal to the iso-surface

V-(pDVT) = —pD|VT|V-n+n-V(pDn-VT). (12.23)

This is consistent with the definition of the curvature in Eq. (12.12) if the iso-surface G(x,t) = Gy
is replaced by the iso-surface T'(z,t) = T° and if pD is assumed constant. Introducing Eq. (12.23)
into Eq. (12.22) one obtains

oG
e +v- VG = (sp +5,)|VG| = D&[VG. (12.24)

Here k = V-n is to be expressed by Eq. (12.12) in terms of the G-field. The quantities s,, and

s, are contributions due to normal diffusion and reaction to the displacement speed of the thin
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reaction zone and are defined as

n-V(pDn-VT)
p|VT| ’
wr

5 = . 12.26
p|VT| ( )

Sn

(12.25)

In a steady unstretched planar laminar flame the sum of s,, and s,. would be equal to the burning
velocity s%. In the thin reaction zones regime, however, the unsteady mixing and diffusion of
chemical species and the temperature in the regions ahead of the thin reaction zone will influence

the local displacement speed. Then the sum of s,, and s,., denoted by s, 5
SL,s = Sn + Sr, (12.27)

is not equal to s%, but is a fluctuating quantity that couples the G-equation to the solution of the
balance equations of the reactive scalars. There is reason to expect, however, that s, ; is of the
same order of magnitude as the laminar burning velocity. The evaluation of DNS-data by Peters et
al. (1998) [14] confirms this estimate. In that paper it was also found that the mean values of s,
and s, slightly depend on curvature. This leads to a modification of the diffusion coefficient which
partly takes Markstein effects into account. We will ignore these modifications here and consider

the following level set equation for flame structures of finite thickness

%—(5 +v-VG = s1,4|VG| - Ds|VG]. (12.28)
This equation is defined at the thin reaction zone and v, sz, s, and D are values at that position. Eq.
(12.28) is very similar to Eq. (12.15), which was derived for thin flame structures in the corrugated
flamelets regime. An important difference, apart from the difference between s% and s, ,, is the
difference between D; and D and the disappearance of the strain term. The latter is implicitly
contained in the burning velocity sz, ;.

In an analytical study of the response of one-dimensional constant density flames to time-
dependent strain and curvature, Joulin (1994) [15] has shown that in the limit of high frequency
perturbations the effect of strain disappears entirely and Lewis-number effects also disappear in
the curvature term such that D, approaches D. This analysis was based on one-step large acti-
vation energy asymptotics with the assumption of a single thin reaction zone. It suggests that Eq.
(12.28) could also have been derived from Eq. (12.15) for the limit of high frequency perturbations

of the flame structure. This strongly supports it as level set equation for flame structures of finite
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thickness and shows that unsteadiness of that structure is an important feature in the thin reaction
zones regime.

Since the derivation of Eq. (12.28) was based on the balance equation Eq. (12.17) for the
temperature, the diffusion coefficient is the thermal diffusivity. However, a similar derivation could
have been based on any other reactive scalar defining the position of the inner layer. Then the
diffusivity of that particular scalar would appear in Eq. (12.28). In order to obtain the same result
we therefore must assume equal diffusivities for all reactive scalars. Since the temperature plays a
particular role in combustion due to the strong temperature sensitivity of chemistry, the use of the
thermal diffusivity D is the appropriate.

The important difference between the level set formulation Eq. (12.28) and the equation for
the reactive scalar Eq. (12.17), from which it has been derived, is the appearance of a burning
velocity which replaces normal diffusion and reaction at the flame surface. It should be noted that
both level set equations, Egs. (12.15) and (12.28), are only defined at the flame surface, while Eq.
(12.17) is valid in the entire field.

12.2 A Common Level Set Equation for Both Regimes

It has been anticipated that the two different formulations Egs. (12.15) and (12.28) of the G-
equation apply to different regimes in premixed turbulent combustion, namely to the corrugated
flamelets regime and the thin reaction zones regime of Fig. 11.1, respectively. In order to show
this we will analyze the order of magnitude of the different terms in (12.28). This can be done
by normalizing the independent variables and the curvature in this equation with respect to Kol-

mogorov length, time and velocity scales

= t/t,, ¥ = x/n, v =v/v,,
(12.29)
K* = nx, V" = nV.
Using n?/t, = v one obtains
0G 1 v v = *Loyvrg) - Prwea, (12.30)
ot* Uy v

where the density p has been canceled. Since Kolmogorov eddies can perturb the flow field as

well as the G-field, all derivatives, the curvature and the velocity v* are typically of order unity. In
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flames D/v is also of order unity. However, since s, , is of the same order of magnitude as sy,

—1/2

the definition Eq. (11.4) shows that the ratio s, ,/v, is proportional to Ka . Since Ka > 1in the

thin reaction zones regime it follows that
Sp,s < Up (12.31)

in that regime. The propagation term therefore is small and the curvature term will be dominant.
Relative small mean values of sy, ; may, for instance, result from instantaneously negative values
of the burning velocity. Even though wrinkling of the reaction zone by small eddies leading to large
local curvatures is an important feature, it is the enhanced mixing within the preheat zone that
is responsible for the advancement of the front. On the contrary, as can be shown by a similar
analysis of Eq. (12.15) in the corrugated flamelets regime where Ka < 1 and therefore

59 > vy, (12.32)

the propagation term s% o is dominant in Eq. (12.15) and the curvature and strain terms are of
higher order.

We want to base the following analysis on an equation which contains only the leading order
terms in both regimes. Therefore we take the propagation term with a constant laminar burning ve-
locity s from the corrugated flamelets regime and the curvature term multiplied with the diffusivity
D from the thin reaction zones regime. The strain term £.5 in the G-equation Eq. (12.15) will be
neglected in both regimes. Since the Markstein length £ is of the order of the flame thickness, this
term is unimportant in the corrugated flamelets regime, where £ is smaller than the Kolmogorov
scale. A term called scalar-strain co-variance resulting from this term is effective in the diffusive
subrange of the scalar spectrum only (cf. Peters (1992) [16]). It therefore does not interact with the
turbulent part of the spectrum and is unimportant for leading order scaling arguments required for
turbulent closure. In the thin reaction zone regime there is no quasi-steady laminar flame structure
and a Markstein length cannot be defined.

The leading order equation valid in both regimes then reads

pa—f + pv-VG = (ps%)o — (pD)rko. (12.33)

For consistency with other field equations that will be used as a starting point for turbulence mod-

eling, we have multiplied all terms in this equation with p. This will allow to apply Favre averaging
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to all equations. Furthermore, we have set (ps? ) constant and denoted this by paranthesis. This
takes into account that the mass flow rate (ps?) through a planar steady flame is constant as
shown by Eq. (4.19). The paranthesis of (pD) also denote that this product was assumed con-
stant in deriving Eq. (12.23). There it was defined at 7°, and since pD = \/c,, itis equal to (A/c,)o
used in the definition of the flame thickness in Eq. (5.28). With that definition the last term in Eq.
(12.33) can also be expressed as (ps} )¢rro. Again, Eq. (12.33) is defined at the flame surface
G(z,t) = Gy only.

12.3 Modeling Premixed Turbulent Combustion Based on the

Level Set Approach

If the G-equation is to be used as a basis for turbulence modeling, it is convenient to ignore at
first its non-uniqueness outside the surface G(x,t) = Gy. Then the G-equation would have similar
properties as other field equations used in fluid dynamics and scalar mixing. This would allow to
define, at point « and time ¢ in the flow field, a probability density function P(G; x,t) for the scalar

G. From P(G;z,t) the first two moments of GG, the mean and the variance, can be calculated as

—+oo

Gz, t) = GP(G;z,t)dG , (12.34)
- o
G2(z,t) = / (G — G)*P(G; z,1)dG. (12.35)

If modeled equations for these two moments are formulated and solved, one could, for instance,
use the presumed shape pdf approach to calculate P(G; x,t) by presuming a two-parameter shape
function. However, since G is only defined at the flame front, P(G; «x,t) and its moments carry the
non-uniqueness of its definition outside G(x,t) = Go.

There is, nevertheless, a quantity that is well-defined and of physical relevance, which may be
derived from P(G;x,t). This is the probability density of finding the flame surface G(x,t) = G, at
x and ¢ given by

P(Go,x,t) = /+006(G — Go)P(G;x,t)dG = P(x,t). (12.36)
This quantity can be measured, for instance, by counting the number of flame crossings in a small
volume AV located at  over a small time difference At.

In Figs. 12.3 and 12.4 two experimental examples of this pdf are shown. The pdf P(G’) in
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Figure 12.3: Probability density function of flame front fluctuations in an internal combustion en-
gine. —— Gaussian distribution. Measurements by Wirth et al. (1993) [17].

Fig. 12.3 was obtained by Wirth et al. (1993) [17] by evaluating photographs of the flame front in
the transparent spark-ignition engine. Smoke particles, which burnt out immediately in the flame
front, were added to the unburnt mixture. Thereby the front could be visualized by a laser sheet
as the borderline of the region where Mie scattering of particles could be detected. Experimental
details may be found in Wirth and Peters (1992) [19] and Wirth et al. (1993) [17]. The pdf P(G")
represents the pdf of fluctuations around the mean flame contour of several instantaneous images.

By comparing the measured pdf in Fig. 12.3 with a Gaussian distribution it is seen to be slightly
skewed to the unburnt gas side. This is due to the non-symmetric influence of the laminar burning
velocity on the shape of the flame front: there are rounded leading edges towards the unburnt
mixture, but sharp and narrow troughs towards the burnt gas.

This non-symmetry is also found in the experimental pdfs shown in Fig. 12.4. Plessing et al.
(1999) [18] have measured the probability density of finding the flame surface in steady turbulent
premixed flames on a weak swirl burner. The flames were stabilized nearly horizontally on the
burner thus representing one-dimensional steady turbulent flames. The pdfs were obtained by
averaging over 300 temperature images obtained from Rayleigh scattering. The three profiles of
P(x), shown in Fig. 12.4, for three velocity ratios v’/sy,, nearly coincide and are slightly skewed

towards the unburnt gas side.
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Figure 12.4: The probability density of finding the instantaneous flame front at the axial position
x in a turbulent flame stabilized on a weak swirl burner (Measurements by Plessing et al. (1999)
[18].

Without loss of generality, we now want to consider, for illustration purpose, a one-dimensional
steady turbulent flame propagating in z-direction. We will analyze its structure by introducing the
flame-normal coordinate x, such that all turbulent quantities are a function of this coordinate only.
Then the pdf of finding the flame surface at a particular location 2 within the flame brush simplifies

to P(Go;x) which we write as P(z). We normalize P(x) by
+oo
/ P(z)dx =1 (12.37)
and define the mean flame position z; as
+oo
T = / xP(z)dx. (12.38)

The turbulent flame brush thickness ¢z, can also be defined using P(x). With the definition of the

variance
“+o0
(x —xp)? = / (x — zp)P(x)dz (12.39)
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a plausible definition is
_ \1/2
lpt = ((x - £Cf)2) : (12.40)

We note that from P(x) two important properties of a premixed turbulent flame, namely the mean
flame position and the flame brush thickness can be calculated.

The G-equation has been used in a number of papers to investigate quantities relevant to
premixed turbulent combustion. An early review was given by Ashurst (1994) [20]. Kerstein et al.
(1988) [21] have performed direct numerical simulations of Eq. (12.5) in a cubic box assigning
a stationary turbulent flow field and constant density. The constant density assumption has the
advantage that the flow field is not altered by gas expansion effects. The gradient 9G/0x in
direction of mean flame propagation was fixed equal to unity and cyclic boundary conditions in the
two other directions were imposed. In this formulation all instantaneous G-levels can be interpreted
as representing different flame fronts. Therefore Gy was considered as a variable and averages
over all G-levels were taken in order to show that for large times the mean gradient ¢ can be
interpreted as the flame surface area ratio.

Peters (1992) [16] considered turbulent modeling of the G-equation in the corrugated flamelets
regime and derived Reynolds-averaged equations for the mean and the variance of G. Constant
density was assumed and G and the velocity v were split into a mean and a fluctuation. The main
sink term in the variance equation resulted from the propagation term s% |VG| = s{ o in Eq. (12.15)
and was defined as

T=-259G"0". (12.41)

The quantity @ was called kinematic restoration in order to emphasize the effect of local laminar
flame propagation in restoring the G-field and thereby the flame surface. Corrugations produced by
turbulence, which would exponentially increase the flame surface area with time of a non-diffusive
iso-scalar surface are restored by this kinematic effect. Closure of this term was achieved by
deriving the scalar spectrum function of two-point correlations of G in the limit of large Reynolds
numbers. From that analysis resulted a closure assumption which relates @ to the variance G'2
and the integral time scale k/= as

w:%%é? (12.42)

where ¢, = 1.62 is a constant of order unity. This expression shows that kinematic restoration
plays a similar role in reducing fluctuations of the flame front as scalar dissipation does in reducing
fluctuations of diffusive scalars.

It was also shown by Peters (1992) [16] that kinematic restoration is active at the Gibson scale
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La, since the cut-off of the inertial range in the scalar spectrum function occurs at that scale.
A dissipation term involving a positive Markstein diffusivity D, was shown to be effective at the
Obukhov-Corrsin scale ¢/~ and a term called scalar-strain co-variance was shown to be most ef-
fective at the Markstein length £ . In the corrugated flamelets regime the Gibson scale £ is larger
than /¢ and £ . Therefore these additional terms are higher order corrections, which, in view of the
order of magnitude assumptions used in turbulence modeling, will be neglected.

A similar analysis was performed by Peters (1999) [16] for the thin reaction zones regime. In
that regime the diffusion term in Eq. (12.28) is dominant as shown by the order of magnitude
analysis of Eq. (12.30). This leads to a dissipation term replacing kinematic restoration as the

leading order sink term in the variance equation. It is defined as

¥ = 2D(VG')2. (12.43)

Closure of that term is obtained in a similar way as for non-reacting scalars and leads to

Y= cX%G’Q. (12.44)
Below we will use the two closure relations Egs. (12.42) and (12.43) as the basis for the modeling
of the turbulent burning velocity in the two different regimes.

12.4 Equations for the Mean and the Variance of G

In order to obtain a formulation that is consistent with the well-established use of Favre averages
in turbulent combustion, we split G' and the velocity vector v into Favre means and fluctuations

G=G+G", v=ov+0". (12.45)

Here G and o are at first viewed as unconditional averages. At the end, however, only the respec-
tive conditional averages are of interest. Since in a turbulent flame G was interpreted as the scalar
distance between the instantaneous and the mean flame front, evaluated at G(x,t) = Gy, the
Favre mean G = pG/p represents the Favre average of that distance. If G(x,t) = Gy is defined to
lie in the unburnt mixture immediately ahead of the thin flame structure, as often assumed for the
corrugated flamelets regime, the density at G(x,t) = Gy is constant equal to p,,. Similarly, if it is
an iso-temperature surface, as assumed for the thin reaction zones regime, changes of the density
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along that surface are expected to be small. In both cases the Favre average Gis approximately
equal to the conventional mean value G. Using Favre averages rather than conventional aver-
ages, which might have appeared more appropriate for a non-conserved quantity like the scalar
G, therefore has no practical consequences.

Using a number of closure assumptions described in Peters (2000) [22], one finally obtains the
following equations for the Favre near and variance of G.

Pyt p0-VG = (ps3)|VG| — pD,E| VG, (12.46)

ek

Pt po-V G2 = V- (pD,V,G"?) + 2pDy(VG)? — csﬁ%é’v’?. (12.47)

It is easily seen that Eq. (12.46) has the same form as Eq. (12.33) and therefore shares its
mathematical properties. It also is valid at @(w,t) = Gy only, while the solution outside of that
surface depends on the ansatz for @(m,t) that is introduced. The same argument holds for Eq.
(12.47) since the variance is a property of the flame front. The solution of that equation will provide
the conditional value (é’vﬂ)o at the mean flame surface G(z,t) = G. Following Eq. (12.40), its
square root is a measure of the flame brush thickness ¢, which for an arbitrary value of |V(~?| at

the front, will be defined as -
(G, 1))"/?

|Vé| é:Go

lpy = (12.48)

In order to solve Eq. (12.46), a model for the turbulent burning velocity s% must be provided.
A first step would be to use empirical correlations from the literature. Alternatively, a modeled
balance equation for the mean gradient & will be derived. According to [21]  represents the flame
surface area ratio, which is proportional to the turbulent burning velocity.

Example 12.1
An Example Solution for the Turbulent Flame Brush Thickness

For illustration purpose we want to solve the variance equation for a one-dimensional unsteady
planar flame using |VC~¥| = 1. We pose the problem such that at time ¢ = 0 a one-dimensional
steady laminar flame with flame thickness ¢ is already present and that the laminar flow is sud-
denly replaced by a fully developed turbulent flow field. We assume that the turbulence quantities
D,, k and £ are constant, independent of time. Since the flame is planar and, furthermore, since
the variance must not depend on the coordinate normal to the mean flame, if it is supposed to
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Figure 12.5: Time evolution of the turbulent flame brush thickness ¢ normalized by the integral
length scale ¢. the time t is normalized by the integral time scale 7 = k/z.

represent the conditional variance, all gradients of G'2 must vanish. Therefore, the convective and
diffusive terms in Eq. (12.47) disappear entirely.

For modeling purposes we will use a turbulent Schmidt number Sc, = v,/D; = 0.7 and the
empirical relations given in Tab. 13.1 of Lecture 13 below. They follow from Eqgs. (10.29) and
(10.38) and relate k, ¢ and D, to ¢/, ¢ and 7. Non-dimensionalizing the time in Eq. (12.47) by
the integralime scale 7 = l}/é, the variance equation becomes an equation for the turbulent flame

brush thickness

0, _ 2 asay 0> — o3 (12.49)
o(t/T) i R :
which has the solution
Uy = b3 02 [1 — exp(—cst/7)] + (3 exp(—cst/7) (12.50)

where by = (2azas/cs)'/? = 1.78 for ¢, = 2.0. Here ¢ was used as initial value. In the limit
{p/l — 0 one obtains
Uy = by £[1 — exp(—cqt/T)])V/2. (12.51)
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The unsteady development of the flame brush thickness in this limit is shown in Fig. 12.5. For
large times it becomes proportional to the integral length scale /.
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Lecture 13

The Turbulent Burning Velocity

13.1 The Turbulent Burning Velocity

One of the most important unresolved problems in premixed turbulent combustion is that of the
turbulent burning velocity. This statement implies that the turbulent burning velocity is a well-
defined quantity that only depends on local mean quantities. The mean turbulent flame front is
expected to propagate with that burning velocity relative to the flow field. Gas expansion effects
induced at the mean front will change the surrounding flow field and may generate instabilities in
a similar way as flame instabilities of the Darrieus-Landau type are generated by a laminar flame
front (cf. Clavin (1985) [1]).

Damkohler (1940) [2] was the first to present theoretical expressions for the turbulent burning
velocity. He identified two different regimes of premixed turbulent combustion which he called large
scale and small scale turbulence. We will identify these two regimes with the corrugated flamelets
regime and the thin reaction zones regime, respectively.

Damkohler equated the mass flux 7 through the instantaneous turbulent flame surface area
A with the mass flux through the cross sectional area A, using the laminar burning velocity s, for
the mass flux through the instantaneous surface and the turbulent burning velocity s for the mass
flux through the cross-sectional area A as

m = PuSLAT = ﬁuSTA. (131)

This is schematically shown in Fig. 13.1. In Eq. (13.1) the burning velocities s;, and sy are defined
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with respect to the conditions in the unburnt mixture and the density p,, is assumed constant. From
that equation it follows that the burning velocity ratio s /sy, is equal to the flame surface area ratio
Ar/A

s _ Ar
SL A

(13.2)

Since only continuity is involved, averaging of the flame surface area can be performed at any
length scale A within the inertial range. If A is interpreted as a filter width one obtains a filtered
flame surface area Ar. Eq. (13.1) then implies that the product of the filtered burning velocity 5.

and a filtered area A is also equal to s; Ar and to st A
SLAT = §TAT = STA. (133)

This shows that the product 51 A is inertial range invariant, similar to dissipation in the inertial range
of turbulence. As a consequence, by analogy to the large Reynolds number limit used in turbulent
modeling, the additional limit of the ratio of the turbulent to the laminar burning velocity for large
values of v’ /sy, is the backbone of premixed turbulent combustion modeling.

For large scale turbulence, Damkdhler (1940) [2] assumed that the interaction between a wrin-
kled flame front and the turbulent flow field is purely kinematic. Using the geometrical analogy with
a Bunsen flame, he related the area increase of the wrinkled flame surface area to the velocity
fluctuation divided by the laminar burning velocity

— ~ —. (13.4)
Combining Egs. (13.2) and (13.4) leads to
sp o~ v (13.5)

in the limit of large v'/s,, which is a kinematic scaling. We now want to show that this is consistent
with the modeling assumption for the G-equation in the corrugated flamelets regime.

For small scale turbulence, which we will identify with the thin reaction zones regime, Damkdhler
(1940) [2] argued that turbulence only modifies the transport between the reaction zone and the

unburnt gas. In analogy to the scaling relation for the laminar burning velocity

1/2
o ~ (t2> , (13.6)

(&
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Figure 13.1: An idealized steady premixed flame in a duct.

where t. is the chemical time scale and D the molecular diffusivity, he proposes that the turbulent
burning velocity can simply be obtained by replacing the laminar diffusivity D by the turbulent

diffusivity D,
1/2
ST~ (%) , (13.7)

while the chemical time scale remains the same. Thereby it is implicitly assumed that the chemical
time scale is not affected by turbulence. Combining Egs. (13.6) and (13.7) the ratio of the turbulent

to the laminar burning velocity becomes

1/2
ST Dt
~ = ) 13.8

Since the turbulent diffusivity D, is proportional to the product v'¢, and the laminar diffusivity is

proportional to the product of the laminar burning velocity and the flame thickness ¢ one may

write Eq. (13.8) as
S o0\ 2
T o <——> (13.9)
ST, ST, ZF

showing that for small scale turbulence the burning velocity ratio not only depends on the velocity
ratio v’ /sy, but also on the length scale ratio ¢//p.
There were many attempts to modify Damkoéhler’'s analysis and to derive expressions that would

reproduce the large amount of experimental data on turbulent burning velocities. By introducing

1This assumption breaks down when Kolmogorov eddies penetrate into the thin reaction zone. This implies that there
is an upper limit for the thin reaction zones regime which was identified as the condition Kas = 1 in Fig. 11.1.
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Figure 13.2: Comparison of the burning velocity ratio calculated from Eq. (13.31) (solid line), using
Re = 625 with data from Abdel-Gayed and Bradley (1981) for Reynolds number raging between
500 and 750. The origin of the individual data points may be found in that reference.

an adjustable exponent n, where 0.5 < n < 1.0, Egs. (13.5) and (13.9) may be combined to obtain
expressions of the form

/ n
T _q14¢ (“—) . (13.10)

SL SL
This includes the limit » — 0 for laminar flame propagation where s = s;. The constant C is
expected to depend on the length scale ratio ¢/¢z. By comparison with experiments the exponent
n is often found to be in the vicinity of 0.7 (cf. Williams (1985a) [3]), p. 429ff). Attempts to justify
a single exponent on the basis of dimensional analysis, however, fall short even of Damkohler's
pioneering work who had recognized the existence of two different regimes in premixed turbulent
combustion.

There is a large amount of data on turbulent burning velocities in the literature. Correlations of
this material, mostly presented in terms of the burning velocity ratio sr/s;, plotted as a function of
v' /sy, called the burning velocity diagram, date back to the fifties and sixties. An example taken

from Peters (1999) [4] is shown in Fig. 13.2. When experimental data from different authors are
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collected in such a diagram, they usually differ considerably. In the review articles by Bray (1990)
[5] and Bradley (1992) [6] the many physical parameters that affect the turbulent burning velocity
are discussed.

In a very careful review Abdel-Gayed and Bradley (1981) [7] collected and interpreted all the
material that was available at that time. More recent correlations are due to Abdel-Gayed et al.
(1987) [8], Gulder (1990b) [9], Bradley et al. (1992) [6] and Zimont and Lipatnikov (1995) [10].

The apparently fractal geometry of the flame surface and the fractal dimension that can be
extracted from it, also has led to predictions of the turbulent burning velocity. Gouldin (1987) [11]
has derived a relationship between the flame surface area ratio A;/A and the ratio of the outer

and inner cut-off of the fractal range

Ar (= Df—2
== <€—> . (13.11)

Here Dy is the fractal dimension. While there is general agreement that the outer cut-off scale ¢
should be the integral length scale, there are different suggestions by different authors concerning
the inner cut-off scale ;. While Peters (1986) [12] and Kerstein (1988a [13]) propose, based on
theoretical grounds that ¢; should be the Gibson scale, most experimental studies reviewed by
Gulder (1990a [14]) and Gulder et al. (1999) [15] favour the Kolmogorov scale n or a multiple
thereof.

As far as the fractal dimension Dy is concerned, the reported values in the literature also vary
considerably. Kerstein (1988a) [13] has suggested the value Dy = 7/3, which, in combination
with the Gibson scale as the inner cut-off, is in agreement with Damkohler’s result s; ~ v’ in the
corrugated flamelets regime. This is easily seen by inserting Eq. (13.11) into Eq. (13.2) using
Eqg. (11.10). On the other hand, if the Kolmogorov scale is used as inner cut-off, one obtains
ST/s ~ Re'/* as Gouldin (1987) [11] has pointed out. This power law dependence seems to
have been observed by Kobayashi et al. (1998) [16] in high pressure flames. Gulder (1999) [15]
shows in his recent review that most of the measured values for the fractal dimension are smaller
than Dy = 7/3. He concludes that the available fractal parameters are not capable of correctly

predicting the turbulent burning velocity.
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13.2 A Model Equation for the Flame Surface Area Ratio

At the end of Section 12.4 it was stated that the mean gradient & represents the flame surface
area ratio. In the two-dimensional illustration in Fig. 13.3 the instantaneous flame surface area
Ar is identified with the length of the line G = G,. The blow-up Fig. 13.3 shows that a differential
section dS of that line and the corresponding differential section dy of the cross sectional area A

are related to each other by
as 1
dy ~ [cosp|’

On the other hand, in two dimensions the gradient ¢ is given by

o= <1 + <Z—§>2>1/Q. (13.13)

It can be seen from Fig. 12.2 that 90F/dy = tan § which relates ¢ to the angle S as

(13.12)

1

] (13.14)

and therefore, combining this with Eq. (13.12), the differential flame surface area ratio is equal to

the gradient o
ds

m =o0. (13.15)
We therefore expect to be able to calculate the mean flame surface area ratio from a model
equation for the mean gradient 5. There remains, however, the question whether this is also valid
for multiple crossings of the flame surface with respect to the z-axis. To resolve this conceptual
difficulty one may define a filtered flame surface by eliminating large wave-number contributions
in a Fourier representation of the original surface, so that in a projection of the original surface
on the filtered surface no multiple crossings occur. This is also shown in Fig. 13.3. The normal
co-ordinate x,, on the filtered surface then corresponds to « in Fig. 12.2, showing that the ansatz
assuming a single valued function of z is again applicable. A successive filtering procedure can
then be applied, so that the flame surface area ratio is related to the gradient o at each level of
filtering. Within a given section dy Eq. (13.15) is then replaced by
ds” o”

=T (13.16)
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Figure 13.3: lllustration of the filtering of flame front corrugations showing that (13.15) remains
valid even if multiple crossings occur.

where v is an iteration index of successive filtering. The quantities dS° and ¢ correspond to the
instantaneous differential flame surface area d.S and the respective gradient o, and dS! and o!
to those of the first filtering level. At the next iteration one has dS'/dS? = o!/o? and so on. At
the last filtering level for v — oo the flame surface becomes parallel to the y-co-ordinate, so that
dS> = dy and o> = 1. Canceling all intermediate iterations we obtain again Eq. (13.15).

This analysis assumes that the original flame surface is unique and continuous. There may be
situations where pockets are formed, as shown in the 2D-simulation by Chen and Im (1998) [17].
In a subsequent paper Kollmann and Chen (1998) [18] have shown, however, that singularities in
the source terms of the o-equation, to be presented next, cancel out exactly even during pocket
formation.

We now want to derive a modeled equation for the flame surface area ratio  in order to de-
termine the turbulent burning velocity. An earlier attempt in this direction is due to Rutland et
al. (1990) [19]. An equation for o can be derived from Eqg. (12.33). For illustration purpose we

assume constant density and constant values of s¢ and D. Applying the V-operator to both sides
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of the resulting equation and multiplying this with —n = VG/o one obtains

g—j +v-Vo=-n-Vv-no+s) (ko + V2G) + Dn-V (ko). (13.17)
The terms on the L.h.s. of this equation describe the unsteady change and convection of . The
first term on the r.h.s accounts for straining by the flow field which amounts to a production of
flame surface area. The next term containing the laminar burning velocity has a similar effect as
kinematic restoration has in the variance equation. The last term is proportional to D and its effect
is similar to that of scalar dissipation in the variance equation.

In order to derive a model equation for the mean value & we could, in principle, take the ap-
propriate averages of Eq. (13.17). There is, however, no standard two-point closure procedure
of such an equation, as there is none for deriving the e-equation from an equation for the viscous
dissipation. Therefore another approach was adopted in Peters (1999) [4]: The scaling relations
between &, k, ¢, and G'2 were used separately in both regimes to derive equations for & from a
combination of the k-, £- and @'V’Q—equations. The resulting equations contain the local change and
convection of &, a production term by mean gradients and another due to turbulence. However,
each of them contains a different sink term: In the corrugated flamelets regime the sink term is
proportional to s % and in the thin reaction zones it is proportional to Da>. Finally, in order to ob-
tain a common equation for & valid in both regimes, the two sink terms are assumed to be additive
as are the two terms in Eq. (13.17) which also are proportional to s% and D.

Since proportionality between the turbulent burning velocity and & is valid only in the limit of
large values of v'/sy, it accounts only for the increase of the flame surface area ratio due to
turbulence, beyond the laminar value ¢ = |V(~?| for v — 0. We will therefore simply add the
laminar contribution and write & as

o =|VG|+ a1, (13.18)

where &; now is the turbulent contribution to the flame surface area ratio &.
The resulting model equation for the unconditional quantity &, from Peters (1999) [4], that
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covers both regimes, is written as

_00¢

pg +pv-Vo, = VH'(ﬁDtVH Tt) (13.19)
(—v"") VD _Dy(VG)? _
+Copp————=—— 0t +C1p———— 0y
k G2
0 =2 ~3
e SLO . _Daoy

t J—
2P(é\///2)1/2 3pé\///2 .

The terms on the r.h.s. represent the local change and convection. Turbulent transport is modeled
here by gradient transport in tangential direction only, since similar arguments as in the variance
equation Eq. (12.47) apply with respect to the necessity of avoiding turbulent diffusion in direction
normal to the turbulent flame surface. This is the first term on the r.h.s. of Eq. (13.20). The
second term models production of the flame surface area ratio due to mean velocity gradients.
The constant ¢y = ¢, — 1 = 0.44 originates from the é-equation Eqg. (10.31). The last three terms
in Eq. (13.20) represent turbulent production, kinematic restoration and scalar dissipation of the
flame surface area ratio, respectively, and correspond to the three terms on the r.h.s of Eq. (13.17).

We now want to determine values for the modeling constants ¢y, ¢s, ¢3, and ¢4 in Eq. (13.20).
The average of the production term in Eq. (13.17) is equal to —So. Wenzel (2000) [20] has
performed DNS of the constant density G-equation in an isotropic homogeneous field of turbulence
(cf. also Wenzel (1998) [21]), which show that the strain rate at the flame surface is statistically
independent of o and that the mean strain on the flame surface is always negative. The latter
reflects the alignment of scalar gradients with the most compressive (negative) strain rate, as
shown by Ashurst et al. (1987) [22] in analyzing DNS data of isotropic and homogeneous shear
turbulence. When —So, divided by s is plotted over v'/s? one obtains a linear dependence.

This leads to the closure model
!
v

14

—To ~

G. (13.20)

By comparing the production terms in Egs. (13.17) and (13.20) the modeling constant ¢; in Eq.
(13.20) was determined by Wenzel (2000) [20] as ¢; = 4.63.

In order to determine the remaining constants ¢, and ¢z we consider again the steady planar
flame. In the planar case the convective term on the l.h.s. and the turbulent transport term on the
r.h.s. of Eqg. (13.20) vanish and since the flame is steady, so does the unsteady term. The produc-
tion term due to velocity gradients, being in general much smaller than production by turbulence,

may also be neglected. In terms of conditional quantities defined at the mean flame front, using
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the definition Eq. (12.48) for the flame brush thickness ¢, the balance of turbulent production,
kinematic restoration and scalar dissipation in Eq. (13.20) leads to the algebraic equation

C Dt c S% Ot C D 6'252
195 —Cy = —C 5 T _—~=
Gy lri|VG 0 [VGP?

—0. (13.21)

In the limit of a steady state planar flame the flame brush thickness ¢ is proportional to the
integral length scale ¢. We may therefore use ¢ = bo¢ obtained from Eq. (12.51) in that limit and

write Eq. (13.21) as
c + S% 615 D 5’?
=L

= vE T P evae

(13.22)

This equation covers two limits: In the corrugated flamelets regime the first two terms balance,
while in the thin reaction zones regime there is a balance of the first and the last term. Using

D; = aqv'l from Tab. 13.1 below it follows for the corrugated flamelets regime
CobosV Gy = a4clv’|V6|. (13.23)

Experimental data (cf. Abdel-Gayed and Bradley (1981) [7]) for fully developed turbulent flames
in that regime show that for Re — oo and v’/s;, — oo the turbulent burning velocity is s. = b;v’
where b; = 2.0. In Peters (2000) [23] it is shown that the turbulent burning velocity s is related to

the mean flame surface area ratio as
(ps7) | VG |= (ps}) ae. (13.24)

If the burning velocities s% and s are evaluated at a constant density it follows in that limit that

sY oy = bv'/|VG| and therefore one obtains by comparison with Eq. (13.23)
bleCQ = a4 C1 (1325)

which leads to ¢, = 1.01 using the constants from Tab. 13.1.

Similarly, for the thin reaction zones regime we obtain from Eq. (13.21) the balance

¢3 DG = ¢; Dy| VG2, (13.26)
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This must be compared with Eq. (13.8) written as

0 1/2
S Dt
— =b3| — . 13.27

Damkohler (1940) [2] believed that the constant of proportionality b3 should be unity. Wenzel
(1997) [21] has performed DNS simulations similar to those of Kerstein et al. (1988) [13] based on
Eqg. (12.33) in order to calculate & in the thin reaction zones regime. He finds b3 = 1.07 which is
very close to Damkohler’s suggestion. Therefore we will use b3 = 1.0 which leads with b3 = ¢ /c3
to

c3 = 1. (13.28)

For consistency the diffusivity D is defined as (\/c,)o/pu. Then, with £z = D/s% and the relations
in Tab. 13.1, Eq. (13.21) leads to the quadratic equation
o7 asbi 0 &y 5 V'l

P T 13.29
VG b leva]  PsUer (13.29)

Using Egs. (13.18) and (13.24) evaluated at a constant density, the difference As between the
turbulent and the laminar burning velocity is
o

VG|

(13.30)

As =55 — 59 =59
Taking only the positive root in the solution of Eq. (13.29) this leads to an algebraic expression for

As "
As  agb3 ( asb3 ¢ ° 5 V'Y
O 7 2by Up T\ 2p 7)) Tl sQp| (13.31)

This expression corresponds in the limit £/{r — oo to the corrugated flamelets regime and in the
limit /¢ — 0 to the thin reaction zones regime.

The modeling constants used in the final equations for G, G2 and oy are summarized in Tab.
13.1. Note that b; is the only constant that has been adjusted using experimental data from
turbulent burning velocity while the constant b3 was suggested by Damkohler (1940) [2]. The
constant ¢; was obtained from DNS and all other constants are related to constants in standard
turbulence models.

If Eq. (13.31) is compared with experimental data as in the burning velocity diagram in Fig.

13.2, the turbulent Reynolds number Re; = v'¢/s} ¢ appears as a parameter. From the view-
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constant equation suggested value origin
ax E=av3/l 0.37 Bray (1990)
as k = agv”? 1.5 definition
as T =asl/v’ 4.05 T=k/E
a4 Dy = aqv'? 0.78 D, =1,/0.7
by st = biv’ 2.0 experimental data
b2 /épyt = bgé 1.78 (2(130,4/05)1/2
b 59./s% = bs(Dy/D)'/? 1.0 Damkaohler (1940)
Co co=Ce1 — 1 0.44 standard value
c1 Eq. (13.18) 4.63 DNS
Co Eq (1318) 1.01 a461/(b1b2)
Cc3 Eqg. (1318) 4.63 c1 =C3
Cs Eq. (12.47) 2.0 spectral closure

Table 13.1: Constants used in the modeling of premixed and partially premixed turbulent combus-
tion.

point of turbulence modeling this seems disturbing, since in free shear flows any turbulent quantity
should be independent of the Reynolds number in the large Reynolds number limit. The appar-
ent Reynolds number dependence of Eq. (13.31) turns out to be an artifact, resulting from the
normalization of As by s?, which is a molecular quantity whose influence should disappear in the
limit of large Reynolds numbers and large values of v'/sy,. If the burning velocity difference As is
normalized by v’ rather than by s9, Eq. (13.31) may be expressed as a function of the turbulent

Damkohler number Da; = s% ¢/v'¢r instead, and one obtains the form

1/2

2 2 2
As _ aabspy l(“‘*—b%at) + aub2Day (13.32)

v’ 2 bl 2 b1

This is Reynolds number independent and only a function of a single parameter, the turbulent
Damkohler number. In the limit of large scale turbulence (¢/¢r — oo, or Da; — o0) it becomes
Damkohler number independent. In the small scale turbulence limit (¢/¢r — 0 or Da; — 0), it is
proportional to the square root of the Damkdhler number.

A Damkaohler number scaling has also been suggested by Gulder (1990b) who has proposed

25 _ .62 Da,/* (13.33)

U/

as an empirical fit to a large number of burning velocity data. A similar correlation with the same
Damkohler number dependence, but a constant of 0.51 instead of 0.62 was proposed by Zimont
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Figure 13.4: The burning velocity difference A = s — s, normalized by +’, as a function of the
turbulent Damkohler number. —— Eq. (13.32), - Eq. (13.33), - - - - Eq. (13.36) with v’/s;, = 2,
————— Eq. (13.36) with v/ /sy, = 5.

and Lipatnikov (1995) [10].
Bradley et al. (1992) [6], pointing at flame stretch as a determinant of the turbulent burning
velocity, propose to use the product of the Karlovitz stretch factor K and the Lewis number as the

appropriate scaling parameter

0
S _
v—”{ = 0.88(K Le) "3, (13.34)
where the Karlovitz stretch factor is related to the Damkohler number by
v’ —1/2
K =0.157—Da, '". (13.35)
SL

This leads to the expression

A 0~ 0.3 0
2% 153 (5—§> Dal 5L 03 _ °L (13.36)
v v

/ ,UI

The correlations Eqgs. (13.32), (13.33) and (13.36) are compared in Fig. 13.4 among each
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other and with data from the experimental data collection used by Bradley et al. (1992) [6], which
was kindly provided to us by M. Lawes. The data points show a large scatter, which is due to
the fact that the experimental conditions were not always well defined. Since unsteady effects
have been neglected in deriving Eq. (13.31), only data based on steady state experiments were
retained from this collection. These 598 data points and their averages within fixed ranges of the
turbulent Damkohler number are shown in Fig. 13.4 as small and large dots, respectively. In order
to make such a comparison possible, the Lewis number was assumed equal to unity in Eq. (13.36)
and two values of v' /s were chosen. As a common feature of all three correlations one may note
that As/v’ strongly increases in the range of turbulent Damkohler numbers up to ten, but levels off
for larger turbulent Damkodhler numbers. The correlation Eqg. (13.32) is the only one that predicts
Damkohler number independence in the large Damkohler number limit.

The model for the turbulent burning velocity derived here is based on Eq. (12.33) in which
the mass diffusivity D (rather than the Markstein diffusivity) appears. As a consequence, flame
stretch and thereby the Lewis number effects do not enter into the model. Lewis number effects
are often found to influence the turbulent burning velocity (cf. Abdel-Gayed et al. (1984) [24]). This
is supported by two-dimensional numerical simulations by Ashurst et al. (1987) [22] and Haworth
and Poinsot (1992) [25], and by three-dimensional simulations by Rutland and Trouvé (1993) [26],
all being based on simplified chemistry. There are additional experimental data on Lewis number
effects in turbulent flames at moderate intensities by Lee et al. (1993) [27] and Lee et al. (1995)
[28].
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Lecture 14

Non-Premixed Turbulent
Combustion: The Flamelet Concept

Models in nonpremixed turbulent combustion are often based on the presumed shape pdf ap-
proach. This requires the knowledge of the Favre mean mixture fraction 7 and its variance Z/"2
at position « and time ¢. As shown in Section 10.7 of Lecture 10 averaging of the mixture fraction
equation Eq. (3.58) and using the gradient transport assumption Eq. (10.59) leads to the equation

for the Favre mean mixture fraction Z Eqg. (10.61)
07 = =
Por +pv-VZ=V-(pD:V2Z). (14.1)

The molecular diffusivity D in Eq. (3.58) is much smaller than the turbulent diffusivity D,, and has
therefore been neglected in Eq. (14.1). In addition to the mean mixture fraction in Section 10.7 of

Lecture 10 we have derived an equation for the Favre variance 2z Eq. (10.63)

02"
ot

PRy I 77 S v (ﬁm) 25DV Z)? — 5%, (14.2)
where for —v"Z" the gradient transport assumption Eqg. (10.59) has again been used in the third
term on the r.h.s., the production term. For the turbulent flux of the mixture fraction variance the

gradient transport assumption

—v" 7" = D,V 7" (14.3)
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can also be used in Eq. (14.2). In Eq. (14.2) the mean scalar dissipation rate appears, which will
be modeled (10.66) as N
K= cx%éfv/? (14.4)

where the time scale ratio ¢, is assumed to be a constant. Jones (1994) [1] suggests a value of
¢y = 1.0, while Janicka and Peters (1982) [2] found that a value of ¢, = 2.0 would predict the
decay of scalar variance in an inert jet of methane very well. Overholt and Pope (1996) [3] and
Juneja and Pope (1996) [4] performing DNS studies of one and two passive scalar mixing find an
increase of ¢, with Reynolds number and steady state values around 2.0 and 3.0, respectively.
In the numerical simulations of Diesel engine combustion, to be presented in Lecture 15, Section
15.2, a value of ¢, = 2.0 has been used.

In many cases, as in turbulent jet diffusion flames in air, zero gradient boundary conditions,
except at the inlet, can be imposed. If the simplifying assumptions mentioned in Section 3.9 of
Lecture 3 can be introduced the enthalpy h can be related to the mixture fraction by the linear
coupling relation

h=hao+ Z(h1 — h2) (14.5)

which also holds for the mean values
h = hy + Z(hy — hy) (14.6)

and no additional equation for the enthalpy is required. In Egs. (14.5) and (14.6) h is the enthalpy
of the air and A, that of the fuel.

A more general formulation is needed, if different boundary conditions have to be applied for Z
and & or if heat loss due to radiation or unsteady pressure changes must be accounted for. Then
an equation for the Favre mean enthalpy 1 as an additional variable must be solved. An equation

for 1 can be obtained from Eq. (3.43) by averaging

Oh . _~ O o —
Py + 70 Vh= 20+ V. (thVh) +r. (14.7)
Again a gradient transport equation for —v”R" has been introduced. The terms containing the
mean spatial pressure gradient have been neglected in this equation by applying the limit of zero
Mach number, where fast acoustic waves are rapidly homogenizing the pressure field. The term

describing temporal mean pressure changes 9p/0t has been retained, because it is important
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for the modeling of combustion in internal combustion engines operating under nonpremixed con-
ditions, such as the Diesel engine. The mean volumetric heat exchange term ¢z must also be
retained in many applications where radiative heat exchange has an influence on the local en-
thalpy balance. Marracino and Lentini (1997) [5] have used the Stretched Laminar Flamelet Model
to calculate the radiative heat flux from buoyant turbulent methane-air diffusion flames. Temper-
ature changes due to radiation within the flamelet structure also have a strong influence on the
prediction of NO,, formation (cf. Pitsch et al. (1998) [6]). Changes of the mean enthalpy also occur
due to convective heat transfer at the boundaries or due to the evaporation of a liquid fuel. As in
Egs. (14.1) and (14.2) the transport term containing the molecular diffusivity has been neglected
in Eq. (14.7) as being small compared to the turbulent transport term. Effects due to non-unity
Lewis numbers have also been neglected.

No equation for enthalpy fluctuations is presented here, because in nonpremixed turbulent
combustion, it is often assumed that fluctuations of the enthalpy are mainly due to mixture fraction

fluctuations and are described by those.

14.1 The Presumed Shape Pdf Approach

Egs. (14.1)-(14.3) can be used to calculate the mean mixture fraction and the mixture fraction
variance at each point of the turbulent flow field, provided that the density field is known. In
addition, of course, equations for the turbulent flow field, the Reynolds stress equations (or the
equation for the turbulent kinetic energy 75) and the equation for the dissipation £ must be solved.
If the assumption of fast chemistry is introduced and the coupling between the mixture fraction
and the enthalpy Eq. (14.5) can be used, the Burke-Schumann solution or the equilibrium solution
relates all reactive scalars to the local mixture fraction. Using these relations the easiest way to
obtain mean values of the reactive scalars is to use the presumed shape pdf approach. This
is called the Conserved Scalar Equilibrium Model. In this approach a suitable two-parameter
probability density function is “presumed” in advance, thereby fixing the functional form of the pdf
by relating the two parameters in terms of the known values of Z and Z' at each point of the flow
field.

Since in a two-feed system the mixture fraction Z varies between Z = 0 and Z = 1, the beta

function pdf is widely used for the Favre pdf in nonpremixed turbulent combustion. The beta-

240



5l i z
Z=08 |
- =2 |
Bz 4 ) =2 )
3 22?66\ Z=06 ||
: ¥ v=05"/ |
2’ ~ N
[ Z=0.6 ]
1k Y:4\ B

0' = T B [ L
0 0.2 0.4 0.6 0.8 1

Z

Figure 14.1: Shapes of the beta-function pdf for different parameters Z and 5.

function pdf has the form

. _ Za_l(l—Z)'B_ll—‘(a—i-B)
Pz 1) = M)t (9)

(14.8)

Here I is the gamma function. The two parameters « and 3 are related to the Favre mean Z(x, t)
and variance E’V’Q(m, t) by

a=2Zy, B=(1-2Z), (14.9)

where

Z(1-2)

—__ . _1>0. (14.10)
Z//2

’Y:

The beta-function is plotted for different combinations of the parameters Z and ~in Fig. 14.1. 1t
can be shown that in the limit of very small iz (large ~) it approaches a Gaussian distribution.
For o < 1 it develops a singularity at Z = 0 and for 8 < 1 a singularity at Z = 1. Despite of its
surprising flexibility, it is unable to describe distributions with a singularity at Z = 0 or Z = 1 and
an additional intermediate maximum in the range 0 < Z < 1. For such shapes, which have been
found in jets and shear layers, a composite model has been developed by Effelsberg and Peters
(1983) [7]. It identifies three different contributions to the pdf: a fully turbulent part, an outer flow
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part and a part which was related to the viscous superlayer between the outer flow and the fully
turbulent flow region. The model shows that the intermediate maximum is due to the contribution
from the fully turbulent part of the scalar field.

By the presumed shape pdf approach means of any quantity that depends only on the mixture
fraction can be calculated. For instance, the mean value of ¢); can be obtained from

Vi@, t) = /01 Vi(Z)P(Z;x,t)dZ. (14.11)

A further quantity of interest is the mean density p. Since Favre averages are considered, one
must take the Favre average of p—!, which leads to

p1

= / 1 p N(Z2)P(Z)dZ. (14.12)
0

1
p
With Eqgs. (14.8)-(14.12) and the Burke-Schumann solution or the equilibrium solution the Con-
served Scalar Equilibrium Model for nonpremixed combustion is formulated. It is based on a
closed set of equations which do not require any further chemical input other than the assumption
of infinitely fast chemistry. It may therefore be used as an initial guess in a calculation where the
Burke-Schumann solution or the equilibrium solution later on is replaced by the solution of the
flamelet equations to account for non-equilibrium effects.

14.2 The Round Turbulent Jet Diffusion Flame

In many applications fuel enters into the combustion chamber as a turbulent jet, with or without
swirl. To provide an understanding of the basic properties of jet diffusion flames, we will consider
here the easiest case, the axisymmetric jet flame without buoyancy, for which we can obtain ap-
proximate analytical solutions. This will enable us to determine, for instance, the flame length. The
flame length is defined as the distance from the nozzle to the point on the centerline of the flame
where the mean mixture fraction is equal to Z,;. The flow configuration and the flame contour of a
vertical jet diffusion flame have already been shown schematically in Fig. 9.5 but for a laminar jet
flame.

Using Favre averaging and the the boundary layer assumption we obtain a system of two-
dimensional axisymmetric equations, similar to Egs. (9.22-9.24) but for Favre averages. These will

be in terms of the axial co-ordinate x and the radial co-ordinate r, for
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Figure 14.2: Schematic representation of a vertical jet flame into quiescent air.

continuity

o .9,
%(PW)‘*‘E(PW)—O,

momentum in z-direction

mean mixture fraction

(14.13)
o (_ Ou
=3 <put7’5) , (14.14)
a [ pvr oz
=5 < Ser W) ) (14.15)

We have neglected molecular as compared to turbulent transport terms. Turbulent transport was
modeled by the gradient flux approximation. For the scalar flux we have replaced D, by introducing
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the turbulent Schmidt number Sc; = v/ D:.

For simplicity, we will not consider equations for k& and & or the mixture fraction variance but
seek an approximate solution by introducing a model for the turbulent viscosity v,. Details may be
found in Peters and Donnerhack (1981) [8]. As in Section 9.2 for the laminar round diffusion flame
the dimensionality of the problem will again be reduced by introducing the similarity transformation

-

=2 Lrdr, €=u+ o, (14.16)
0 P

’[’I:

s a il

which contains a density transformation defining the density weighted radial co-ordinate 7. The
new axial co-ordinate ¢ starts from the virtual origin of the jet located at x = —z(. Introducing a
stream function ¢ by

pur = oy /or, por=—0v¢/0x (14.17)

the continuity equation Eq. (14.13) is satisfied. In terms of the non-dimensional stream function

F(n) defined by

Fly) = — (14.18)

pothr E

the axial and radial velocity components may now be expressed as

dF

e %V“« o dF

u=—r— U = —pooVir(F — —1). 14.19
. e P PocVtr dnn) ( )

Here v, is the eddy viscosity of a constant density jet, used as a reference value. Differently from
the laminar flame, where v is a molecular property, v, has been fitted (cf. Peters and Donnerhack
(1981) [8] to experimental data as

Uod
= — 14.20
Vi 70 ( )
For the mixture fraction the ansatz
Z = Zcy, (€)&(n) (14.21)

is introduced, where ZCL stands for the Favre mean mixture fraction on the centerline.
The system of equation for the turbulent round jet has the same similarity solution as the one
derived in Section 9.2 of Lecture 9. Here we approximate the Chapman-Rubesin parameter, how-

ever, as: ) )
D VT
C I p

Pgo Vtrf2

(14.22)
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In order to derive an analytical solution it must be assumed that C' is a constant in the entire jet.
With a constant value of C one obtains the system of differential equations as Egs. (9.34) and its
solution Eg. (9.35), if only the Schmidt number is replaced by a turbulent Schmidt number Sc;. The

~ 2 CVQVtr 1 2 ~ 1 2S¢y
T <1+(7n/2)2> ’ “’_<W> : (14.23)

where the jet spreading parameter is again

solution reads

N2 = 3-70* po
64  pooC?

(14.24)

obtained from the requirement of integral momentum conservation along the axial direction. Sim-
ilarly, conservation of the mixture fraction integral across the jet yields the mixture fraction on the

centerline
70(142Sc;) po d

5 5F (14.25)

Zer =

such that the mixture fraction profile is given by

~ 2191 +2Sc)d po ( 1 )QSC*
7= 14— . 14.26
T+ o PocC i 1+ (yn/2)? ( )

From this equation the flame length L can be calculated by setting Z=Zgate=L,r=0

L+I0 219(1+2SC¢) Po
= . 14.27
d Zst pooc ( )

Experimental data by Hawthorne et al. (1949) [9] suggest that the flame length L should scale as

L+ xg 5.3 (po )1/2
0 _ =2 (A . 14.28
d Zst pst ( )

This fixes the turbulent Schmidt number as Sc¢; = 0.71 and the Chapman-Rubesin parameter as

1/2
C = M. (14.29)
Poo

When this is introduced into Eqgs. (14.23) and (14.24) one obtains the centerline velocity as

Uo T+ xo

ter _ 6564 (p0)1/2 (14.30)

pet
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The distance of the virtual origin from = = 0 may be estimated by setting ucr, = ug at z = 0 in Eq.
(14.30) so that

1/2
2o = 6.56 d <ﬂ> . (14.31)
Pst

As an example for the flame length, we set the molecular weight at stoichiometric mixture equal to
that of nitrogen, thereby estimating the density ratio po/ps: from

Po Wo T
~ . 14.32
pst  Wn, To ( )

The flame length may then be calculated from Eq. (14.28) with Z,; = 0.055 as L ~ 200d.

In large turbulent diffusion flames buoyancy influences the turbulent flow field and thereby the
flame length. In order to derive a scaling law for that case, Peters and Gottgens (1991) [10] have
integrated the boundary layer equations for momentum and mixture fraction for a vertical jet flame
over the radial direction in order to obtain first order differential equations in terms of the axial co-
ordinate for cross-sectional averages of the axial velocity and the mixture fraction. Since turbulent
transport disappears entirely due to averaging, an empirical model for the entrainment coefficient

5 is needed, which relates the half-width b of the jet to the axial co-ordinate as
b(x) = Bx. (14.33)

By comparison with the similarity solution for a non-buoyant jet 5 was determined as

_ Pst 1/2
B=0.23(2= . (14.34)
Po

For the buoyant jet flame a closed form solution for the flame length could be derived which

3.0, L\ (BL\* (BL\’ 38a2 .
<15Fr _g) (deff) +<deff> _16252‘5F‘r. (1435)

Here Fr* is the modified Froude number

reads

Po 12 P up
Fr* = Fr (—) — =  _ = (14.36)
Poo a2(poo - pst) gd
and
1/2
dog = d (p—o) (14.37)
Poo
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Figure 14.3: Dimensionless flame length, L/d, versus Froude number for propane-air flames.
Comparison is made with experimental data of S@nju and Hustad (1984) [11].

is the effective nozzle diameter. The constants in Eqs. (14.35) and (14.36) are determined as
a1 =1+ 28Sc; and a2 = 1.0. Details of the derivation may be found in Peters and Gottgens (1991)
[10].

The flame length of propane flames calculated from Eq. (14.35) is compared with measure-
ments from Segnju and Hustad (1984) [11] in Fig. 14.3. For Froude numbers smaller than 10° the

/5 which corresponds to a balance of the second term

data show a Froude number scaling as Fr
on the L.h.s. with the term on the r.h.s. in Eq. (14.35). For Froude numbers larger than 10° the

flame length becomes Froude number independent equal to the value calculated from Eq. (14.27).

14.3 Experimental Data from Turbulent Jet Diffusion Flames

While the flame length may be calculated on the basis of the fast chemistry assumption using the
solution for mean mixture fraction field alone, more details on scalars are needed if one wants

to determine chemical effects and pollutant formation in turbulent jet flames. For that purpose
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Figure 14.4: Ensemble of Raman scattering measurements of major species concentrations and
temperatures at z/d = 30,7/D = 2. The solid curves show equilibrium conditions. (From Barlow
et al. (1990) [12].

we want to discuss data taken locally within turbulent jet flames by non-intrusive laser-diagnostic
techniques. There is a large body of experimental data on single point measurements using Laser
Rayleigh and Raman scattering techniques combined with Laser-Induced Fluorescence (LIF).
Since a comprehensive review on the subject by Masri et al. (1996) [13] is available, it suffices
to present as an example the results by Barlow et al. (1990) [12] obtained by the combined
Raman-Rayleigh-LIF technique. This paper has set a landmark not only due to the diagnostics
that were used but also because of the interpretation of the chemical structure in terms of laminar
flamelet profiles. The fuel stream of the two flames that were investigated consisted of a mixture
of 78 mole% Hy and 22 mole% argon, the nozzle inner diameter d was 5.2 mm and the co-flow air
velocity was 9.2m/s. The resulting flame length was approximately L = 60d. Two cases of exit
velocities were analyzed, but only the case B with u, = 150m/s will be considered here. The
stable species Hs, O2, N2, and Ho O were measured using Raman-scattering at a single point with
light from a flash-lamp pumped dye laser. In addition, quantitative OH radical concentrations from
LIF measurements were obtained by using the instantaneous one-point Raman data to calculate
quenching corrections for each laser shot. The correction factor was close to unity for stoichio-
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Figure 14.5: Temperature profiles from flamelet calculations at different strain rates. (From Barlow
et al. (1990)[12].

metric and moderately lean conditions but increased rapidly for very lean and moderately rich
mixtures. The temperature was calculated for each laser shot by adding number densities of the
major species and using the perfect gas law. The mixture fraction was calculated from the stable
species concentrations using Eq. (1.47).

An ensemble of one-point, one-time Raman-scattering measurements of major species and
temperature plotted over mixture fraction are shown in Fig. 14.4. They were taken at z/d = 30,
r/d = 2 in the case B flame. Also shown are calculations based on the assumption of chemical
equilibrium.

The overall agreement between the experimental data and the equilibrium solution is quite
good. This is often observed for hydrogen flames where chemistry is typically very fast. On the
contrary, hydrocarbon flames at high exit velocities and small nozzle diameters are likely to exhibit
local extinction and non-equilibrium effects. A discussion on localized extinction observed in tur-
bulent jet flames may be found in Masri et al. (1996) [13]. Fig. 14.5 shows temperature profiles
versus mixture fraction calculated for counterflow diffusion flames at different strain rates. These
steady state flamelet profiles display the characteristic decrease of the maximum temperature with
increasing strain rates (which corresponds to decreasing Damkohler numbers) as shown schemat-
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Figure 14.6: Ensemble of LIF measurements of OH mole fractions at 2:/d = 30, r/D = 2. The
solid curve shows equilibrium solution.

ically by the upper branch of the S-shaped curve in Fig. 10.1. The strain rates vary here between
a = 100/s which is close to chemical equilibrium and a = 10000/s.

Data of OH-concentrations are shown in Fig. 14.6. They are to be compared to flamelet
calculations in Fig. 14.7 for the different strain rates mentioned before. It is evident from Fig. 14.6
that the local OH-concentrations exceed those of the equilibrium profile by a factor up to 3. The
flamelet calculations in Fig. 14.7 show an increase of the maximum values by a factor of 3 already
at the low strain rates ¢ = 100/s and a = 1000/s. The maximum value of « = 10000/s shown in
Fig. 14.7 is close to extinction and does not represent conditions in the turbulent hydrogen flame
considered here.

In summary, it may be concluded that one-point, one-time experimental data in turbulent flames,
when plotted as a function of mixture fraction, show qualitatively similar tendencies as laminar
flamelet profiles in counterflow diffusion flames. Non-equilibrium effects are evident in both cases
and lead to an increase of radical concentrations and a decrease of temperatures. This has an

important influence on NO,, formation in turbulent diffusion flames.
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Figure 14.7: OH mole fractions from flamelet calculations at different strain rates.

14.4 Laminar Flamelet Equations for Nonpremixed Combus-
tion

Based on the laminar flamelet concept introduced in Lecture 8 the flame surface is defined as the

surface of stoichiometric mixture which is obtained by setting
Z(x,t) = Zg (14.38)

as shown in Fig. 8.2. In the vicinity of that surface the reactive-diffusive structure can be described
by the flamelet equations Eqgs. 8.7, here written

Mi _ p X P
ot T Le, 2 922

+w; (14.39)

In these equations the instantaneous scalar dissipation rate has been introduced. At the flame
surface, it takes the value y4;. If x is assumed to be a function of Z, this functional dependence
can be parameterized by xg. It acts as an external parameter that is imposed on the flamelet

structure by the mixture fraction field. The scalar dissipation rate x has the dimension of an inverse
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time and therefore represents the inverse of a diffusion time scale. It also can be thought of as a
diffusivity in mixture fraction space.

Eqg. (14.39) shows that 1; depends on the mixture fraction Z, on the scalar dissipation rate
X, and on time t. This implies that the reactive scalars are constant along iso-mixture fraction
surfaces at a given time and a prescribed functional form of the scalar dissipation rate. Thereby
the fields of the reactive scalars are aligned to that of the mixture fraction and are transported
together with it by the flow field.

In principle, both the mixture fraction Z and the scalar dissipation rate x are fluctuating quan-
tities and their statistical distribution needs to be considered, if one wants to calculate statistical
moments of the reactive scalars (cf. Peters (1984) [14]).

If the joint pdf IB(Z, Xst) surface, is known, and the steady state flamelet equations are solved
to obtain ¢; as a function of Z and x;, point  and the time ¢t. The Favre mean 1[1- can be obtained
from

100
wi(w,t):/O/wi(Z,Xst)P(Z,XSt;w,t)dxstdZ. (14.40)
0

For further reading see Peters (1984) [14].

If the unsteady term in the flamelet equation must be retained, joint statistics of Z and x4
become impractical. Then, in order to reduce the dimension of the statistics, it is useful to introduce
multiple flamelets, each representing a different range of the x-distribution. Such multiple flamelets
are used in the Eulerian Particle Flamelet Model (EPFM) by Barths et al. (1998) [15].

Then the scalar dissipation rate can be formulated as a function of the mixture fraction. Such a

formulation can be used in modeling the conditional Favre mean scalar dissipation rate y 7 defined

by

Xz = (o X|Z>. (14.41)

(plZ)
Then the flamelet equations in a turbulent flow field take the form

oV p %_Za%ﬁi
ot T Le, 2 022

+ wi. (14.42)

A mean scalar dissipation rate, however, is unable to account for those ignition and extinction
events that are triggered by small and large values of y, respectively. This is where LES, as
discussed in Lecture 10, must be used.

With v¢;(Z, Xz, t) obtained from solving Eq. (14.42), Favre mean values {/)vl can be obtained at
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any point x and time t in the flow field by

1
Bwt) = [ 0230 0Pz (14.43)

Here the presumed shape of the pdf IS(Z; x,t) can be calculated from the mean and the variance
of the turbulent mixture fraction field, as discussed in Section 14.1.

Then there remains the problem on how to model the conditional scalar dissipation rate .
One way to solve that problem is to use the procedure by Janicka and Peters (1982) [2], where
Xz is determined from the pdf transport equation for the mixture fraction. Another possibility is to
construct yz from a model. One then relates the conditional scalar dissipation rate Yy to that at a

fixed value, say Z;, by
Xz = Xst /(2)
° f(Zst)’

where f(Z) is a function as in Eq. (8.24) and X, is the conditional mean scalar dissipation rate

(14.44)

at Z7 = Zg. Then, with the presumed pdf IB(Z) being known, the unconditional average can be

written as

- [ 5 - [T 12 5
x—/o xZP(Z)dZ—xst/O f(Zst)P(Z)dZ. (14.45)

Therefore, using the model Eq. (14.4) for x, the conditional mean scalar dissipation rate y; can

be expressed as
Zst)

X/ (
/0 f(2)P(2)dZ

Xst = (14.46)

which is to be used in Eq. (14.44) to calculate Y.

Flamelet equations can also be used to describe ignition in a nonpremixed system. If fuel and
oxidizer are initially at the unburnt temperature T,,(Z), as was shown in Fig. 2.1, but the scalar
dissipation rate is still large enough, so that heat loss out of the reaction zone exceeds the heat
release by chemical reactions, a thermal runaway is not possible. This corresponds to the steady
state lower branch in Fig. 10.1. As the scalar dissipation rate decreases, as for instance in a Diesel
engine after injection, heat release by chemical reactions will exceed heat loss out of the reaction
zone, leading to auto-ignition. The scalar dissipation rate at auto-ignition is denoted by

Xi = Xst,ign- (1447)

For ignition under Diesel engine conditions this has been investigated by Pitsch and Peters (1998b)
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Figure 14.8: Auto-ignition of a n-heptane-air mixture calculated in mixture fraction space by solving
the flamelet equations (cf. Paczko et al. (1999) [16]).

[17]. An example of auto-ignition of a n-heptane-air mixture calculated with the Representative In-
teractive Flamelets code (RIF, cf. Paczko et al. (1999) [16] is shown in Fig. 14.8. The initial air
temperature is 1100 K and the initial fuel temperature is 400 K. Mixing of fuel and air leads to a
straight line for the enthalpy in mixture fraction space, but not for the temperature 7,,(Z) in Fig.
14.8, since the heat capacity ¢, depends on temperature. A linear decrease of the scalar dissi-
pation rate from x,: = 301/sto xs+ = 101/s within a time interval of 0.3 ms was prescribed. It is
seen that auto-ignition starts after 0.203 ms, when the temperature profile shows already a small
increase over a broad region around Z = 0.2. Att¢ = 0.218 ms there has been a fast thermal
runaway in that region, with a peak at the adiabatic flame temperature. From thereon, the temper-
ature profile broadens, which may be interpreted as a propagation of two fronts in mixture fraction
space, one towards the lean and the other towards the rich mixture. Although the transport term
in Eqg. (14.39) contributes to this propagation, it should be kept in mind that the mixture is close to
auto-ignition everywhere. The propagation of an ignition front in mixture fraction space therefore
differs considerably from premixed flame propagation. At ¢ = 0.3 ms most of the mixture, except
for a region beyond Z = 0.4 in mixture fraction space, has reached the equilibrium temperature. A
maximum value of 7' = 2750 K is found close to stoichiometric mixture.

The ignition of n-heptane mixtures under Diesel engine condition has been discussed in detail
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by Pitsch and Peters (1998b) [17]. There it is shown that auto-ignition under nonpremixed condi-
tions occurs predominantly at locations in a turbulent flow field where the scalar dissipation rate is
low. Turbulent combustion models have also been used to predict NO,, formation in turbulent diffu-
sion flames. This is a problem of great practical importance, but due to the many physical aspects
involved, it is also a very demanding test for any combustion model. A very knowledgeable review
on the various aspects of the problem has been given by Turns (1995) [18].

A global scaling law for NO production in turbulent jet flames has been derived by Peters and
Donnerhack (1981) [8] assuming equilibrium combustion chemistry and thin NO reaction zone
around the maximum temperature in mixture fraction space. An asymptotic solution for the mean

turbulent NO production rate can be obtained by realizing that in the expression

1
@0 = pSo =7 [ Sxo(2)P(2)dz (14.48)
0

the function Sxo(Z) has a very strong peak in the vicinity of the maximum temperature, but de-
creases very rapidly to both sides. This is shown in Fig. 14.9 for the case of a hydrogen flame.
The NO reaction rate acts nearly like a s-function underneath the integral in Eq. (14.48). It has
been shown by Peters (1978) [19] and Janicka and Peters (1982) [2] that an asymptotic expansion
of the reaction rate around the maximum temperature leads to

wno = pP(Z)eSvo0(Z), (14.49)

where Z,, is the mixture fraction at the maximum temperature 7, and Sxo(Z;) is the maximum
reaction rate. The quantity € represents the reaction zone thickness of NO production in mixture

fraction space. That quantity was derived from the asymptotic theory as

—2RT? 1z
= . 14.50
) <Z§ENo<d2T/dZQ>Tb> (14:50)

Here Exo is the activation energy of the NO production rate. Finally, Peters and Donnerhack
(1981) [8] predicted the NO emission index EINO, which represents the total mass flow rate of NO

produced per mass flow rate of fuel, as being proportional to

L\® d
EINO ~ Sno(Zy)e (=] —. (14.51)
d Uug

Here L is the flame length, d the nozzle diameter and uq the jet exit velocity. The normalized
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Figure 14.9: NO-reaction rate and pdf for a hydrogen-air mixture. From Peters and Donnerhack
(1981) [8].

flame length L/d is constant for momentum dominated jets but scales with the Froude number
Fr=u3/(gd) as L/d ~ Fr'/® for buoyancy dominated jets as shown in Fig. 14.3. This explains, for
instance, the Fr*/® dependence of the emission index found in the buoyancy dominated propane
jet diffusion flames of Rgkke et al. (1992) [20]. These data are reproduced in Fig. 14.10 together

with the prediction of the NO, emission index (expressed here in terms of NO3)

EINO,
d/’LLQ

— 29 R3/5 [ gNO, ] . (14.52)
kg fuel s

It is interesting to note that by taking the values Sxo(Z,) = 10.8 x 10~3/s and € = 0.109 for propane

from Peters and Donnerhack (1981) [8] and using Eq. (14.35) in the buoyancy dominated limit

one calculates a factor of 27.2 rather than 22 in Eqg. (14.52). Since Peters and Donnerhack (1981)

[8] had assumed equilibrium combustion chemistry, the second derivative of the temperature in

Eqg. (14.50) was calculated from an equilibrium temperature profile as the one shown in Fig. 14.4.
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Figure 14.10: Emission index versus Froude number for buoyant jet diffusion flames of propane in
air. Experimental data and prediction from Rgkke et al.(1992) [20].

Therefore ¢ was tabulated as a constant for each fuel. If the quantity Sxo(Zp)d/ug is interpreted
as a Damkdhler number the rescaled emission index from Eq. (14.51) is

% ~ eDa (14.53)
proportional to that Damkohler number.

An interesting set of experimental data are those by Chen and Driscoll (1990) [21] and Driscoll
et al. (1992) [22] for diluted hydrogen flames. These data show a square root dependence of the
rescaled emission index on the Damkdhler number. This Da'/? dependence had been reproduced
by Chen and Kollmann (1992) [23] using the transported pdf approach and by Smith et al. (1992)
[24] with the CMC method. An explanation for this scaling may be found by using the steady state
flamelet equation for the second derivative of temperature in Eq. (14.50) rather than the equilibrium

profile. This may be written as
CT | wr (14.54)
dz2  x '
Here the term on the r.h.s., evaluated at and divided by the maximum temperature, may also be
interpreted as a Damkohler number. This becomes evident, if one realizes that in a turbulent

jet diffusion flame y scales with ug/d. Inserting this into Eq. (14.50) the quantity ¢ becomes
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proportional to Da~'/2. This finally leads with Eq. (14.53) to

% ~ Dal/?. (14.55)
This scaling law indicates that the experimentally observed (d/u,)'/? dependence of the rescaled
NO emission index is a residence time effect, modified by the temperature sensitivity of the NO
reaction rate, on which the asymptotic theory by Peters and Donnerhack (1981) [8] was built. It
also shows that unsteady effects of the flame structure and super-equilibrium O-concentrations
may be of less importance than is generally assumed.

Sanders et al. (1997) [25] have reexamined steady state flamelet modeling using the two
variable presumed shape pdf model for the mixture fractions and, either the scalar dissipation rate
or the strain rate as second variable. Their study revealed that only the formulation using the scalar
dissipation rate as the second variable was able to predict the Da'/? dependence of the data of
Driscoll et al. (1992) [22]. This is in agreement with results of Ferreira (1996) [26]. In addition
Sanders et al. (1997) [25] examined whether there is a difference between using a lognormal
pdf of ys: with a variance of unity and a delta function pdf and found that both assumptions gave
similar results. Their predictions improved with increasing Damkohler number and their results
also suggest that Le; = 1 is the best choice for these hydrogen flames.

For a turbulent jet flame with a fuel mixture of 31% methane and 69% hydrogen Chen and
Chang (1996) [27] performed a detailed comparison between steady state flamelet and pdf model-
ing. They found that radiative heat loss becomes increasingly important for NO predictions further
downstream in the flame. This is in agreement with the comparison of time scales by Pitsch et al.
(1998) [28] who found that radiation is too slow to be effective as far as the combustion reactions
are concerned, but that it effects NO levels considerably.
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Lecture 15

Applications in Internal Combustion

Engines
15.1 Spray-Guided Spark-Ignition Combustion

(@)

left valve i

engine swirl Y
deactivation ( \

generation

Figure 15.1: (a) Visualization of the mixture preparation process. A detailed 3D numerical sim-
ulation of the intake process with a deactivated left intake valve for enhanced swirl generation is
performed. The direct fuel spray injection is modeled using a Lagrangian spray model. The spark
plug is included in the engine mesh. (b) Unstructured computational grid (~ 222,000 grid cells)
of the engine including the model for the intake runner and the siamese port. (Reprinted with
permission by R. Dahms.)

An important application of the G-equation flamelet theory is given by the simulation of turbu-

lent combustion in spray-guided spark-ignition direct-injection (SG-SIDI) gasoline engines. These
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Cases

Intake air temperature °C 91 95 103
Engine speed rpm 1000 2000 3000
Ignition timing °CAATDC -29 -34 -40
Start of injection °CAATDC -323 -43 -59.5
End of injection °CAATDC -29 -35 -39.9
Injected fuel mass mg 5.6 9.3 1293
Mean air/fuel ratio [-] 43 27 22
Mean EGR % 49.8 44 36.2
Dilution mass fraction [-] 0.183 0.268 0.273

Table 15.1: Specifications of the investigated engine operating points. The dilution mass fraction
is defined as Ydil - }/incrt.,EGR - Yair,EGR .

engines offer substantially improved fuel economy and pollutant emission reductions compared to
stratified charge wall-guided and homogeneous charge spark-ignition systems. The closeness of
the fuel spray and the spark electrodes, shown in Fig. 15.1(a), can cause, however, unfavorable
conditions for ignition and combustion.

A novel development of flamelet models to obtain a more comprehensive understanding of
these SG-SIDI ignition processes is presented by the SparkCIMM model, recently developed by
Dahms, Fansler, Drake, Kuo, Lippert, and Peters (2009) [1]. The setup and the experimental data
of the investigated SG-SIDI gasoline engine were provided by the R&D department of the General
Motors Company in Warren, MI, U.S.A. The specifications of the investigated engine operating
points are summarized in Tab. 15.1. They differ in engine speed and load, applied level of exhaust
gas recirculation, and in the timings of fuel injection and spark-ignition. The engine is equipped
with a siamese port, a four-valve pent-roof head, and a contoured combustion bowl in the piston.
The preparation of the combustible mixture at spark-timing is calculated with a three-dimensional
CFD simulation of the gas exchange process, using a standard k& — ¢ turbulence model. The intake
runner, the siamese port, and the spark plug are included in the engine model to capture the inter-
actions of the fuel spray with the spark electrodes, shown in Fig. 15.1(b). The computational grids
for the gas exchange and the spray-guided spark-ignition combustion process comprise ~ 222,000
and ~ 97,000 grid cells, respectively. An enhanced swirl field is generated by the deactivation of
the left intake valve as presented in Fig. 15.1(a). The direct spray-injection is modeled with 25, 000
stochastic Lagrangian spray parcels coupled to the gas phase via source terms. An initial droplet

size distribution (SMD = 15 um) is assumed instead of modeling the primary breakup. More details
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Figure 15.2: Comparison of simulated (lines) and measured (symbols) pressure traces (left) and
heat release rates (right) for the investigated cases. For exemplification, the timings of the start/end
of injection (SOI/EQI) and the start of energizing (SOE) are highlighted. (Reprinted with permission
by R. Dahms.)

can be found in Dahms et al. (2009) [1].

The pressure traces and heat release rates, processed from the numerical simulation, are
compared to experimental data and presented in Fig. 15.2. The flame-development angle A6
(0 — 10% burnt fuel mass fraction, Heywood (1988) [2]) of the spark advance and the phase of
main combustion are well predicted by the SparkCIMM/G-equation combustion model.

The complicated patterns of turbulent flame front propagation, induced by the high flow velocity
and the stratified charge mixture preparation process from direct fuel-injection are presented in
Fig. 15.3. It shows the three-dimensional visualization of the spray injection and the development
of the early non-spherical turbulent flame front. Fig. 15.3 illustrates the substantial differences in

the progression of turbulent combustion among the investigated engine operating points.
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Figure 15.3: 3D visualization of the fuel spray injection (top row) and the turbulent flame front prop-
agation for all investigated cases of the spray-guided gasoline engine. (Reprinted with permission
by R. Dahms.)
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The applied engine load and mixture dilution result in significant variations of the turbulent
burning velocity. The temporal distribution of its flame front-averaged value is presented in Fig.
15.4. Local flame front values show a substantial deviation from these averaged quantities due to

distinctive mixture stratification induced in this engine operating mode.
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o

Case I _

Turbulent Burning Velocity [m/s]

20 -10 0 10 20 30 40
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Figure 15.4: Turbulent burning velocity distribution for all investigated cases. Quantities are aver-
aged over the mean turbulent flame front. (Reprinted with permission by R. Dahms.)

In Fig. 15.5, the partially-premixed combustion process of the investigated spray-guided gaso-
line engine is classified, using the regime diagram for premixed turbulent combustion by Peters
(2000) [3], depicted for Case lll. Although substantial temporal variations of turbulence and flame
front velocity and length scales are observed, Fig. 15.5 shows that the operating conditions are
located within the thin reaction zone regime throughout the whole combustion process. There,
the increase of the turbulent burning velocity with the turbulence intensity approaches the square
root dependence according to Damkdhler (1940) [4]. In this regime, the Kolmogorov eddies do not
perturb the inner layer reaction zone of the flame front so that the chemical time scales remain
unaffected by turbulence. This confirms the underlying flamelet assumption of scale separation
between the chemical kinetics and the turbulence, and demonstrates the validity of the G-equation
flamelet model to predict turbulent partially-premixed combustion in spray-guided spark-ignition
direct-injection engines.

In the following, a more detailed analysis, performed for Case I, is presented. At first, the
velocity field close to the spark plug and at spark timing is investigated in Fig. 15.6. The flow
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Figure 15.5: Location of turbulent combustion of the investigated spray-guided spark-ignition
direct-injection gasoline engine, depicted for Case Ill, within the regime diagram. The timings
of spark advance, top dead center (TDC), and burn-out are highlighted. Quantities are averaged
over the mean turbulent flame front surface. (Reprinted with permission by R. Dahms.)

field results from the direct fuel injection and the gas exchange process, which generates an
intensive swirl by the deactivation of the left intake valve. Local flow velocity magnitudes approach
||5|| = 50m/s. Also steep gradients in the local velocities are shown in Fig. 15.6, indicating high
turbulence intensities.

In Fig. 15.7, high-speed (24, 000 frames/s) broadband visible luminosity images of the spark
channel for two different individual engine cycles are presented. They show the formation and the
turbulent corrugation of the spark channel due to the local high-velocity flow, compare Fig. 15.6.
Also, localized ignition spots along the spark channel are observed, which subsequently lead to
flame kernel formations and flame front propagations. Characteristic length scales are identified
as the spark channel thickness (~ 0.05 mm) and the flame kernel length scale (~ 0.5 mm). The
spark can stretch up to ~ 10 mm from the spark plug before a restrike occurs. The gas voltage has
reached the breakdown voltage, which typically resets the spark channel to its original position
between the spark electrodes. Such a restrike is tracked between the third and fourth image of

cycle 41 in Fig. 15.7. However, such a restrike has no apparent influence on combustion, which
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Figure 15.6: Velocity field around the spark gap at ignition timing induced by the intake s!virl flow
and the direct fuel spray-injection (top right). Local flow velocity magnitudes approach ||u]| = 50
m/s. (Reprinted with permission by R. Dahms.)

proceeds due to the local conditions.

Fig. 15.8 present the distinctive scalar dissipation rates, conditioned on stoichiometric mixture

fraction, along this stretched and wrinkled spark channel at ignition timing. It is seen that the initial
high values of the scalar dissipation rate decay shortly after the start of energizing, but remain
on substantial values during the spark duration. The distribution also shows discontinuities at
simulated spark channel restrike events. If such an event is detected, the spark channel is set to
a different location. Then, fresh mixture, characterized by different scalar dissipation rates, gets
excited from that time on.
Fig. 15.9 presents a three-dimensional visualization of the distribution of the equivalence ratio,
turbulence intensity, and velocity magnitude along the spark channel at three different times after
the start of energizing. These auto-ignition and flame front propagation related quantities are used
to detect the location and time of successful flame kernel formation. Such a successful local flame
kernel propagation is predicted within the presented time-frame at ¢ ~ 470 us, using a combined
extended flamelet and Karlovitz-number criterion as discussed in Dahms (2010) [5].

The SparkCIMM analysis has shown that advecting and merging flame kernels, launched dur-

ing multiple ignition events along the restriking spark channel, result in non-spherical early turbu-
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Figure 15.7: High-speed (24, 000 frames/s) broadband visible (rich combustion) luminosity images
of the spark-channel for two different individual engine cycles, Dahms et al. (2009) [1].

Top (Cycle 1): Formation, advection, and turbulent corrugation of the spark-channel due to the
local flow field.

Bottom (Cycle 41): Localized ignition and flame kernel formation along the spark-channel. The
restrike, tracked between the third and fourth image, has no apparent influence on the propagating
flame kernel, Dahms et al. (2009) [1].

lent flame fronts. This characteristic feature of spray-guided spark-ignition systems is presented in
Fig. 15.10, showing a side-view comparison of probabilities of finding an instantaneous flame front,
processed from a classical single flame kernel model, high-speed laser-sheet Mie-scattering imag-
ing data, averaged over 200 consecutive engine cycles, and the SparkCIMM model. Apparently,
without the physical complexity of a detailed spark channel model, the characteristic non-spherical
early flame shape cannot be reproduced, which leads to subsequent deficiencies in numerical
simulation results.

The turbulent Damkdhler number, averaged over the early non-spherical mean turbulent flame
front after spark advance, is analyzed and highlighted in Fig. 15.11. The initial small Damkdhler
numbers result from rich and small scale turbulent mixtures, induced by the direct spray injection
process, leading to low laminar burning velocities and thick laminar flame thicknesses. In this
regime, highlighted in Fig. 15.11, the contribution of the turbulence intensity to the turbulent burn-

ing velocity is significantly reduced, which in turn largely depends on molecular fuel properties.
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Figure 15.8: Scalar dissipation rate x,;, conditioned on stoichiometric mixture fraction along
the spark-channel as defined in Eq. (14.46) after the start of energizing (SOE). The distribution
shows discontinuities at simulated spark-channel restrike events. (Reprinted with permission by
R. Dahms.)
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Figure 15.9: 3D visualization of (left) equivalence ratio ¢, (middle) turbulence intensity v/, and
(right) velocity magnitude ||Z*|| along the spark channel at different timings after the start of ener-
gizing (SOE), computed by the SparkCIMM model [a: ¢ = 220 us, b: ¢t = 330 us, and c¢: ¢ = 550 us].
Localized ignition and subsequent successful flame kernel formation is detected within the pre-
sented time-frame at ¢t ~ 470 us, using extended flamelet and Karlovitz-number criterions. Then,
a small (~ 0.5 mm, Maly (1978) [6]) spherical flame kernel (yellow sphere) is initialized at the
corresponding position Dahms et al. (2009) [1].
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Figure 15.10: Side-view comparison of probabilities of finding an instantaneous flame front pro-
cessed from results of (left) a single flame kernel model, (middle) experiments, and (right) the
SparkCIMM model at three times after spark breakdown, Dahms et al. (2009) [1]. A Gaussian dis-
tribution of the flame location is used to calculate the flame-location probability for the G-equation

simulations.
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Figure 15.11: Regime of low turbulent Damkdhler numbers during early non-spherical flame kernel
propagation in spray-guided spark-ignition direct-injection (SG-PICT/PICT/Lecturel5/SIDI) gaso-
line engines. In this regime, the effect of the turbulence intensity on the turbulent burning velocity
is reduced and molecular fuel properties have a substantial meaning on flame front propagation.
After a characteristic mixing time 7,,, the Damkohler number increases distinctively.

The small dots denote experimental data by Bradley (1992) [7] and the large dots their localized
average. The line results according to Eq. (13.32), assuming a fully developed and a in the mean
planar turbulent flame front. (Reprinted with permission by R. Dahms.)
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15.2 Injection-Rate Shaping in Diesel Engine Combustion

The concept of flamelet equations and Representative Interactive Flamelets (RIF) prove valuable
in the simulation of turbulent combustion in diesel engines. In this example, the concept is applied
to study the effect of top-hat and boot-shaped injection-rate shapes on ignition, combustion, and
pollutant formation as an advanced technology to achieve the stringent emission standards in the
near future.

Itis considered that boot-shaped rate comprises two different stages of injection as exemplarily
shown in Fig. 15.12. The dashed-line on the figure marks the separation between the two stages.
In the first stage, fuel injection starts and the injection rate increases to its first peak and remains
nearly constant until the beginning of the second stage. In this second stage, the injection rate
further increases from the first peak to the second peak, and then decreases till the end of injection
time. The peak injection-rate (referred to as height) in both stages of the boot injection-rate shape
is the parameter of variation in this study. Owing to a constant total injected mass and spray mo-
mentum (and nearly constant overall injection duration), three different boot-shaped rates, defined

in Fig. 15.13, were analyzed.
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Figure 15.12: An example of a boot injection-rate shape; both stages of the rate shape are also
shown in Luckhchoura (2010) [8].
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Fig. 15.13 shows the injection rate (in mg per degree CA) of the investigated boot-shaped
rates over crank angle. The increase in the injection rates of the first stage meant the decrease in
the injection rates of the second stage of a rate shape. The rate shapes are named as BH1, BH2,
and BH3 according to their peak injection-rate (height) in the first stage. Test case BH1 has the
lowest peak injection-rate in the first stage and the highest peak injection-rate in the second stage
among all the rate shapes. Whereas, BH3 has the highest peak injection-rate in the first stage and
the lowest peak injection-rate in the second stage, respectively. Test case BH2 is in the middle of
BH1 and BH3.
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Figure 15.13: Injection profiles showing variation in the height of the first stage and the second
stage of the boot-shaped rates , Luckhchoura (2010) [8].

Simulations were performed using the multiple-flamelet (M-RIF) model, shown in Fig. 15.14,
for all the rate shapes. In the case of multiple-flamelets, several flamelets could be found at the
same location due to the turbulent mixing process. Therefore, the contribution of each flamelet in
the same computational cell, I,,, is calculated from the ratio of its mean mixture fraction and the
total value of mixture fraction in the cell. Turbulent mean values of these scalars are then obtained
by using the pre-assumed shape PDF in each cell:

Zn(Tast)

Z(Tq,t)

t

274



Y (n, t ZI /PZ:ca, Yin(Z,)dZ |, n=1,2 (15.2)

Here, Y; represents the species mass fraction. For this work, the multiple-flamelet concept has
been coupled to a multi-dimensional CFD solver as shown in Fig. 15.14. The surrogate fuel
(IDEA) of diesel used in this work is a mixture of 70 % n-decane and 30 % «-methylnaphtalene

(liquid volume).
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Figure 15.14: Interaction between the CFD code and the Flamelet code, using the multiple Repre-
sentative Interactive Flamelets (M-RIF) model, Luckhchoura (2010) [8].
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The specifications of the investigated single-cylinder engine, along with the applied computa-
tional grid at top dead center are shown in Fig. 15.15. For the CFD simulation, a sector mesh
representing 1/7th of the combustion was used by taking advantage of the circumferential sym-
metry of the centrally located injector equipped with a 7-hole nozzle. During the piston stroke,
seven different computational meshes were used. A remap of solutions was done before switching
between different meshes. The different wall temperatures, color-coded in Fig. 15.15, were set
based on the experimental experience and held constant during the simulation.

Details of the flow and mixing field are shown on a vertical center plane cut through the engine.
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Figure 15.15: Engine specifications and computational grid of the 1/7th sector mesh of a single-
cylinder diesel engine at top dead center.

Fig. 15.16 shows the instantaneous gaseous velocity field. The entrainment vortices generated
by the spray plume can be clearly observed from the velocity field at 8° CA ATDC for both rate-
shapes. The piston is traveling down and a strong squish flow is directed into the squish volume
(reverse squish) from the piston bowl in both cases of top-hat and boot-shape injection profiles,
respectively. At this crank angle, about 39% of the total fuel has been injected in the top-hat
compared to about 32% of the total fuel in the boot case. The corresponding cumulative spray
momentum is about 38.5% of the total spray momentum in the case of the boot shape. As a result,
the top-hat case has a higher spray center-line velocity. The entrainment vortices induce mixing
of the relatively cold fuel vapor with the surrounding hot gases, leading to the molecular mixing
necessary for chemical reactions.

Corresponding spatial distributions of the mean mixture fraction are shown in Fig. 15.17. Itis
noticed that the spray has already impinged on the piston wall and has split between the squish
volume and the bowl volume for the top-hat shape, whereas the boot case shows lower penetration
due to lower injection rates. Thus, at this crank angle higher spray momentum and penetration in
the top-hat case would enhance the mixing compared to the boot case. In the top-hat, the initial
mixing was superior due to the higher velocities (and spray momentum) and hence the vortex has
moved deeper inside the bowl and the leading edges of the spray plume are better mixed and
leaner compared to the boot case at this crank angle. At the end of injection, both shapes ended
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Figure 15.16: Velocity fields for top-hat shape (left) and boot shape (BH1, right) at three specific
crank angles.

up with almost the same fuel mass and the injected spray momentum. Thus, in the beginning,
the fuel has entered the cylinder with much higher injection velocities in the top-hat, and for the
boot shape it happened in the latter crank angles. A higher transport of fuel for a lower increment
in the squish volume results in the richer fuel mixtures in the squish region for the boot case. At
22° CA ATDC, a comparison of the mixing field for both shapes shows that the fuel distribution is
better for the boot shape allowing the higher mixing with the surrounding air.

The discussed injection, mixing, and evaporation characteristics are also reflected in the tem-
perature fields for top-hat and boot shape injection profiles as shown in Figs. 15.18 and 15.19,
respectively. The latter shows the computed heat release rates for both injection-rate shapes. The
effect of evaporation is evident in the heat release for both shapes. Earlier start of evaporation
in the boot shape shows also early rise in the heat release rates. The top-hat shape shows the
highest premixed peak in heat release rate due to higher evaporation rates during that period.
Higher evaporation rates after 10° CA ATDC in the boot shape results in the highest peak during
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Figure 15.17: Mixing fields for top-hat shape (left) and boot shape (BH1, right) at three specific
crank angles.

diffusion-controlled combustion.

Fig. 15.20 shows the comparison of the simulated and experimentally measured pressures
for both shapes over crank angle. The measured and computed pressure evolutions show the
same trends and good agreement. The model predicts an earlier ignition in the boot case as
also seen in the experiments. This trend could be associated with the early start of injection and
fuel evaporation leading to early molecular level mixing for the boot case. The pressure rise due
to combustion is faster in the top-hat case. In addition, the peak pressure is also higher in the
top-hat case. This is a result of the higher evaporation rate for the top-hat shape between 2° and
10° CA ATDC.

Fig. 15.21 shows a qualitative comparison of the simulated and measured soot (top) and CO
(below) emissions at exhaust valve opening (EVO). The indicated concentrations are scaled to one
in the top-hat case. Similar to the experiments, the model predicts a significant reduction in both
soot and CO emissions at EVO for the boot shape.
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Figure 15.18: Temperature fields for top-hat shape (left) and boot shape (BH1, right) at three
specific crank angles. The iso-line denotes the location of stoichiometric mixture fraction.

Fig. 15.22 compares the normalized soot values (scaled to 1.0) at exhaust valve opening in
the experiments and simulations. In the experiments, lowering the injection rates in the first stage
(i.e. increasing the rates in the second stage) total in-cylinder soot decreased at exhaust valve
opening. This trend is satisfactorily captured in the simulations, though the level of reduction, with
increasing injection rates in the first stage, is lower. With increasing the injection rates in the first
stage (BH1 to BH3), the contribution from the first flamelet increases, and at the same time due
to lower injection rates in the second stage, the second flamelet contributed more. Overall, the
model-predicted results are in good agreement with the measurements.

Fig. 15.23 (left) shows the history of soot formation for the mass belonging to the first stage
over crank angle in all the test cases. The figure provides the temporal distribution of the soot
formation in each test case. In the figure, BH3 has the lowest, and BH1 has the highest peak soot
formation. One can conclude that the higher injection rates in the first stage results in a lower peak
in soot formation. However, at exhaust valve opening BH3 predicted higher soot emissions among
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Figure 15.19: Computed heat release rates for the top-hat and boot (BH1) injection profiles, Luck-
hchoura (2010) [9].

all test cases. In the second stage, shown in Fig. 15.23 (right), the soot formation started earlier for
BH3 due to the early start of ignition. The peak in soot formation shows a rather weak dependence
on the injection rates compared to the first stage. Compared to the first stage, higher soot was
formed in the second stage. Owing to the better mixing, the oxidation of the soot formed was also
efficient. Overall, rate shape corresponding to BH1 shows the improved soot oxidation among the
rate shapes. The soot formation in the cylinder is mainly a result of two factors: the first is the
soot chemistry and the second is the state of the mixture. Therefore, it is important to quantify the
effect of both factors in the soot formation for both stages as performed in Fig. 15.24. The mass
weighted PDF of the mixture fraction describes the state of the mixture, and the first soot moment
relates to the soot chemistry. The region of overlap between the profiles of the PDF and the soot
moment contributes to the soot concentration in the cylinder. Fig. 15.24 corresponds to the crank
angle where soot formation reaches its peak in all the cases for the stage-1 and stage-2. In Fig.
15.24 (left), in the region of overlap soot concentration in the cases is nearly the same but the
profile of PDF is different in each case. This indicates the different levels of mixing in each case. In
the case of BH3, the region of overlap is smaller compared to the other cases, which results in the
lowest peak in soot formation. In Fig. 15.24 (right), profiles of PDF and soot moment are quite the
same in all the cases. This explains the nearly same peak of soot formation in the second stage
for all the cases. Therefore, one can conclude that in the first stage mixing plays a significant role
in determining the soot formation, whereas in the second stage mixing as well as soot chemistry
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Figure 15.20: Comparison between the measured and the simulated pressure traces.

are controlling mechanisms for the soot formation.
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Figure 15.21: Comparison between the measured and simulated soot and CO emissions at ex-
haust valve opening (scaled to one in top-hat shape, BH1 boot-shape), Luckhchoura (2010) [9].
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Figure 15.22: Model-predicted and measured soot emissions at exhaust valve opening in all the
cases (scaled to 1.0), Luckhchoura (2010) [8].
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Figure 15.23: Soot formation history for both stages in all the test cases, Luckhchoura (2010) [8].
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Figure 15.24: Mass weighted PDF of the mixture fraction in the cylinder with the profile of the first
soot moment; crank angles correspond to their peak in the soot formation, Luckhchoura (2010) [8].
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