
Combustion Theory

CEFRC Summer School

Princeton

June 28 th - July 2 nd, 2010

Norbert Peters1

RWTH Aachen University

1Copyright c©2010 by N. Peters. This material is the property of N. Peters. It is not to be sold, reproduced or distributed
without the prior written permission of the owner.



Contents

Introduction 5

1 Thermodynamics of Combustion Systems 8

1.1 Mole Fractions and Mass Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 The Mole Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 The Mass Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 The Mass Fraction of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 The Partial Molar Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 The Partial Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 The Thermal Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.6 Stoichiometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.7 The Mixture Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Adiabatic Flame Temperature and Chemical Equilibrium 18

2.1 Chemical Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 The Chemical Potential and the Law of Mass Action . . . . . . . . . . . . . . 31

2.2 An Example: Equilibrium Calculation of the H2-Air System . . . . . . . . . . . . . . . 33

2.3 The Heterogeneous Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Fluid Dynamics and Balance Equations for Reacting Flows 40

3.1 Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Mass Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Momentum Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Kinetic Energy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1



3.5 Potential Energy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Total and Internal Energy and Enthalpy Balance . . . . . . . . . . . . . . . . . . . . 44

3.7 Transport Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Different Forms of the Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Balance Equations for Element Mass Fractions . . . . . . . . . . . . . . . . . . . . . 49

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Laminar Premixed Flame Configuration 53

4.1 The Laminar Burning Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Governing Equations for Steady Premixed Flames, Numerical Calculations and Ex-

perimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 A Field Equation Describing the Flame Position . . . . . . . . . . . . . . . . . . . . . 61

4.4 Flame Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Flame Front Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 The Thermal Flame Theory 75

5.1 Premixed Flames Based on One-step Asymptotics . . . . . . . . . . . . . . . . . . . 75

5.2 Flame Thickness and Flame Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Asymptotic Structure of Four-Step Premixed Stoichiometr ic Methane Flames 84

6.1 The Four-Step Model for Methane-Air Flames . . . . . . . . . . . . . . . . . . . . . . 85

6.2 The Asymptotic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 An Analytic Expression for the Burning Velocity . . . . . . . . . . . . . . . . . . . . . 95

6.4 Relation to the Activation Energy of the One-step Model . . . . . . . . . . . . . . . . 96

6.5 Analytic Approximations of Burning Velocities for Lean

CH4, C2H6, C2H4, C2H2, and C3H8 Flames . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Flame Extinction and Flammability Limits 104

7.1 Lean Flammability Limits of Hydrocarbon Flames . . . . . . . . . . . . . . . . . . . . 104

7.2 Extinction of a Plane Flame by Volumetric Heat Loss . . . . . . . . . . . . . . . . . . 106

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 Laminar Diffusion Flames: Basic Theory 113

2



8.1 Flamelet Structure of a Diffusion Flame . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2 The Planar Counterflow Diffusion Flame . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.3 Steady State Combustion and Quenching of Diffusion Flames with One-Step Chem-

istry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.4 Time and Length Scales in Diffusion Flames . . . . . . . . . . . . . . . . . . . . . . 125

8.5 Diffusion Flame Structure of Methane-Air Flames . . . . . . . . . . . . . . . . . . . . 128

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9 Laminar Diffusion Flame Configurations: 132

9.1 Diffusion Flames in a Stagnation Point Boundary Layer:

The Tsuji Flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.2 The Round Laminar Diffusion Flame . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.3 Single Droplet Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

10 Turbulent Combustion: The State of the Art 149

10.1 What is Specific about Turbulence with Combustion? . . . . . . . . . . . . . . . . . . 149

10.2 Statistical Description of Turbulent Flows . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.3 Navier-Stokes Equations and Turbulence Models . . . . . . . . . . . . . . . . . . . . 154

10.4 Two-Point Velocity Correlations and Turbulent Scales . . . . . . . . . . . . . . . . . . 156

10.5 Balance Equations for Reactive Scalars . . . . . . . . . . . . . . . . . . . . . . . . . 161

10.6 Moment Methods for Reactive Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . 162

10.7 Dissipation and Scalar Transport of Non-Reacting Scalars . . . . . . . . . . . . . . . 163

10.8 The Eddy Break Up and the Eddy Dissipation Model . . . . . . . . . . . . . . . . . . 165

10.9 The Pdf Transport Equation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.10The Laminar Flamelet Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.11The BML-Model and the Coherent Flamelet Model . . . . . . . . . . . . . . . . . . . 169

10.12Combustion Models used in Large Eddy Simulation . . . . . . . . . . . . . . . . . . . 170

10.13Modeling the Scalar Dissipation Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.14LES of Real Combustion Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

11 Premixed Turbulent Combustion: The Regime Diagram 184

11.1 Regimes in Premixed Turbulent Combustion . . . . . . . . . . . . . . . . . . . . . . . 184

3



11.2 Regimes in Premixed Combustion LES . . . . . . . . . . . . . . . . . . . . . . . . . 194

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

12 The Level Set Approach for Turbulent Premixed Combustion 200

12.1 The Level Set Approach for the Thin Reaction Zones Regime . . . . . . . . . . . . . 205

12.2 A Common Level Set Equation for Both Regimes . . . . . . . . . . . . . . . . . . . . 208

12.3 Modeling Premixed Turbulent Combustion Based on the Level Set Approach . . . . 210

12.4 Equations for the Mean and the Variance of G . . . . . . . . . . . . . . . . . . . . . . 214

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

13 The Turbulent Burning Velocity 221

13.1 The Turbulent Burning Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

13.2 A Model Equation for the Flame Surface Area Ratio . . . . . . . . . . . . . . . . . . 226

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

14 Non-Premixed Turbulent Combustion: The Flamelet Concep t 238

14.1 The Presumed Shape Pdf Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

14.2 The Round Turbulent Jet Diffusion Flame . . . . . . . . . . . . . . . . . . . . . . . . 242

14.3 Experimental Data from Turbulent Jet Diffusion Flames . . . . . . . . . . . . . . . . 247

14.4 Laminar Flamelet Equations for Nonpremixed Combustion . . . . . . . . . . . . . . . 251

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

15 Applications in Internal Combustion Engines 262

15.1 Spray-Guided Spark-Ignition Combustion . . . . . . . . . . . . . . . . . . . . . . . . 262

15.2 Injection-Rate Shaping in Diesel Engine Combustion . . . . . . . . . . . . . . . . . . 274

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

4



Introduction

This text is a reduced English version of the material prepared for my combustion class at the

RWTH Aachen Technical University. It is intended as an introduction to the fundamentals of com-

bustion science with the aim to supply the basic notions and equations for more detailed numerical

investigations. With modern computational tools and facilities numerical calculations with large

codes aiming to predict the performance of combustion devices such as furnaces, reciprocative

engines and gas turbines are feasible. Whether they will partly or fully replace experimental in-

vestigations will largely depend on the reliability of the combustion models used. While there is

a large scientific community concerned with Computational Fluid Dynamics and the improvement

of turbulence models, the know-how in combustion modeling seems to be restricted to specialists.

The reason for this is the complexity of the subject which requires advanced knowledge in thermo-

dynamics, chemical kinetics and fluid mechanics. At the interface of these disciplines combustion

emerges as a science which is able to predict rather than to merely describe experimentally ob-

served phenomena. In order to classify combustion phenomena it has been useful to introduce

two types of situations with respect to mixing: Premixed and non-premixed combustion. For lami-

nar flames issuing from a tube burner these two models of combustion are shown in Fig. 1. If fuel

and air are already mixed within the tube, as in the case of a Bunsen burner, and the gas is ignited

downstream, a premixed flame front will propagate towards the burner until it finds its steady state

position in the form of the well-known Bunsen cone. The fundamental quantity which describes

this mode of combustion is the laminar burning velocity. It is the velocity at which the flame front

propagates normal to itself into the unburned mixture. For the steady state Bunsen cone the burn-

ing velocity therefore must be equal to the flow velocity vn normal to the flame front. Behind the

flame front yet unburnt intermediates as CO and H2 will mix with the air entrained from outside

and lead to post flame oxidation and radiation. The other mode of combustion is that in a diffusion

flame. Here no air is mixed with the fuel within the tube of the burner. This may be achieved but
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premixed flame                               diffusion flame

post flame 
oxidation

and radiation

premixed
flame front

sL = vn

fuel + air                                          fuel 

air air

surface of
stoichiometric

mixture

post flame
radiation

Figure 1: Different modes of laminar combustion

using a simply tube or by closing the air inlet in a Bunsen burner. Then only fuel issues from the

tube as shown in the second picture in Fig. 1. It mixes with the surrounding air by convection

and diffusion during combustion. Optimal conditions for combustion are restricted to the vicinity of

the surface of stoichiometric mixture. This is the surface where fuel and air are locally mixed in a

proportion that allows both to be entirely consumed. This will lead to the highest flame tempera-

ture and, due to the temperature sensitivity of the chemical reactions, to the fastest reaction rates.

Since in most cases combustion is much faster than diffusion the latter is the rate limiting step that

controls the entire process. This is the reason why those flames, where the reactants are initially

non-premixed, are called diffusion flames. Premixed flames appear with a blue to bluish-green

color, while diffusion flames radiate in a bright yellow color. The blue color of premixed flames is

due to chemiluminescence of some excited species (C2 and CH radicals), while the yellow color of

diffusion flames is caused by radiating soot particles which dominate over the chemiluminescence

that is also present in at the base of a diffusion flame. Close to the burner there appears blue layer

since the local residence time is too short for soot particles to be formed. This leads to the conclu-

sion that the color of a flame is characteristic for the available residence time rather than the mode

6



of mixing. Premixed Flames are used whenever intense combustion is required within a small

volume. This is the case in household appliances and spark ignition engines. In such an engine

a premixed turbulent flame front propagates from the spark through the combustion chamber until

the entire mixture is burnt. An example for non-premixed combustion are Diesel engines, where

a liquid fuel spray is injected into the compressed hot air within the cylinder. It rapidly evaporates

and mixes with the air and then auto-ignition under partly premixed conditions. The final stage

at combustion occurs under non-premixed conditions. Finally, large combustion devices such as

furnaces, operate under non-premixed conditions because premixing of large volumes of fuel and

air would represent a serious safety hazard.

The classification of combustion phenomena into premixed and non-premixed combustion is

used throughout this text. After an introduction into the basic thermodynamics of combustion sys-

tems in Lecture 1, a simplified calculation of the adiabatic flame temperature and an approximate

calculation of equilibrium constants is presented in Lecture 2. The balance equations of fluid dy-

namics are presented shortly in Lecture 3, laminar premixed flames are treated in Lecture 4-7 and

laminar diffusion flames in Lectures 8 and 9. Then an introduction into turbulent combustion is

given in Lecture 10. Premixed turbulent combustion is presented in terms of the regime diagram

in Lecture 11, the level set approach and the turbulent burning velocity is presented in Lectures

12 and 13, while non-premixed turbulent combustion is treated in Lecture 14. Finally, in Lecture

15 applications in engines closes the text. In preparing these lectures and the text I have enjoyed

the support from many of my students and friends. I am particular indebted to Bernd Binninger for

cross-reading the manuscript and for the preparation of many of the figures. I could also rely on

the efficiency of Sonja Engels in preparing the manuscript.
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Lecture 1

Thermodynamics of Combustion

Systems

Combustion is a mass and energy conversion process during which chemical bond energy is

transformed to thermal energy. The fuel reacts with the oxygen of the air to form products such

as carbon dioxide and water which have a lower enthalpy of formation or reference enthalpy than

the reactants. The details of the reaction mechanism that leads from the reactants to the products

will be presented by other lectures of this summer school. In this lecture we will only consider

the initial and the final state of a homogeneous system and use the classical balance laws of

thermodynamics. This global view is much simpler and leads in Lecture 2 to some useful results

such as the adiabatic flame temperature. We will first present definitions of concentrations and

other thermodynamic variables and present the mass and energy balance for multicomponent

systems.

1.1 Mole Fractions and Mass Fractions

When chemical species react with each other to form other species, their basic constituents, the

chemical elements are conserved. The particular atom defining the element, a C atom within a

CH4 molecule, for example, will be found within the CO2 molecule after combustion is completed.

In order to describe the chemical transformation between species quantitatively, we need to intro-

duce definitions for concentrations. Since different descriptions are being used in the combustion
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literature, it is useful to present these first and to relate them to each other.

1.2 The Mole Fraction

We consider a multi-component system with k different chemical species that contains a large

number of molecules. Then 6.0236 ·1023 molecules are defined as one mole. The number of moles

of species i denoted by ni and its sum is the total number of moles ns

ns =

k∑

i=1

ni. (1.1)

The mole fraction of species i is now defined

Xi ≡
ni

ns
, i = 1, 2, . . . , k. (1.2)

1.2.1 The Mass Fraction

The mass mi of all molecules of species i is related to its number of moles by

mi =Wi ni, i = 1, 2, . . . , k, (1.3)

where Wi is the molecular weight of species i. For some important species in combustion Wi is

given in Tab. 2.1. The total mass of all molecules in the mixture is

m =

k∑

i=1

mi. (1.4)

The mass fraction of species i is now defined

Yi =
mi

m
, i = 1, 2, . . . , k. (1.5)

Defining the mean molecular weight W by

m =W ns (1.6)

9



one obtains the relation between mole fractions and mass fractions as

Yi =
Wi

W
Xi, i = 1, 2, . . . , k. (1.7)

The mean molecular weight may be calculated if either the mole fractions or the mass fractions

are known

W =

k∑

i=1

WiXi =
[ k∑

i=1

Yi
Wi

]−1

. (1.8)

1.2.2 The Mass Fraction of Elements

In addition, the mass fraction of elements is very useful in combustion. While the mass of the

species changes due to chemical reactions, the mass of the elements is conserved. We denote

by mj the mass of all atoms of element j contained in all molecules of the system. If aij is the

number of atoms of element j in a molecule of species i and Wj is the molecular weight of that

atom, the mass of all atoms j in the system is

mj =

k∑

i=1

aijWj

Wi
mi, j = 1, 2, . . . , ke, (1.9)

where ke is the total number of elements in the system. The mass fraction of element j is then

Zj =
mj

m
=

k∑

i=1

aijWj

Wi
Yi =

Wj

W

k∑

i=1

aijXi, j = 1, 2, . . . , ke, (1.10)

Notice that no meaningful definition for the mole fraction of elements can be given because only

the mass of the elements is conserved. From the definitions above it follows that

k∑

i=1

Xi = 1,

k∑

i=1

Yi = 1,

ke∑

j=1

Zj = 1. (1.11)

1.2.3 The Partial Molar Density

An additional variable defining a concentration, that is frequently used in chemical kinetics, is the

number of moles per unit volume or partial molar density

[Xi] =
ni

V
, i = 1, 2, . . . , k, (1.12)

10



where V is the volume of the system. The molar density of the system is then

ns

V
=

k∑

i=1

[Xi]. (1.13)

1.2.4 The Partial Density

The density and the partial density are defined

ρ =
m

V
, ρi =

mi

V
= ρYi, i = 1, 2, . . . , k. (1.14)

The partial molar density is related to the partial density and the mass fraction by

[Xi] =
ρi
Wi

=
ρYi
Wi

, i = 1, 2, . . . , k. (1.15)

1.2.5 The Thermal Equation of State

In most combustion systems of technical interest the law of ideal gases is valid. Even for high

pressure combustion this is a sufficiently accurate approximation because the temperatures are

typically also very high. In a mixture of ideal gases the molecules of species i exert on the sur-

rounding walls of the vessel the partial pressure pi

pi =
niRT
V

= [Xi]RT =
ρYi
Wi

RT, i = 1, 2, . . . , k. (1.16)

Here R is the universal gas constant equal to 8.3143 J/mol/K. Dalton’s law states that for an

ideal gas the total pressure is equal to the sum of the partial pressures. This leads to the thermal

equation of state for a mixture of ideal gases

p =

k∑

i=1

pi = ns
RT
V

=
ρRT
W

, (1.17)

where Eqs. (1.6) and (1.14) have been used. From Eqs. (1.16), (1.17), and (1.2) it follows that the

partial pressure is equal to the total pressure times the mole fraction

pi = pXi, i = 1, 2, . . . , k. (1.18)
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Furthermore, defining the partial volume by

Vi =
niRT
p

, i = 1, 2, . . . , k, (1.19)

it follows that an equivalent relation exists for the partial volume

Vi = V Xi, i = 1, 2, . . . , k. (1.20)

1.2.6 Stoichiometry

Equations describing chemical reactions such as

H2 +
1

2
O2 = H2O (1.21)

or

H+O2

kf−⇀↽−
kb

OH+O (1.22)

are based on the principle of element conservation during reaction and define the stoichiometric

coefficients ν′i of the reactant i on the left hand side and ν′′i of the product i on the right hand side.

The first example above corresponds to a global reaction while the second one, where the equal

sign is replaced by arrows, denotes an elementary reaction that takes place with a finite reaction

rate (conf. Lecture 2). Formally a reaction equation may be cast into the form

k∑

i=1

ν′iMi =
k∑

i=1

ν′′i Mi (1.23)

where Mi stands for the chemical symbol of species i. The net stoichiometric coefficient

νi = ν′′i − ν′i, i = 1, 2, . . . , k (1.24)

is positive for products and negative for reactants. A system of r elementary reactions may formally

then be written
k∑

i=1

vilMi = 0, l = 1, 2, . . . , r (1.25)

where νil is the net stoichiometric coefficient of species i in reaction l.

The stoichiometry defined by the reaction equation relates the molar production or consumption
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of species to each other. The change of the number of moles of species i to that of species 1 is

dni

νi
=

dn1

ν1
, i = 2, . . . , k. (1.26)

With Eq. (1.3) the relation between the partial masses is

dmi

νiWi
=

dm1

ν1W1
, i = 2, . . . , k. (1.27)

Since the total mass in the system is independent of the chemical reaction (while the total number

of moles is not), the relation between mass fractions is

dYi
νiWi

=
dY1
ν1W1

, i = 2, . . . , k. (1.28)

A fuel-air mixture is called stoichiometric, if the fuel-to-oxygen ratio is such that both are entirely

consumed when combustion to CO2 and H2O is completed. For example, the global reaction

describing the combustion of a single component hydrocarbon fuel CmHn (subscript F) is

ν′FCmHn + ν′O2
O2 = ν′′CO2

CO2 + ν′′H2OH2O (1.29)

the stoichiometric coefficients are

νF = 1, ν′O2
= m+

n

4
, ν′′CO2

= m ν′′H2O =
n

2
(1.30)

where ν′F may be chosen arbitrarily to unity. Stoichiometric mixture requires that the ratio of the

number of moles of fuel and oxidizer in the unburnt mixture is equal to the ratio of the stoichiometric

coefficients
nO2,u

nF,u

∣∣∣
st

=
ν′O2

ν′F
(1.31)

or in terms of mass fractions
YO2,u

YF,u

∣∣∣
st
=
ν′O2

WO2

ν′FWF
= ν, (1.32)

where ν is called the stoichiometric mass ratio. Then fuel and oxidizer are both consumed when

combustion is completed. Integrating Eq. (1.28) with i = O2, 1 = F between the initial unburnt
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state (subscript u) and any later state leads to

YO2
− YO2,u

ν′O2
WO2

=
YF − YF,u
ν′FWF

. (1.33)

This may be written as

νYF − YO2
= νYF,u − YO2,u. (1.34)

For a stoichiometric mixture fuel and oxygen are completely consumed at the end of combustion,

YF = YO2
= 0. Introducing this into Eqs. (1.34), (1.32) is recovered.

1.2.7 The Mixture Fraction

The mixture fraction is an extremely useful variable in combustion, in particular for diffusion flames

(Lectures 9, 10, 12, and 13). Here we present it first for a homogeneous system. In a two-

feed system, where a fuel stream (subscript 1) with mass flux m1 is mixed with an oxidizer stream

(subscript 2) with mass flux m2, the mixture fraction represents the mass fraction of the fuel stream

in the mixture

Z =
m1

m1 +m2
. (1.35)

Both fuel and oxidizer streams may contain inerts such as nitrogen. The mass fraction YF,u of the

fuel in the mixture is proportional to the mass fraction in the original fuel stream, so

YF,u = YF,1Z (1.36)

where YF,1 denotes the mass fraction of fuel in the fuel stream. Similarly, since 1 − Z represents

the mass fraction of the oxidizer stream in the mixture, one obtains for the mass fraction of oxygen

in the mixture

YO2,u = YO2,2(1 − Z), (1.37)

where YO2,2 represents the mass fraction of oxygen in the oxidizer stream (YO2,2 = 0.232 for air).

Introducing Eqs. (1.36) and (1.37) into Eq. (1.34) one obtains the mixture fraction as a variable

that couples the mass fractions of the fuel and the oxygen

Z =
νYF − YO2

+ YO2,2

νYF,1 + YO2,2
. (1.38)
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For a stoichiometric mixture one obtains with νYF = YO2
the stoichiometric mixture fraction

Zst =
YO2,2

νYF,1 + YO2,2
(1.39)

If Z < Zst fuel is deficient and the mixture is called fuel lean. Then, combustion terminates when

all the fuel is consumed, YF,b = 0 in the burnt gas (subscript b). The remaining oxygen mass

fraction in the burnt gas is calculated from Eq. (1.38) as

YO2,b = YO2,2

(
1− Z

Zst

)
, Z ≤ Zst (1.40)

where Eq. (1.39) was used. Similarly, if Z > Zst oxygen is deficient and the mixture is called fuel

rich. Combustion then terminates when all the oxygen is consumed, YO2,b = 0, leading to

YF,b = YF,1
Z − Zst

1− Zst
, Z ≥ Zst. (1.41)

For the hydrocarbon fuel considered above the element mass fractions in the unburnt mixture are

ZC = m
WC

WF
YF,u, ZH = n

WH

WF
YF,u, ZO = YO2,u (1.42)

or
ZC

mWC
=

ZH

nWH
=

YF,u
ν′FWF

. (1.43)

For a stoichiometric mixture where
YO2u

ν′O2
WO2

=
YF,u
ν′FWF

(1.44)

it follows that the combination

β =
ZC

mWC
+

ZH

nWH
− 2

ZO

ν′O2
WO2

(1.45)

vanishes. Normalizing this such that the variable Z = 1 in the fuel stream and Z = 0 in the oxidizer

stream, one obtains Bilger’s definition

Z =
β − β2
β1 − β2

(1.46)

or

Z =
ZC/(mWC) + ZH/(nWH) + 2(YO2,u − ZO)/(ν

′
O2
WO2

)

ZC,1/(nWC) + ZH,1/(mWH) + 2YO2,u/(ν
′
O2
WO2

)
. (1.47)
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Figure 1.1: Profiles of YF, YO2
, YCO2

and YH2O in the unburnt and burning gas

Because elements are conserved during combustion, the element mass fractions calculated from

Eq. (1.10) do not change. For the burnt gas they are

ZC = m
WC

WF
YF,b +

WC

WCO2

YCO2,b (1.48)

ZH = n
WH

WF
YF,b + 2

WH

WH2O
YH2O,b (1.49)

ZO = 2
WO

WO2

YO2,b + 2
WO

WCO2

YCO2,b +
WO

WH2OYH2O,b
. (1.50)

This leads with Eq. (1.36) and YF,b = 0 for Z ≤ Zst and Eq. (1.38) for Z ≥ Zst to piecewise linear

relations of the product mass fractions in terms of Z

Z ≤ Zst : YCO2,b = YCO2,st
Z

Zst
, YH2O,b = YH2O,st

Z

Zst
(1.51)

Z ≥ Zst : YCO2,b = YCO2,st
1− Z

1− Zst
, YH2O,b = YH2O,st

1− Z

1− Zst
. (1.52)

where

YCO2,st = YF,1Zst
mWCO2

WF
(1.53)
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Profiles of YF and YO2
in the unburnt and in the burnt gas and product profiles are shown in Fig. 1.1.

The fuel-air equivalence ratio is the ratio of fuel-air ratio in the unburnt to that of a stoichiometric

mixture

φ =
YF,u/YO2,u

(YF,u/YO2,u)st
=
νYF,u
YO2,u

. (1.54)

Introducing Eqs. (1.36) and (1.37) into Eq. (1.38) leads with Eq. (1.39) to a unique relation

between the equivalence ratio and the mixture fraction

φ =
Z

1− Z

(1− Zst)

Zst
. (1.55)

This relation is also valid for multicomponent fuels (conf. Exercise 1.1). It illustrates that the mixture

fraction is simply another expression for the local equivalence ratio.

Exercise 1.1

The element mass fractions ZH,F, ZC,F of a mixture of hydrocarbons and its mean molecular weight

W are assumed to be known. Determine its stoichiometric mixture fraction in air!
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Lecture 2

Adiabatic Flame Temperature and

Chemical Equilibrium

The first law of thermodynamics describes the balance between different forms of energy and

thereby defines the internal energy.

du+ pdv = dh− vdp = δq + δwR (2.1)

Here δq is the heat transfer from the surroundings, δwR is the frictional work, du is the change

of internal energy and pdv is the work due to volumetric changes, where v = 1/ρ is the specific

volume 1. The specific enthalpy h is related to the specific inner energy u by

h = u+ pv, (2.2)

which for an ideal gas also reads

h = u+
RT
W

. (2.3)

In a multicomponent system, the specific internal energy and specific enthalpy are the mass

1The different notation of infinitesimal quantities in Eq. (2.1) is chosen to discriminate between variables of state like
internal energy, enthalpy, pressure and volume, which have a total differential written d, whereas heat and work are pro-
cess dependent quantities, of which infinitesimal small amounts are indicated with a δ. This perfectly corresponds to the

difference in notation of integrals such as u2 − u1 =

∫
2

1

du and q12 =

∫
2

1

δq!
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weighted sums of the specific quantities of all species

u =
k∑

i=1

Yi ui, h =
k∑

i=1

Yi hi. (2.4)

For an ideal gas the partial specific enthalpy is related to the partial specific internal energy by

hi = ui +
RT
Wi

, i = 1, 2, . . . , k (2.5)

and both depend only on temperature. The temperature dependence of the partial specific en-

thalpy is given by

hi = hi,ref +

∫ T

Tref

cpidT, i = 1, 2, . . . , k (2.6)

Here cpi is the specific heat capacity at constant pressure and hi,ref is the reference enthalpy

at the reference temperature Tref . This temperature may be arbitrarily chosen, most frequently

Tref = 0 K or Tref = 298.15 K are being used. The partial molar enthalpy is

Hi =Wi hi, i = 1, 2, . . . , k, (2.7)

and its temperature dependence is

Hi = Hi,ref +

∫ T

Tref

CpidT, i = 1, 2, . . . , k, (2.8)

where the molar heat capacity at constant pressure is

Cpi =Wicpi, i = 1, 2, . . . , k. (2.9)

In a multicomponent system, the specific heat capacity at constant pressure of the mixture is

cp =

∫ k

i=1

Yicpi. (2.10)

In Tab. 2.1 the molar reference enthalpies at Tref = 298.15 K of a number of species are listed.

It should be noted that the reference enthalpies of H2, O2, N2, and solid carbon were chosen

as zero, because they represent the chemical elements. Reference enthalpies of combustion

products such as CO2 and H2O are typically negative. The temperature dependence of Cpi, Hi
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and Si may be calculated from the NASA polynomials Tab. 2.2

Tab. 2.1, Legend see page 22

Nr. species Mi Hi,ref Si,ref πA,i πB,i

kg/kmol kJ/mol kJ/(molK)

1 H◦ 1.008 217.986 114.470 -1.2261 1.9977

2 HNO◦ 31.016 99.579 220.438 -1.0110 4.3160

3 OH◦ 17.008 39.463 183.367 3.3965 2.9596

4 HO◦
2 33.008 20.920 227.358 -1.1510 4.3160

5 H2 2.016 0.000 130.423 -2.4889 2.8856

6 H2O 18.016 -241.826 188.493 -1.6437 3.8228

7 H2O2 34.016 -136.105 233.178 -8.4782 5.7218

8 N◦ 14.008 472.645 153.054 5.8661 1.9977

9 NO 30.008 90.290 210.442 5.3476 3.1569

10 NO2 46.008 33.095 239.785 -1.1988 4.7106

11 N2 28.016 0.000 191.300 3.6670 3.0582

12 N2O 44.016 82.048 219.777 -5.3523 4.9819

13 O◦ 16.000 249.194 160.728 6.8561 1.9977

14 O2 32.000 0.000 204.848 4.1730 3.2309

15 O3 48.000 142.674 238.216 -3.3620 5.0313

16 NH◦ 15.016 331.372 180.949 3.0865 2.9596

17 NH◦
2 16.024 168.615 188.522 -1.9835 3.8721

18 NH3 17.032 -46.191 192.137 -8.2828 4.8833

19 N2H2 30.032 212.965 218.362 -8.9795 5.4752

20 N2H
◦
3 31.040 153.971 228.513 -17.5062 6.9796

21 N2H
◦
4 32.048 95.186 236.651 -25.3185 8.3608

22 C◦ 12.011 715.003 157.853 6.4461 1.9977

23 CH◦ 13.019 594.128 182.723 2.4421 3.0829

24 HCN◦ 27.027 130.540 201.631 -5.3642 4.6367

25 HCNO 43.027 -116.733 238.048 -10.1563 6.0671

26 HCO◦ 29.019 -12.133 224.421 -10.2313 4.2667

27 CH◦
2 14.027 385.220 180.882 -5.6013 4.2667

Continuation see next page
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Continuation of Tab. 2.1

Nr. species Mi
Hi,ref Si,ref πA,i πB,i

kg/kmol kJ/mol kJ/(molK)

28 CH2O 30.027 -115.896 218.496 -8.5350 5.4012

29 CH◦
3 15.035 145.686 193.899 -10.7155 5.3026

30 CH2OH◦ 31.035 -58.576 227.426 -15.3630 6.6590

31 CH4 16.043 -74.873 185.987 -17.6257 6.1658

32 CH3OH 32.043 -200.581 240.212 -18.7088 7.3989

33 CO 28.011 -110.529 197.343 4.0573 3.1075

34 CO2 44.011 -393.522 213.317 -5.2380 4.8586

35 CN◦ 26.019 456.056 202.334 4.6673 3.1075

36 C◦
2 24.022 832.616 198.978 1.9146 3.5268

37 C2H
◦ 25.030 476.976 207.238 -4.6242 4.6367

38 C2H2 26.038 226.731 200.849 -15.3457 6.1658

39 C2H
◦
3 27.046 279.910 227.861 -17.0316 6.9056

40 CH3CO
◦ 43.046 -25.104 259.165 -24.2225 8.5334

41 C2H4 28.054 52.283 219.468 -26.1999 8.1141

42 CH3COH◦ 44.054 -165.979 264.061 -30.7962 9.6679

43 C2H
◦
5 29.062 110.299 228.183 -32.8633 9.2980

44 C2H6 30.070 -84.667 228.781 -40.4718 10.4571

45 C3H8 44.097 -103.847 269.529 -63.8077 14.7978

46 C4H
◦
2 50.060 465.679 250.437 -34.0792 10.0379

47 C4H
◦
3 51.068 455.847 273.424 -36.6848 10.8271

48 C4H8 56.108 16.903 295.298 -72.9970 16.7215

49 C4H10 58.124 -134.516 304.850 -86.8641 19.0399

50 C5H10 70.135 -35.941 325.281 -96.9383 20.9882

51 C5H12 72.151 -160.247 332.858 -110.2702 23.3312

52 C6H12 84.152 -59.622 350.087 -123.2381 25.5016

53 C6H14 86.178 -185.560 380.497 -137.3228 28.2638

54 C7H14 98.189 -72.132 389.217 -147.4583 29.6956

55 C7H16 100.205 -197.652 404.773 -162.6188 32.6045

56 C8H16 112.216 -135.821 418.705 -173.7077 34.5776

Continuation see next page
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Continuation of Tab. 2.1

Nr. species Mi
Hi,ref Si,ref πA,i πB,i

kg/kmol kJ/mol kJ/(molK)

57 C8H18 114.232 -223.676 430.826 -191.8158 37.6111

58 C2H40 44.054 -51.003 243.044 -34.3705 9.7912

59 HNO3 63.016 -134.306 266.425 -19.5553 9.7912

60 He 4.003 0.000 125.800 - -

61 Ar 39.944 0.000 154.599 - -

62 Csolid 12.011 0.000 0.000 -9.975 1.719

Table 2.1: Molecular data for some important species in combus-

tion at Tref = 298.15 K. Superscripts ◦ denote chemical radicals.)

.

Cpi

R = a1 + a2 T/K+ a3 (T/K)2 + a4 (T/K)3 + a5 (T/K)4

Hi

RT
= a1 + a2

T/K

2
+ a3

(T/K)2

3
+ a4

(T/K)3

4
+ a5

(T/K)4

5
+

a6
T/K

(2.11)

Si

R = a1 ln(T/K) + a2 T/K+ a3
(T/K)2

2
+ a4

(T/K)3

3
+ a5

(T/K)4

4
+ a7 + ln(p/p0).

Let us consider the first law for an adiabatic system (δq = 0) at constant pressure (dp = 0) and

neglect the work done by friction (δwR = 0). From Eq. (2.1) we then have dh = 0 which may be

integrated from the unburnt to the burnt state as

hu = hb (2.12)

or
k∑

i=1

Yi,u hi,u =

k∑

i=1

Yi,b hi,b. (2.13)
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Tab. 2.2, NASA Polynomials for two temperature ranges and standard pressure p = 1 atm

H2 temperature range: 1000 < T < 5000

a1 = +0.29914234E+01 a2 = +0.70006441E−03 a3 = −0.56338287E−07 a4 = −0.92315782E− 11
a5 = +0.15827518E−14 a6 = −0.83503399E+03 a7 = −0.13551102E+01

temperature range: 300 < T < 1000

a1 = +0.32981243E+01 a2 = +0.82494417E−03 a3 = −0.81430153E−06 a4 = −0.94754343E− 10
a5 = +0.41348722E−12 a6 = −0.10125209E+04 a7 = +0.32940941E+01

O2 temperature range: 1000 < T < 5000

a1 = +0.36975782E+01 a2 = +0.61351969E−03 a3 = −0.12588419E−06 a4 = +0.17752815E− 10
a5 = −0.11364353E−14 a6 = −0.12339302E+04 a7 = +0.31891656E+01

temperature range: 300 < T < 1000

a1 = +0.32129364E+01 a2 = +0.11274863E−02 a3 = −0.57561505E−06 a4 = +0.13138772E− 08
a5 = −0.87685539E−12 a6 = −0.10052490E+04 a7 = +0.60347376E+01

N2 temperature range: 1000 < T < 5000

a1 = +0.29266400E+01 a2 = +0.14879767E−02 a3 = −0.56847608E−06 a4 = +0.10097038E− 09
a5 = −0.67533513E−14 a6 = −0.92279767E+03 a7 = +0.59805279E+01

temperature range: 300 < T < 1000

a1 = +0.32986769E+01 a2 = +0.14082404E−02 a3 = −0.39632223E−05 a4 = +0.56415153E− 08
a5 = −0.24448549E−11 a6 = −0.10208999E+04 a7 = +0.39503722E+01

Continuation next page
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Continuation Tab. 2.2, NASA Polynomials for two temperature ranges and standard pressure p = 1 atm

CO temperature range: 1000 < T < 5000

a1 = +0.30250781E+01 a2 = +0.14426885E−02 a3 = −0.56308278E−06 a4 = +0.10185813E− 09
a5 = −0.69109515E−14 a6 = −0.14268349E+05 a7 = +0.61082177E+01

temperature range: 300 < T < 1000

a1 = +0.32624516E+01 a2 = +0.15119408E−02 a3 = −0.38817552E−05 a4 = +0.55819442E− 08
a5 = −0.24749512E−11 a6 = −0.14310539E+05 a7 = +0.48488969E+01

CO2 temperature range: 1000 < T < 5000

a1 = +0.44536228E+01 a2 = +0.31401687E−02 a3 = −0.12784105E−05 a4 = +0.23939967E− 09
a5 = −0.16690332E−13 a6 = −0.48966961E+05 a7 = −0.95539588E+00

temperature range: 300 < T < 1000

a1 = +0.22757246E+01 a2 = +0.99220723E−02 a3 = −0.10409113E−04 a4 = +0.68666868E− 08
a5 = −0.21172801E−11 a6 = −0.48373141E+05 a7 = +0.10188488E+02

H2O temperature range: 1000 < T < 5000

a1 = +0.26721456E+01 a2 = +0.30562929E−02 a3 = −0.87302601E−06 a4 = +0.12009964E− 09
a5 = −0.63916179E−14 a6 = −0.29899209E+05 a7 = +0.68628168E+01

temperature range: 300 < T < 1000

a1 = +0.33868425E+01 a2 = +0.34749825E−02 a3 = −0.63546963E−05 a4 = +0.69685813E− 08
a5 = −0.25065884E−11 a6 = −0.30208113E+05 a7 = +0.25902328E+01

Continuation next page
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Continuation Tab. 2.2, NASA Polynomials for two temperature ranges and standard pressure p = 1 atm

CH4 temperature range: 1000 < T < 5000

a1 = +0.16834788E+01 a2 = +0.10237235E−01 a3 = −0.38751286E−05 a4 = +0.67855849E− 09
a5 = −0.45034231E−13 a6 = −0.10080787E+05 a7 = +0.96233949E+01

temperature range: 300 < T < 1000

a1 = +0.77874148E+00 a2 = +0.17476683E−01 a3 = −0.27834090E−04 a4 = +0.30497080E− 07
a5 = −0.12239307E−10 a6 = −0.98252285E+04 a7 = +0.13722195E+02

C3OH temperature range: 1000 < T < 5000

a1 = +0.36012593E+01 a2 = +0.10243223E−01 a3 = −0.35999217E−05 a4 = +0.57251951E− 09
a5 = −0.33912719E−13 a6 = −0.25997155E+05 a7 = +0.47056025E+01

temperature range: 300 < T < 1000

a1 = +0.57153948E+01 a2 = −0.15230920E−01 a3 = +0.65244182E−04 a4 = −0.71080873E− 07
a5 = +0.26135383E−10 a6 = −0.25642765E+05 a7 = −0.15040970E+01

C2H6 temperature range: 1000 < T < 5000

a1 = +0.48259382E+01 a2 = +0.13840429E−01 a3 = −0.45572588E−05 a4 = +0.67249672E− 09
a5 = −0.35981614E−13 a6 = −0.12717793E+05 a7 = −0.52395067E+01

temperature range: 300 < T < 1000

a1 = +0.14625387E+01 a2 = +0.15494667E−01 a3 = +0.57805073E−05 a4 = −0.12578319E− 07
a5 = +0.45862671E−11 a6 = −0.11239176E+05 a7 = +0.14432295E+02

Continuation next page
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Continuation Tab. 2.2, NASA Polynomials for two temperature ranges and standard pressure p = 1 atm

C2H4 temperature range: 1000 < T < 5000

a1 = +0.35284188E+01 a2 = +0.11485184E−01 a3 = −0.44183853E−05 a4 = +0.78446005E− 09
a5 = −0.52668485E−13 a6 = +0.44282886E+04 a7 = +0.22303891E+01

temperature range: 300 < T < 1000

a1 = −0.86148798E+00 a2 = +0.27961628E−01 a3 = −0.33886772E−04 a4 = +0.27851522E− 07
a5 = −0.97378789E−11 a6 = +0.55730459E+04 a7 = +0.24211487E+02

C2H2 temperature range: 1000 < T < 5000

a1 = +0.44367704E+01 a2 = +0.53760391E−02 a3 = −0.19128167E−05 a4 = +0.32863789E− 09
a5 = −0.21567095E−13 a6 = +0.25667664E+05 a7 = −0.28003383E+01

temperature range: 300 < T < 1000

a1 = +0.20135622E+01 a2 = +0.15190446E−01 a3 = −0.16163189E−04 a4 = +0.90789918E− 08
a5 = −0.19127460E−11 a6 = +0.26124443E+05 a7 = +0.88053779E+01

C3H8 temperature range: 1000 < T < 5000

a1 = +0.75252171E+01 a2 = +0.18890340E−01 a3 = −0.62839244E−05 a4 = +0.91793728E− 09
a5 = −0.48124099E−13 a6 = −0.16464547E+05 a7 = −0.17843903E+02

temperature range: 300 < T < 1000

a1 = +0.89692080E+00 a2 = +0.26689861E−01 a3 = +0.54314251E−05 a4 = −0.21260007E− 07
a5 = +0.92433301E−11 a6 = −0.13954918E+05 a7 = +0.19355331E+02

Continuation next page
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Continuation Tab. 2.2

C7H16 temperature range: 1000 < T < 5000

a1 = +0.22818893E+02 a2 = +0.32543454E−01 a3 = −0.11120041E−04 a4 = +0.17131743E− 08
a5 = −0.96212101E−13 a6 = −0.33678738E+05 a7 = −0.94335007E+02

temperature range: 300 < T < 1000

a1 = +0.30149546E+01 a2 = +0.54457203E−01 a3 = +0.21812681E−04 a4 = −0.54234111E− 07
a5 = +0.20808730E−10 a6 = −0.26003379E+05 a7 = +0.17508575E+02

Table
2.2:
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polynom
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.
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With the temperature dependence of the specific enthalpy Eq. (2.6) this may be written as

k∑

i=1

(Yi,u − Yi,b)hi,ref =

∫ Tb

Tref

cp,bdT −
∫ Tu

Tref

cp,udT. (2.14)

Here the specific heat capacities are those of the mixture, to be calculated with the mass fractions

of the burnt and unburnt gases, respectively

cp,b =

k∑

i=1

Yi,bcpi(T ), cp,u =

k∑

i=1

Yi,ucpi(T ). (2.15)

For a one-step global reaction the left hand side of Eq. (2.14) may be calculated by integrating Eq.

(1.28) as

Yi,u − Yi,b = (YF,u − YF,b)
νiWi

νFWF
, i = 1, 2, . . . , k, (2.16)

such that
k∑

i=1

(Yi,u − Yi,b)hi,ref =
(YF,u − YF,b)

νFWF

k∑

i=1

νiWihi,ref . (2.17)

Here it is convenient to define the heat of combustion as

Q = −
k∑

i=1

νiWihi = −
k∑

i=1

νiHi. (2.18)

This quantity changes very little with temperature and is often set equal to

Qref = −
k∑

i=1

νiHi,ref (2.19)

For simplicity, let us set Tu = Tref and assume cp,b to be approximately constant. For combustion

in air, the contribution of nitrogen is dominant in calculating cp,b. At temperatures around 2000K

its specific heat is approximately 1.30 kJ/kg/K. The value of cpi is somewhat larger for CO2 and

somewhat smaller for O2 while that for H2O is twice as large. A first approximation for the specific

heat of the burnt gas for lean and stoichiometric mixtures is then cp = 1.40 kJ/kg/K. Assuming cp

constant and Q = Qref , the adiabatic flame temperature for a lean mixture (YF,b = 0) is calculated

from Eqs. (2.14) and (2.17) with νF = −ν′F as

Tb − Tu =
QrefYF,u
cpν′FWF

. (2.20)
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For a rich mixture Eq. (2.16) must be replaced by

Yi,u − Yi,b = (YO2,u − YO2,b)
νiWi

νO2
WO2

, i = 1, 2, . . . , k (2.21)

and one obtains similarly for complete consumption of the oxygen (YO2,b = 0)

Tb − Tu =
QrefYO2,u

cpν′O2
WO2

. (2.22)

Eqs. (2.20) and (2.22) may be expressed in terms of the mixture fraction by introducing Eqs. (1.36)

and (1.37) and by specifying the temperature of the unburnt mixture by

Tu(Z) = T2 − Z (T2 − T1), (2.23)

where T2 is the temperature of the oxidizer stream and T1 that of the fuel stream. Equation Eq.

(2.23) describes mixing of the two streams with cp assumed to be constant. Equations Eqs. (2.20)

and (2.22) then take the form

Tb(Z) = Tu(Z) +
QrefYF,1
cpν′FWF

Z, Z ≤ Zst,

Tb(Z) = Tu(Z) +
QrefYO2,2

cpν′O2
WO2

(1− Z) Z ≥ Zst.

(2.24)

The adiabatic temperature is plotted over mixture fraction in Fig. 2.1. The maximum temperature

at Z = Zst is calculated from either one of Eq. (2.24) as

Tst = Tu(Zst) +
YF,1ZstQref

cpν′FWF

= Tu(Zst) +
YO2,2(1− Zst)Qref

cpν′O2
WO2

.

(2.25)

For the combustion of a pure fuel (YF,1 = 1) in air (YO2,2 = 0.232) with Tu,st = 300K values for Tst

are given in Tab. 2.3 using cp = 1.4 kJ/kg/K.
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Zst0                                                                   Z              1

Figure 2.1: The adiabatic temperature over mixture fraction

Fuel Zst Tst [K]
CH4 0.05496 2263.3
C2H6 0.05864 2288.8
C2H4 0.06349 2438.5
C2H2 0.07021 2686.7
C3H8 0.06010 2289.7

Table 2.3: Stoichiometric mixture fractions and stoichiometric flame temperatures for some
hydrocarbon-air mixtures.
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2.1 Chemical Equilibrium

From the standpoint of thermodynamics, the assumption of complete combustion is an approxima-

tion because it disregards the possibility of dissociation of combustion products. A more general

formulation is the assumption of chemical equilibrium. In that context complete combustion rep-

resents the limit of an infinite equilibrium constant as will be shown below. Both approximations,

chemical equilibrium and complete combustion, are valid in the limit of infinitely fast reaction rates

only, a condition which will seldom be valid in combustion systems. We will consider finite rate

chemical kinetics in Lecture 2. Only for hydrogen diffusion flames complete chemical equilibrium

is a good approximation, while for hydrocarbon diffusion flames finite kinetic rates are needed. In

the latter the fast chemistry assumption overpredicts the formation of intermediates such as CO

and H2 due to the dissociation of fuel on the rich side by large amounts. Nevertheless, since the

equilibrium assumption represents an exact thermodynamic limit, it shall be considered here.

2.1.1 The Chemical Potential and the Law of Mass Action

Differently from the enthalpy, the partial molar entropy of a chemical species in a mixture of ideal

gases depends on the partial pressure

Si = S0
i −R ln

pi
p0
, i = 1, 2, . . . , k, (2.26)

where p0 = 1 atm and

S0
i = S0

i,ref +

∫ T

Tref

Cpi

T
dT, i = 1, 2, . . . , k (2.27)

depends only on temperature. Values for the reference entropy Si,ref are also listed in Tab. 2.1.

The partial molar entropy may now be used to define the chemical potential

µi = Hi − TSi = µ0
i +RT ln

pi
p0
, i = 1, 2, . . . , k, (2.28)

where

µ0
i = Hi,ref − TS0

i,ref +

∫ T

Tref

Cpi
dT − T

∫ T

Tref

Cpi

T
dT, i = 1, 2, . . . , k (2.29)
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is the chemical potential at 1 atm. As it is shown in standard textbooks of thermodynamics the

condition for chemical equilibrium for the l-th reaction is given by

k∑

i=1

νilµi = 0, l = 1, 2, . . . , r. (2.30)

Using Eq. (2.28) in Eq. (2.30) leads to

−
k∑

i=1

νilµ
0
i = RT ln

k∏

i=1

( pi
p0

)νil
, l = 1, 2, . . . , r. (2.31)

Defining the equilibrium constant Kpl by

RT lnKpl = −
k∑

i=1

νilµ
0
i , l = 1, 2, . . . , r (2.32)

one obtains the law of mass action

k∏

i=1

( pi
p0

)νil
= Kpl(T ), l = 1, 2, . . . , r. (2.33)

An approximation of equilibrium constants may be derived by introducing the quantity

πi =
Hi,ref − µ0

i

RT =
S0
i,ref

R +

∫ T

Tref

Cpi

RT dT − 1

RT

∫ T

Tref

Cpi
dT, i = 1, 2, . . . , k. (2.34)

For constant Cpi
the second term in this expression would yield a logarithm of the temperature,

while the last term does not vary much if T ≫ Tref . Therefore πi(T ) may be approximated by

πi(T ) = πiA + πiB lnT, i = 1, 2, . . . , k. (2.35)

Introducing this into Eq. (2.32) one obtains

Kpl = BplT
npl exp

(Ql,ref

RT
)
, l = 1, 2, . . . , r, (2.36)
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Figure 2.2: Equilibrium constants of the elementary and global reactions
2H2 + O2 = 2H2O, O2 +N2 = 2NO and CO+H2O = H2 +CO2.

where Eq. (2.19) was used and

Bpl = exp
( k∑

i=1

νilπiA

)
, npl =

k∑

i=1

νilπiB , l = 1, 2, . . . , r. (2.37)

Values for πiA and πiB are also listed in Tab. 2.1. They were obtained by linear interpolation in

terms of lnT for the values given in the JANAF-Tables [1] at T = 300K and T = 2000K. In Fig. 2.2

equilibrium constants for the reactions 2H2+O2 = 2H2O, O2+N2 = 2NO and CO+H2O = H2+CO2

are plotted.

2.2 An Example: Equilibrium Calculation of the H2-Air System

Using the law of mass action one obtains for the reaction

(1) 2H2 +O2 = 2H2O (2.38)
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the relation between partial pressures

p2H2
pO2

= p2H2OKp1 · pO, (2.39)

where

Kp1 = 0.0835 T−1.3565 exp(58171/T ) (2.40)

was approximated using Eqs. (2.36) and (2.37) the values from Tab. 2.1. Introducing the definition

Γi =
Yi
Wi

, i = 1, 2, . . . , k (2.41)

the partial pressures are written with Eq. (1.18) as

pi = pXi = pΓiW, i = 1, 2, . . . , k, (2.42)

where the mean molecular weight is

W = (ΓH2
+ ΓO2

+ ΓH2O + ΓN2
)−1. (2.43)

Furthermore, we need to consider the element mass balance. The element mass fractions of the

unburnt mixture are

ZH = YF,1Z, ZO = YO2,2(1− Z), ZN = YN2,2(1− Z). (2.44)

These are equal to those in the equilibrium gas where

ZH

WH
= 2ΓH2,b

+ 2ΓH2O,b

ZO

WO
= 2ΓO2,b

+ ΓH2O,b,

(2.45)

while ZN remains unchanged. Combining Eqs. (2.39)-(2.45) leads to the following nonlinear equa-

tion for ΓH2O,b

f(ΓH2O,b) ≡
(
ΓH2O,b −

ZH

2WH

)2( ZO

WO
− ΓH2O,b

)

−
Γ2
H2O,b

K2
p1p

( ZH

WH
+
ZO

WO
+ 2ΓN2

− ΓH2O,b

)
= 0.

(2.46)
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This equation has one root between ΓH2O,b = 0 and the maximum values ΓH2O,b = ZH/2WH and

ΓH2O,b = ZO/WO which correspond to complete combustion for lean and rich conditions in the

limit Kp1 → ∞, respectively. The solution, which is a function of the temperature, may be found

by successively bracketing the solution within this range. The temperature is then calculated by

employing a Newton iteration on Eq. (2.12) leading to the equation

fT (T ) = hu −
k∑

i=1

Yi,bhi,ref −
∫ T

Tref

Cpb
dT. (2.47)

The iteration converges readily following

T = T i +
fT (T

i)

Cpb
(T i)

, (2.48)

where i is the iteration index. The solution is shown in Fig. 2.3 for a hydrogen-air flame as a

function of the mixture fraction for Tu = 300K. Tab. 2.4 shows equilibrium mass fractions of H2,O2

and H2O at p = 1bar and p = 10 bar at different temperatures.

Equilibrium temperature profiles for lean methane, acetylene and propane flames as a function

of the equivalence ratio for Tu = 300 K are shown in Fig. 2.4.

2.3 The Heterogeneous Equilibrium

A reaction is called heterogeneous, if it occurs for instance at the gas-to-solid interface, while gas

phase reactions are called homogeneous. Since the chemical potential of the solid is independent

T p YH2
YO2

YH2O

[K] [bar]

2000 1 0.0006 0.0049 0.9945
3000 1 0.0172 0.1364 0.8464
4000 1 0.0653 0.5180 0.4167
2000 10 0.0002 0.0022 0.9974
3000 10 0.0084 0.0664 0.9252
4000 10 0.0394 0.3127 0.6478

Table 2.4: Equilibrium compositions of the H2/O2/H2O system for several temperatures and pres-
sures.
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function of the equivalence ratio for Tu = 300 K.

36



of pressure

µi = µ0
i = Hi,ref − TSi,ref +

∫ T

Tref

Cp,i dT − T

∫ T

Tref

Cp,i

T
dT, i = 1, 2, . . . , k (2.49)

only the partial pressures of the gaseous components will appear in the law of mass action. As an

example consider the reaction of solid carbon Cs +O2 = CO2. Then the ratio of partial pressures

of CO2 and O2 becomes

pCO2

pO2

= exp
(µ0

CO2
− µ0

Cs
− µ0

O2

RT
)
= Kp. (2.50)

Here the molar enthalpy HCs,ref
of solid carbon is zero per definition while πA,Cs

= −9.979 and

πB,Cs
= 1.719.

Example 2.1

Calculate the equilibrium mole fraction of NO in air at T = 1000 K and T = 1500 K by assuming

that the mole fractions of O2 (XO2
= 0.21) and N2 (XN2

= 0.79) remain unchanged.

Solution

The equilibrium constant of the reaction

N2 +O2 = 2NO (2.51)

is with the values in Tab. 2.1

Kp(T ) = 17.38 T 0.0247 exp(−21719/T ) (2.52)

For the partial pressure of NO one has

pNO = (pN2
pO2

Kp)
1/2 (2.53)

Neglecting the consumption of N2 and O2 as a first approximation, their partial pressures may be

approximated with Eq. (1.18) as pN2
= 0.79 p, pO2

= 0.21 p in air. The equilibrium mole fraction of

37



NO is then

XNO = 1.7 T 0.01235 exp(−10856/T ). (2.54)

At T = 1000K one obtains 38 ppv (parts per volume = Xi · 10−6) and at T = 1500K 230 ppv. This

indicates that at high temperatures equilibrium NO-levels exceed by far those that are accepted

by modern emission standards which are around 100 ppv or lower. Equilibrium considerations

therefore suggest that in low temperature exhaust gases NO is above the equilibrium value and

can be removed by catalysts.
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Lecture 3

Fluid Dynamics and Balance

Equations for Reacting Flows

The basic equations for calculating combustion processes in the gas phase are the equations of

continuum mechanics. They include in addition to balance equations for mass and momentum

those for the energy and the chemical species. Associated with the release of thermal energy and

the increase in temperature is a local decrease in density which in turn affects the momentum bal-

ance. Therefore, all these equations are closely coupled to each other. Nevertheless, in deriving

these equations we will try to point out how they can be simplified and partially uncoupled under

certain assumptions.

3.1 Balance Equations

Let us consider a general quality per unit volume f(x, t). Its integral over the finite volume V , with

the time-independent boundary A is given by

F (t) =

∫

V

f(x, t)dV. (3.1)

The temporal change of F
∂F

∂t
=

∫

V

∂f

∂t
dV (3.2)

is then due to the following three effects (cf. Fig. 3.1):
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Figure 3.1: A time-independent control volume V for a balance quality F (t). The scalar product
between the surface flux φf and the normal vector n determines the outflow through the surface
A, a source sf the rate of production of the balance quality.

1. by the flux φf across the boundary A. This flux may be due to convection or molecular

transport. By integration over the boundary A we obtain the net contribution

−
∫

A

φf ·n dA, (3.3)

which is negative, if the normal vector is assumed to direct outwards.

2. by a local source σf within the volume. This is an essential production of partial mass by

chemical reactions. Integrating the source term over the volume leads to

∫

V

σfdV ; (3.4)

3. by an external induced source s. Examples are the gravitational force or thermal radiation.

Integration of sf over the volume yields

∫

V

sfdV. (3.5)

We therefore have the balance equation

∫

V

∂f

∂t
dV = −

∫

A

φf ·n dA+

∫

V

(σf + sf )dV (3.6)
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Changing the integral over the boundary A into a volume integral using Gauss’ theorem

∫

A

φf ·n dA =

∫

V

div φf dV (3.7)

and realizing that the balance must be independent of the volume, we obtain the general balance

equation in differential form
∂f

∂t
= −div φf + σf + sf . (3.8)

3.2 Mass Balance

Set the partial mass per unit volume ρi = ρYi = f . The partial mass flux across the boundary

is ρivi = φf , where vi is called the diffusion velocity. Summation over all components yields the

mass flow

ρv =

k∑

i=1

ρivi, (3.9)

where v is the mass average velocity. The difference between vi defines the diffusion flux

vi − v =
ji

ρi
, (3.10)

where the sum satisfies
k∑

i=1

ji = 0. (3.11)

Setting the chemical source term

σf = ṁi =Wi

r∑

l=1

νil ωl (3.12)

one obtains the equation for the partial density

∂ρi
∂t

= −div (ρivi) + ṁi, i = 1, 2, . . . , k. (3.13)

The summation over i leads to the continuity equation

∂ρ

∂t
= −div (ρv). (3.14)
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Introducing the total derivative of a quantity A

DA
Dt

=
∂A
∂t

+ v ·grad A, (3.15)

a combination with the continuity equation yields

ρ
DA
Dt

=
∂(ρA)

∂t
+ div (ρvA). (3.16)

Then Eq. (3.13) may also be written using Eq. (3.10)

ρ
DYi
Dt

= −div ji + ṁi, i = 1, 2, . . . , k. (3.17)

Here ṁi is the chemical source term defined by

ṁi =Mi

r∑

l=1

νilωl, (3.18)

where ωl are the chemical reaction rates.

3.3 Momentum Balance

Set the momentum per unit volume ρv = f . The momentum flux is the sum of the convective

momentum in flow ρvv and the stress tensor

P = pI + τ (3.19)

where I is the unit tensor and τ is the viscous stress tensor. Therefore ρvv + P = φf . There is

no local source of momentum, but the gravitational force from outside sf = ρg where g denotes

the constant of gravity. The momentum equation then reads

∂(ρv)

∂t
= −div (ρvv + P ) + ρg (3.20)

or with Eq. (3.16) for A ≡ v
ρ
Dv

Dt
= −grad p− div τ + ρg. (3.21)
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3.4 Kinetic Energy Balance

The scalar product of the momentum equation Eq. (3.20) with v provides the balance for the kinetic

energy
1

2

∂

∂t
(ρv2) = −div (P ·v +

1

2
vρv2) + P : grad v + ρg ·v, (3.22)

where v2 = v ·v.

3.5 Potential Energy Balance

The gravitational force may be written as the derivative of the time-independent potential

g = −grad ψ,
∂ψ

∂t
= 0. (3.23)

Then with the continuity equation Eq. (3.14) the balance for the potential energy is

∂(ρψ)

∂t
= −div (ρvψ)− ρg ·v. (3.24)

3.6 Total and Internal Energy and Enthalpy Balance

The first law of thermodynamics states that the total energy must be conserved, such that the local

source σf = 0. We set ρe = f , where the total energy per unit mass is

e = u+
1

2
v2 + ψ. (3.25)

This defines the internal energy introduced in Eq. (2.1). The total energy flux φf ≡ je is

je = ρev + P ·v + jq (3.26)

which defines the total heat flux jq. The externally induced source due to radiation is q̇R = sf .

Then the total energy balance
∂(ρe)

∂t
= −div je + q̇R (3.27)
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may be used to derive an equation for the internal energy

∂(ρu)

∂t
= −div (ρvu+ jq)− P : grad v + q̇R. (3.28)

Using Eq. (3.16) this may be written with the total derivative

ρ
Du

Dt
= −div jq − pdiv v − τ : grad v + q̇R. (3.29)

With the continuity equation Eq. (3.14) we may substitute div v by ρ
D

Dt
(
1

ρ
) and may write the

balance in the form

Du

Dt︸ ︷︷ ︸
∝ du

+ p
D

Dt
(
1

ρ
)

︸ ︷︷ ︸
∝ pdv

=
1

ρ

[
−div jq + q̇R

]

︸ ︷︷ ︸
∝ δq

− 1

ρ
τ : grad v

︸ ︷︷ ︸
∝ δwR

(3.30)

to illustrate the equivalence with the first law introduced in a global thermodynamic balance in Eq.

(2.1). With h = u+ p/ρ the enthalpy balance equation reads

ρ
Dh

Dt
=

Dp

Dt
= −div jq − τ : grad v + q̇R. (3.31)

3.7 Transport Processes

In its most general form Newton’s law states that the viscous stress tensor is proportional to the

symmetric, trace-free part of the velocity gradient, more specifically

τ = −µ
(
2
[
grad v

]sym − 2

3
div v I

)
. (3.32)

Here the suffix sym denotes that only the symmetric part is taken and the second term in the paren-

thesis subtracts the trace elements from the tensor. Newton’s law thereby defines the dynamic

viscosity. Similarly Fick’s law states that the diffusion flux is proportional to the concentration gra-

dient. Due to thermodiffusion it is also proportional to the temperature gradient. The most general

form for multicomponent diffusion is written as

ji =
Wi

W

k∑

j=1
j 6=i

ρDijWj grad Xj −
DT

i

T
grad T, i = 1, 2, . . . , k. (3.33)
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For most combustion processes thermodiffusion can safely be neglected. For a binary mixture Eq.

(3.33) then reduces to

ji = −ρDij grad Yi (3.34)

where Dij = Dji is the binary diffusion coefficient. For multicomponent mixtures, where one

component occurs in large amounts, as for the combustion in air where nitrogen is abundant, all

other species may be treated as trace species and Eq. (3.34) with the binary diffusion coefficient

with respect to the abundant component may be used as an approximation

ji = −ρDi grad Yi, Di = Di,N2
. (3.35)

A generalization for an effective diffusion coefficient Di to be used for the minor species in Eq.

(3.35) is

Di =

k∑

i=1
i6=j

Xi

k∑

j=1
j 6=i

Xi/Dij

. (3.36)

Note that the use of Eq. (3.35) does not satisfy the condition Eq. (3.11). Finally, Fourier’s law of

thermal conductivity states that the heat flux should be proportional to the negative temperature

gradient. The heat flux jq includes the effect of partial enthalpy transport by diffusion and is written

jq = −λgrad T +

k∑

i=1

hiji (3.37)

which defines the thermal conductivity λ. In Eq. (3.37) the Dufour heat flux has been neglected.

Transport coefficients for single components can be calculated on the basis of the theory of rarefied

gases [1].
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3.8 Different Forms of the Energy Equation

We start from the enthalpy equation and neglect in the following the viscous dissipation term

−τ : grad υ and the radiative heat transfer term q̇R. Then, differentiating Eq. (2.4) as

dh = cpdT +
k∑

i=1

hidYi, (3.38)

where cp is the heat capacity at constant pressure of the mixture, we can write the heat flux as

jq = − λ

cp
grad h+

k∑

i=1

hi

(
ji +

λ

cp
grad Yi

)
. (3.39)

For the special case that the diffusion flux can be approximated by Eq. (3.34) with an effective

diffusion coefficient Di we introduce the Lewis number

Lei =
λ

ρcpDi
(3.40)

and write the last term in Eq. (3.39) as

k∑

i=1

hi

(
1− 1

Lei

) λ
cp

grad Yi. (3.41)

This term vanishes if the Lewis numbers of all species can be assumed equal to unity. This is an

interesting approximation because it leads to the following form of the enthalpy equation

ρ
Dh

Dt
=

Dp

Dt
+ div

( λ
cp

grad h
)
. (3.42)

If furthermore the pressure is constant as it is approximately the case in all applications except

in reciprocating engines, the enthalpy equation would be very much simplified. The assumption

of unity Lewis numbers for all species is not justified in many combustion applications. In fact,

deviations from that assumption lead to a number of interesting phenomena that have been studied

recently in the context of flame stability and the response of flames to external disturbances. We

will address these questions in some of the lectures below.

Another important form of the energy equation is that in terms of the temperature. With Eqs.
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(3.38) and (3.17) the total derivative of the enthalpy can be written as

ρ
Dh

Dt
= ρcp

DT

Dt
+

k∑

i=1

(−div ji + ṁi)hi. (3.43)

Then with Eq. (3.37), the enthalpy equation Eq. (3.31) without the second last term yields the

temperature equation

ρcp
DT

Dt
+ div (λgrad T )−

k∑

i=1

cpi ji ·grad T + σT + q̇R. (3.44)

Here the last term describes the temperature change due to energy transfer by radiation and the

penultimate term the temperature change due to chemical reactions which may be written as

σT = −
k∑

i=1

ṁihi = −
r∑

l=1

k∑

i=1

νilWihi ωl =
r∑

l=1

Ql ωl (3.45)

where the definition Eq. (3.18) has been used for each reaction. The second term on the right

hand side may be neglected, if one assumes that all specific heats cpi are equal. This assumption

is very often justified since this term does not contribute as much to the change of temperature as

the other terms in the equation, in particular the chemical source term. If one also assumes that

spatial gradients of cp may be neglected for the same reason, the temperature equation takes the

form

ρ
DT

Dt
=

1

cp

Dp

Dt
+ div

( λ
cp

grad T
)
+

r∑

l=1

Ql

cp
ωl +

q̇R
cp
. (3.46)

For a constant pressure it is very similar to Eq. (3.17) with an effective equal diffusion coefficient

D = λ/ρ/cp for all reactive species and a spatially constant Lewis number Lei may be written as

ρ
DYi
Dt

=
1

Lei
div

( λ
cp

grad Yi

)
+Wi

r∑

l=1

νilωl. (3.47)

For unity Lewis numbers this and the temperature equation are easily combined to obtain the

enthalpy equation Eq. (3.42). Since the use of Eq. (3.46) and Eq. (3.47) does not require the unity

Lewis number assumption, this formulation is often used when non-unity Lewis number effects

are to be analyzed. For flame calculations a sufficiently accurate approximation for the transport
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CH4 O2 H2O CO2 H O OH HO2

0.97 1.11 0.83 1.39 0.18 0.70 0.73 1.10

H2 CO H2O2 HCO CH2O CH3 CH3O
0.3 1.10 1.12 1.27 1.28 1.00 1.30

Table 3.1: Lewis numbers of some reacting species occurring in methane-air flames.

properties is [2]
λ

cp
= 2.58 · 10−4 g

cm sec

( T

298 K

)0.7
, (3.48)

a constant Prandtl number

Pr =
µcp
λ

= 0.75, (3.49)

and constant Lewis numbers. For a number of species occurring in methane-air flames approx-

imate values from [2] are listed in Tab. 3.1. A first approximation for other hydrocarbon species

can be based on the assumption that the binary diffusion coefficients of species i with respect to

nitrogen is approximately proportional to

Di ∼
(Wi +WN2

2WiWN2

)1/2
. (3.50)

Then the ratio of its Lewis number to that of methane is

Lei
LeCH4

=
( Wi

WCH4

WCH4
+WN2

Wi +WN2

)1/2
. (3.51)

3.9 Balance Equations for Element Mass Fractions

Summation of the balance equations for the mass fractions Eq. (3.17) according to Eq. (1.10)

leads to the balance equations for Zj

ρ
DZj

Dt
= −div

k∑

i=1

aijWj

Wi
ji. (3.52)

Here the summation over the chemical source terms vanishes

Wj

k∑

i=1

r∑

l=1

aijνilwl =Wj

r∑

l=1

wl

k∑

i=1

aijνil = 0, (3.53)
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since the last sum vanishes for each reaction. The diffusion term simplifies if one assumes that the

diffusion coefficients of all species are equal. If one further more assumes a unity Lewis number

this leads to

ρ
DZj

Dt
= div

( λ
cp

grad Zj

)
. (3.54)

A similar equation may be derived for the mixture fraction Z. Since Z is defined according to

Eq. (1.35) as the mass fraction of the fuel stream, it represents the sum of element mass fractions

contained in the fuel stream. The mass fraction of the fuel is the sum of the element mass fractions

YF,u =

ke∑

j=1

Zj,F, (3.55)

where

Zj,F = aF,j
Wj

WF
YF,u. (3.56)

With Eq. (1.36) the mixture fraction may therefore be expressed as a sum of element mass frac-

tions

Z =

ke∑

j=1

Zj,F

YF,1
. (3.57)

Then, with the assumption of unit Lewis numbers such that λ/cp = ρD, a summation over Eq.

(3.54) leads to a balance equation for the mixture fraction

ρ
DZ

Dt
= div

(
ρD grad Z

)
. (3.58)

For a one-step reaction with the reaction rate ω this equation can also be derived using Eqs. (1.38)

and (3.47) for YF and YO2
with LeF = LO2

= 1 as

ρ
DYF
Dt

= div
( λ
cp

grad YF

)
−ν′FWFω (3.59)

ρ
DYO2

Dt
= div

( λ
cp

grad YO2

)
−ν′O2

WO2
ω. (3.60)

Dividing the first of these by ν′O2
WO2

and subtracting yields a source-free balance equation for the

combination
YF

ν′FWF
=

YO2

ν′O2
WO2

(3.61)
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Z = Zst

dZ / dn = 0

Z = 0

m2
.

m2
.

Z = 0

(air)

(air)

Z = 1
m1
.

(fuel)

dh / dn = 0

dZ / dn = 0 , dh / dn = 0

dZ / dn = 0 , dh / dn = 0

Figure 3.2: Coflow diffusion flame

which is a linear function of Z according to Eq. (1.35). This leads again to Eq. (3.58). For constant

pressure the enthalpy equation Eq. (3.42) has the same form as v(3.58) and a coupling relation

between the enthalpy and the mixture fraction may be derived

h = h2 + Z(h1 − h2) (3.62)

where h1 is the enthalpy of the fuel stream and h2 that of the oxidizer stream. Similarly, using Eqs.

(3.54) and (3.58) the element mass fractions may be expressed in terms of the mixture fraction

Zj = Zj,2 + Z(Zj,1 − Zj,2), (3.63)

where Zj,1 and Zj,2 are the element mass fractions in the fuel and oxidizer stream, respectively.

It should be noted that the coupling relations Eqs. (3.62) and (3.63) required a two feed system

with equivalent boundary conditions for the enthalpy and the mass fractions. A practical example

is a single jet as fuel stream with co-flowing air as oxidizer stream into an open atmosphere, such

that zero gradient boundary conditions apply everywhere except at the input streams as shown in

Fig. 3.2. Once the mixture fraction field has been obtained by numerical solution of Eq. (3.58) the

adiabatic flame temperature may be calculated using the methods of Lecture 2 as a local function

of Z.
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Lecture 4

Laminar Premixed Flame

Configuration

4.1 The Laminar Burning Velocity

The classical device to generate a laminar premixed flame is the Bunsen burner shown in Fig. 4.1.

Gaseous fuel from the fuel supply enters through an orifice into the mixing chamber, into which

air is entrained through adjustable openings from the outside. The cross sectional area of the

fuel orifice may be adjusted by moving the needle through an adjustment screw into the orifice.

Thereby the velocity of the jet entering into the mixing chamber may be varied and the entrainment

of the air and the mixing can be optimized. The mixing chamber must be long enough to generate a

premixed gas issuing from the Bunsen tube into the surroundings. If the velocity of the issuing flow

is larger than the laminar burning velocity to be defined below, a Bunsen flame cone establishes

itself at the top of the tube. It represents a steady premixed flame propagating normal to itself with

the burning velocity sL into the unburnt mixture.

The kinematic balance of this process is illustrated for a steady oblique flame in Fig. 4.2. The

oncoming flow velocity vector vu of the unburnt mixture (subscript u) is split into a component

vt,u which is tangential to the flame and into a component vn,u normal to the flame front. Due to

thermal expansion within the flame front the normal velocity component is increased, since the

mass flow density ρvn through the flame must be the same in the unburnt mixture and in the burnt
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Figure 4.1: The Bunsen burner
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vn,b

vt,b = vt,u

Figure 4.2: Kinematic balance for a steady
oblique flame.

gas (subscript b)

(ρvn)u = (ρvn)b, (4.1)

therefore

vn,b = vn,u
ρu
ρb
. (4.2)

The tangential velocity component vt is not affected by the gas expansion and remains the same

vt,b = vt,u. (4.3)

Vector addition of the velocity components in the burnt gas in Fig. 4.2 then leads to vb which points

into a direction which is deflected from the flow direction of the unburnt mixture. Finally, since the

flame front is stationary in this experiment, the burning velocity sL,u with respect to the unburnt

mixture must be equal to the flow velocity of the unburnt mixture normal to the front.

sL,u = vn,u (4.4)

With the Bunsen flame cone angle in Fig. 4.1 denoted by α the normal velocity is vn,u = vu sinα

54



and it follows

sL,u = vu sinα. (4.5)

This allows to experimentally determine the burning velocity by measuring the cone angle α under

the condition that the flow velocity vu is uniform across the tube exit. If this is not the case the

flame angle also varies with radial distance, since the burning velocity sL,u is essentially constant.

A particular phenomenon occurs at the flame tip. If the tip is closed, which is in general the

case for hydrocarbon flames (but not necessarily for lean hydrogen flames) the burning velocity at

the tip, being normal and therefore equal to the flow velocity, is by a factor 1/sinα larger than the

burning velocity through the oblique part of the cone.

sL,u|flame tip = vu. (4.6)

This will be explained below by the strong curvature of the flame front at the tip leading to a

preheating by the lateral parts of the flame front and thereby to an increase in burning velocity. This

analysis also includes the effect of non-unity Lewis numbers by which, for instance, the difference

between lean hydrogen and lean hydrocarbon flames can be explained. Finally, it is shown in (Fig.

4.1) that the flame is detached from the rim of the burner. This is due to conductive heat loss to the

burner which leads in regions very close to the rim to temperatures, at which combustion cannot

be sustained. Another example for an experimental device to measure laminar burning velocities

is the combustion bomb (Fig. 4.3) within which a flame is initiated by a central spark. Spherical

propagation of a flame then takes place which may optically be detected through quartz windows

and the flame propagation velocity drf/dt may be recorded. Now the flame front is not stationary.

If the radial flow velocities are defined positive in inward direction, the velocity of the front must be

subtracted from these in the mass flow balance through the flame front

ρu
(
vu − drf

dt

)
= ρb

(
vb −

drf
dt

)
. (4.7)

At the flame front the kinematic balance between propagation velocity, flow velocity and burning

velocity with respect to the unburnt mixture is

drf
dt

= vu + sL,u. (4.8)
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drf

dt

optical

access

Figure 4.3: Laminar spherical flame propagation in a combustion bomb.

Similarly, the kinematic balance with respect to the burnt gas is

drf
dt

= vb + sL,b. (4.9)

In the present example the flow velocity vb in the burnt gas behind the flame is zero due to sym-

metry. This leads with Eqs. (4.7) and (4.8) to

drf
dt

=
ρu

ρu − ρb
vu = vu + sL,u (4.10)

from which the velocity in the unburnt mixture is calculated as

vu =
ρu

ρu − ρb
sL,u. (4.11)

This velocity is induced by the expansion of the gas behind the flame front. Furthermore it follows

that the flame propagation velocity is related to the burning velocity sL,u by

drf
dt

=
ρu
ρb
sL,u. (4.12)

Measuring the flame propagation velocity drf/dt then allows to determine sL,u. Furthermore, from

Eq. (4.9) it follows with vb = 0 that
drf
dt

= sL,b. (4.13)

The comparison of Eqs. (4.12) and (4.13) shows that the burning velocity with respect to the
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Figure 4.4: Flame structure of a laminar lean flame.

burnt gas is by a factor ρu/ρb larger than that with respect to the unburnt gas. This is equivalent to

Eq. (4.2). For convenience we will denote in the following the burning velocity with respect to the

unburnt gas by sL

sL ≡ sL,u, (4.14)

while we keep the notation sL,b for the burning velocity with respect to the burnt gas.

4.2 Governing Equations for Steady Premixed Flames, Numer-

ical Calculations and Experimental Data

Let us consider a planar steady state flame configuration normal to the x-direction with the unburnt

mixture at x → −∞ and the burnt gas at x → +∞. The flame structure is schematically shown in

Fig. 4.4 for the case of a lean flame with a one-step reaction

ν′FF + ν′O2
O2 → ν′′PP. (4.15)

The fuel and oxidizer are convected from upstream with the burning velocity sL having the mass

fractions YF,u and YO2,u at x → −∞ and diffuse into the reaction zone. Here the fuel is entirely

depleted while the remaining oxygen is convected downstream where it has the mass fraction

YO2,b. The chemical reaction forms the product P and releases heat which leads to a temperature
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rise. The mass fraction YP increases therefore in a similar way from zero to YP,b as the temperature

from Tu to Tb. The products (not shown) diffuses upstream, and mix with the fuel and the oxidizer.

Heat conduction from the reaction zone is also directed upstream leading to a preheating of the

fuel/air mixture. Therefore the region upstream of the reaction zone is called the preheat zone.

We will now consider the general case with multi-step chemical kinetics. The fundamental

property of a premixed flame, the burning velocity sL may be calculated by solving the governing

conservation equations for the overall mass, species and temperature.

Continuity
d(ρu)

dx
= 0, (4.16)

Species

ρu
dYi
dx

= −dji
dx

+ ṁi, (4.17)

Energy

ρucp
dT

dx
=

d

dx
(λ

dT

dx
)−

k∑

i=1

hiṁi −
k∑

i=1

cpji
dT

dx
+
∂p

∂t
. (4.18)

For flame propagation with burning velocities much smaller than the velocity of sound, the pres-

sure is spatially constant and is determined from the thermal equation of state. Therefore spatial

pressure gradients are neglected in Eq. (4.18) while temporal pressure gradients have been re-

tained.

The continuity equation may be integrated once to yield

ρu = ρusL, (4.19)

where the subscript u denotes conditions in the fresh, unburnt mixture, and where sL denotes the

burning velocity. The latter is an eigenvalue, which must be determined as part of the solution.

The system of Eqs. (4.17)-(4.19) may be solved numerically with the appropriate upstream bound-

ary conditions for the mass fractions and the temperature and zero gradient boundary conditions

downstream.

As an example taken from [3] calculations of the burning velocity of premixed methane-air

flames using a mechanism that contains only C1-hydrocarbons and a mechanism that includes

the C2-species are shown in Fig. 4.5 as a function of the equivalence ratio φ. The two curves

are compared with compilations of various data from the literature. It is seen that the calculations

with the C2-mechanism shows a better agreement than the C1-mechanism. As another example
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Figure 4.5: Burning velocities calculated with a starting C1-mechanism and a starting C2- mecha-
nism, several data compiled by Warnatz [1], and recent data referenced by Law [2] for atmospheric
methane-air-flames.

burning velocities of propane flames taken from [8] are shown in Fig. 4.6. Calculated values of

burning velocities for lean flames based on Eqs. (4.17)-(4.19) are compared with approximations

given in Lecture 6 in Figs. 6.6 and 6.7 for different pressures. Fig. 6.7 shows how sL decreases

with increasing pressure but increases with increasing preheat temperature.

The fundamental property of a premixed flame is its ability to propagate normal to itself with

a burning velocity that, to first approximation, depends on thermo-chemical parameters of the

premixed gas ahead of the flame only. In a steady flow of premixed gas a premixed flame will

propagate against the flow until it stabilizes itself such that locally the flow velocity normal to the

flame is equal to burning velocity. We have already discussed that for a Bunsen flame the condition

of a constant burning velocity is violated at the top of the flame and that additional influences such

as flame curvature must be taken into account. In this chapter we want to calculate flame shapes.

We then will consider external influences that locally change the burning velocity and discuss the

response of the flame to these disturbances.

59



0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5

9-step reduced 

mechanism

sL

[cm/s]

φ

C3-mechanism

Figure 4.6: Burning velocity of propane-air flames vs. equivalence ratio φ obtained with an elemen-
tary mechanism containing only species up to C3 hydrocarbons and a reduced 9-step mechanism
[3]and from experimental results ( ◦: Metghalchi et al [4],
×: Smith et al. [5], ⋄: Scholte et al. [6], △ : Yamaoka et al. [7], •: C.K. Law, [2] ).
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Figure 4.7: Schematic illustration of a propagating flame with arbitrary shape.
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4.3 A Field Equation Describing the Flame Position

The kinematic relation Eq. (4.8) between the propagation velocity, the flow velocity, and the burning

velocity that was derived for spherical flame propagation may be generalized by introducing the

vector n normal to the flame and writing

dxf

dt
= v + sLn, (4.20)

where xf is the vector describing the flame position, dxf/dt the flame propagation velocity, and v

the velocity vector. The normal vector points towards the unburnt mixture and is given by

n = − ∇G

|∇G| , (4.21)

where G(x, t) can be identified as a scalar field whose level surfaces

G(x, t) = G0, (4.22)

where G0 is arbitrary, represent the flame surface (conf. Fig. 4.7). The flame contour G(x, t) = G0

divides the physical field into two regions, where G > G0 is the region of burnt gas and G < G0

that of the unburnt mixture. If one differentiates Eq. (4.22) with respect to t at G = G0, such as

∂G

∂t
+∇G · dx

dt

∣∣∣
G=G0

= 0. (4.23)

Introducing Eq. (4.20) and Eq. (4.21) into Eq. (4.23) one obtains the field equation

∂G

∂t
+ v ·∇G = sL|∇G|. (4.24)

It will be called G-equation in the following. If the burning velocity sL is defined with respect to the

unburnt mixture, the flow velocity v in Eq. (4.24) is defined as the conditioned velocity field in the

unburnt mixture ahead of the flame. For a constant value of sL the solution of Eq. (4.24) is non

unique, and cusps will be formed where different parts of the flame intersect. Even an originally

smooth undulated front in a quiescent flow will form cusps and eventually become flatter with time

as illustrated in Fig. 4.8. This is called Huygens’ principle.

As an example of a closed form solution of the G-equation let us consider the case of a slot

burner with a constant exit velocity u for premixed combustion, Fig. 4.9. This is the two-dimensional
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planar version of the axisymmetric Bunsen burner. The G-equation takes the form

u
∂G

∂x
= sL

√(∂G
∂x

)2
+
(∂G
∂y

)2
(4.25)

With the ansatz

G = x+ F (y) (4.26)

and G0 = 0 one obtains

u = sL

√
1 +

(dF
dy

)2
(4.27)

leading to

F =

√
u2 − s2L
s2L

|y|+ const. (4.28)

As the flame is attached at x = 0, y = ±b/2, where G = 0, this leads to the solution

G =

√
u2 − s2L
s2L

(
|y| − b

2

)
+ x. (4.29)

The flame tip lies with y = 0, G = 0 at

xF,0 =
b

2

√
u2 − s2L
s2L

(4.30)

and the flame angle α is given by

tanα =
b

2xF,0
=

√
u2 − s2L
s2L

. (4.31)

With tan2 α = sin2 α/(1− sin2 α) it follows that

sinα =
sL
u

(4.32)

which is equivalent to Eq. (4.5). This solution shows a cusp at the flame tip x = xF,0, y = 0. In

order to obtain a rounded flame tip, one has to take modifications of the burning velocity due to

flame curvature into account. This leads to the concept of flame stretch.
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Figure 4.9: A premixed laminar flame on a
slot burner.

4.4 Flame Stretch

Flame stretch consists of two contributions: One due to flame curvature and another due to flow

divergence. It may be shown (cf. [9])that for a one-step large activation energy reaction and with

the assumption of constant properties the burning velocity sL is modified by these two effects as

sL = s0L − s0L Lκ+ Ln ·∇v · n. (4.33)

Here s0L is the burning velocity for an unstretched flame and L is the Markstein length to the

presented below. The flame curvature κ is defined as

κ = ∇ · n = −∇ ·
(
∇G

|∇G|
)
, (4.34)

which may be transformed as

κ = − ∇
2G+ n ·∇(n ·∇G)

|∇G| . (4.35)
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The Markstein length L appearing in Eq. (4.33) is of the same order of magnitude and proportional

to the laminar flame thickness ℓF , their ratio L/ℓF is called the Markstein number. For the case

of a one-step reaction with a large activation energy, constant transport properties and a constant

heat capacity cp, the Markstein length with respect to the unburnt mixture reads, for example

Lu

ℓF
=

1

γ
ln

1

1− γ
+

Ze(Le− 1)

2

(1− γ)

γ

∫ γ/(1−γ)

0

ln(1 + x)

x
dx . (4.36)

This expression was derived by Clavin and Williams (1982) [10] and Matalon and Matkowsky

(1982) [9]. Here Ze = E(Tb−Tu)/(RT 2
b ) is the Zeldovich number, where E is the activation energy

and R the universal gas constant, and Le is the Lewis number of the deficient reactant. Eq. (4.36)

is valid if sL is defined with respect to the unburnt mixture. A different expression can be derived,

if both, sL and L are defined with respect to the burnt gas (cf. Clavin, 1985).[11]

We want to explore the influence of curvature on the burning velocity for the case of a spherical

propagating flame. Since the flow velocity is zero in the burnt gas, it is advantageous to formulate

the G-equation with respect to the burnt gas as in Eq. (4.13)

drf
dt

= sL,b, (4.37)

where rf (t) is the radial flame position. The burning velocity is then s0L,b and the Markstein length

is that with respect to the burnt gas, L b, which differs from that given by Eq. (4.36) (cf. Clavin,

1985).[11] Here we assume L b > 0 to avoid complications associated with thermo-diffusive insta-

bilities. In a spherical coordinate system Eq. (4.24) becomes

∂G

∂t
= s0L,b

(∣∣∣∂G
∂r

∣∣∣+ 2Lb

r

∂G

∂r

)
, (4.38)

where the entire term in round brackets represents the curvature in spherical coordinates. We

introduce the ansatz

G = rf (t)− r, (4.39)

to obtain at the flame front r = rf

∂rf
∂t

= s0L,b

(
1− 2L b

rf

)
. (4.40)

This equation may also be found in Clavin (1985) [11]. It reduces to Eq. (4.13) if L b is set equal to
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zero. It may be integrated to obtain

s0L,bt = rf − rf,0 + 2L b ln

(
rf − 2L b

rf,0 − 2L b

)
, (4.41)

where the initial radius at t = 0 is denoted by rf,0. This expression has no meaningful solutions for

rf,0 < 2L b , indicating that there needs to be a minimum initial flame kernel for flame propagation

to take off. It should be recalled that Eq. (4.33) is only valid if the product Lκ is small compared to

unity. For rf,0 > 2L b curvature corrections are important at early times only.

4.5 Flame Front Instability

As it was discussed gas expansion in the flame front will lead to a deflection of a stream line

that enters the front with an angle. This is shown in Fig. 4.10, where a slightly undulated flame

front in the x, y-coordinate system is assumed. A stream tube with cross-sectional area A0 and

upstream flow velocity u−∞ widens due to flow divergence ahead of the flame. This divergence

effect is generated by the expansion at the front that induces a flow component normal to the flame

contour. As the stream lines cross the front they are deflected. At large distances from the front

the stream lines are parallel again, but the downstream velocity is u∞ = (ρu/ρb)u−∞. At a cross

section A1, where the density is still equal to ρu the flow velocity due to continuity and the widening

of the stream tube is

u1 =
A

A1
u−∞ ≤ u−∞. (4.42)

Since the unperturbed flame propagates with u−∞ = sL,u normal to itself the burning velocity is

larger than u1 and the flame will propagate upstream and thereby enhances the initial perturbation.

In the following we will neglect viscous and gravity effects as well as compressibility in the burnt

and unburnt gas, nevertheless density is discontinuous at the flame front. While the influence of

the flame curvature on the burning velocity is retained, flame stretch due to flow divergence is

neglected (see [12]). The burning velocity is then given by

sL = s0L (1− κL). (4.43)

The velocity components u and v will be normalized with the burning velocity sL,u (defined with

respect to the unburnt mixture), the coordinates x and y with the flame thickness ℓF and the

time with ℓF /sL,u. As a reference value for the density we take ρu, introduce the density rate
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Figure 4.10: Illustration of the hydro-dynamic instability.

r = ρb/ρu < 1 and normalize the pressure with ρus2L,u.

u∗ = u/sL,u, v∗ = v/sL,u, p∗ =
p

ρus2L,u

,

x∗ = x/ℓF , y∗ = y/ℓF , t∗ =
t

ℓF /sL,u
.

(4.44)

The non-dimensional governing equations are then (with the asterisks removed)

∂u

∂x
+
∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
,

(4.45)

where ρ = 1 and ρ = r in the unburnt and burnt mixture respectively. If G is a measure of the

distance to the flame front, the G-field is described by

G = x− F (y, t). (4.46)

66



With Eqs. (4.21) and (4.23) the normal vector n and the normal propagation velocity then are

n =
(
− 1,

∂F

∂y

)
/

√
1 +

(∂F
∂y

)2
, n · dx

dt

∣∣∣
G=G0

=
∂F

∂t
/

√
1 +

(∂F
∂y

)2
. (4.47)

Due to the discontinuity in density at the flame front, the Euler equations Eqs. (4.45) are only

valid on either side of the front, but do not hold across it. Therefore jump conditions for mass and

momentum conservation across the discontinuity are introduced (conf. [13], p. 16):

(r − 1) n · dx
dt

∣∣∣
G=G0

= n · (rv+ − v−)

(rv+ − v−) n · dx
dt

∣∣∣
G=G0

= n ·
(
rv+v+ − v−v− − (p+ − p−)I

) (4.48)

Here the subscripts + and − refer to the burnt and the unburnt gas respectively and denote the

properties immediately downstream and upstream of the flame front. In terms of the u and v

components the jump conditions are written

(r − 1)
∂F

∂t
= ru+ − u− − ∂F

∂y
(rv+ − v−)

(ru+ − u−)
∂F

∂t
= ru+(u+ − ∂F

∂y
v+)− u−(u− − ∂F

∂y
v−) + p+ − p−

(rv+ − v−)
∂F

∂t
= rv+(u+ − ∂F

∂y
v+)− v−(u− − ∂F

∂y
v−)−

∂F

∂y
(p+ − p−).

(4.49)

With the coordinate transformation:

x = ξ + F (η, τ), y = η, t = τ (4.50)

we fix the discontinuity at ξ = 0. Under the assumption of small perturbations of the front, the

unknowns are expanded as

u = U + ǫu, v = ǫv

p = P + ǫp, F = ǫf,
(4.51)
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where ǫ is an asymptotically small parameter. Inserting Eqs. (4.50) and (4.51) into the jump

conditions one obtains to the leading order the steady-state solution

U− = 1, P− = 0

U+ =
1

r
, P+ =

r − 1

r
,

(4.52)

and to first order

(r − 1)
∂f

∂τ
= ru+ − u−

0 = 2(u+ − u−) + p+ − p−

0 = v+ − v− +
1− r

r

∂f

∂η
,

(4.53)

where the leading order mass flux ṁ = rU+ = U− has been set equal to 1. To first order the

equations for the perturbed quantities on both sides of the flame front now read

∂u

∂ξ
+
∂v

∂η
= 0

∂u

∂τ
+ U

∂u

∂ξ
+

1

ρ

∂p

∂ξ
= 0

∂v

∂τ
+ U

∂u

∂ξ
+

1

ρ

∂p

∂η
= 0,

(4.54)

where ρ = 1 for ξ < 0 (unburnt gas) and ρ = r for ξ > 0 (burnt gas) is to be used. In case of

instability perturbations which are initially periodic in the η-direction and vanish for ξ → ±∞ would

increase with time. Since the system is linear, the solution may be written as

w =




u

v

p


 = w0 exp(αξ) exp(στ − ikη), (4.55)

where σ is the non-dimensional growth rate, k the non-dimensional wave number and i the imagi-

nary unit. Introducing this into Eq. (4.54) the linear system may be written as

A ·w = 0, (4.56)
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where the matrix A is given by

A =




α −ik 0

σ + αU 0 α/ρ

0 σ + αU −ik/ρ



. (4.57)

The eigenvalues ofA are obtained by setting det(A) = 0. This leads to the characteristic equation

det(A) =
1

ρ
(k2 − α2) (σ + αU) = 0. (4.58)

Here again U = 1/r, ρ = r for ξ > 0 and U = 1, ρ = 1 for ξ < 0 should be considered. There

are three solutions of Eq. (4.58) for the eigenvalues αj , j = 1, 2, 3, where positive values of αj

satisfy the upstream (ξ < 0) and negative values the downstream (ξ > 0) boundary conditions of

Eq. (4.54). Therefore

ξ > 0 : α1 = −rσ, α2 = −k

ξ < 0 : α2 = +k.

(4.59)

The corresponding eigenvectors w0,j, j = 1, 2, 3 are determined by introducing the eigenvalues

αj , j = 1, 2, 3 into A and solving again

A(αj) ·wj = 0, j = 1, 2, 3. (4.60)

This leads to

j = 1 : w0,1 =




1

i
rσ

k
0




j = 2 : w0,2 =




1

i

−1 +
rσ

k




j = 3 : w0,3 =




1

−i

−1− σ

k




(4.61)
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In terms of the original unknowns u, v and p the solution is now

ξ > 0 :




u

v

p


 =




a




1

i
rσ

k
0


 exp(−rσξ) + b




1

i

−1 +
rσ

k


 exp(−kξ)





exp(στ − ikη)

ξ < 0 :




u

v

p


 = c




1

−i

−1− σ

k


 exp(kξ + στ − ikη).

(4.62)

For the perturbation f(η, τ) the form

f = f̃ exp(στ − ikη) (4.63)

will be introduced. Inserting Eqs. (4.35), (4.46) and (4.51) into the non-dimensional G-equation

(
∂G

∂t
+ u

∂G

∂x
+ v

∂G

∂y

)
=

√(∂G
∂x

)2
+
(∂G
∂y

)2
(1 + κL) (4.64)

satisfies to leading order Eq. (4.52) and x = 0−, x = 0+ respectively and leads to first order to

u− =
∂f

∂τ
− ∂2f

∂η2
L

u+ =
∂f

∂τ
− ∂2f

∂η2
L
r
.

(4.65)

With Eq. (4.63) the jump conditions Eq. (4.53) can be written as

(r − 1)σf̃ = r (a+ b)− c

0 = 2a+ b (1 + r
σ

k
) + c (

σ

k
− 1)

1− r

r
kf̃ = a

rσ

k
+ b+ c

(4.66)

and Eq. (4.65) then reads

c = f̃ (σ + k2L)

a+ b = f̃ (σ +
k2L
r

).

(4.67)
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Since equation Eq. (4.661) is linearly dependent of Eqs. (4.671,2) it is dropped and the Eqs.

(4.662,3) and (4.671,2) remain for the determination of a, b, c and σ(k). Dividing all equations by kf̃

one obtains four equations for â = a/kf̃ , b̂ = b/kf̃ , ĉ = c/kf̃ and ϕ = σ/k. The elimination of the

first three unknown yields the equation

ϕ2(1 + r) + 2ϕ(1 + kL) + 2kL
r

+
r − 1

r
= 0. (4.68)

The solution may be written in terms of dimensional quantities as

σ =
s−L0k

1 + r

{√
1 + k2L2 − 2kL

r
+

1− r2

r
− (1 + kL)

}
. (4.69)

Here only the positive root of Eq. (4.68) has been taken, since it refers to possible solutions

with exponential growing amplitudes. Eq. (4.69) is the dispersion relation which shows that the

perturbation f grows exponentially in time only for a certain wave number range 0 < k < k∗ with

k∗ = (r − 1)/(2L).
For perturbations at wave numbers k > k∗ a plane flame of infinitively small thickness, de-

scribed as a discontinuity in density, velocity and pressure is unconditionally stable. This is due to

the influence of the front curvature on the burning velocity. As one would expect on the basis of

simple thermal theories of flame propagation, the burning velocity increases when the flame front

is concave and decreases when it is convex towards the unburnt gas, so that initial perturbations

are smoothen. However, hydrodynamic and curvature effects are not the only influencing factors

for flame front stability. Flame stretch due to flow divergence, gravity (in a downward propagating

flame) and the thermo-diffusive effect with a Lewis number larger unity are stabilizing effects. A

more detailed discussion of these phenomena may be found in [11] and [13].

Exercise 4.1

Under the assumption of a constant burning velocity sL = sL0 the linear stability analysis leads to

the following dispersion relation

σ =
s−L0k

1 + r

{√
1 +

1− r2

r
− 1

}
. (4.70)

Validate this expression by inserting L = 0 in Eq. (4.69).
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What is the physical meaning of this result?

What effect has the front curvature on the flame front stability?

Solution

The dispersion relation for constant burning velocity sL = sL0, Eq. (4.70), shows that the pertur-

bation F grows exponentially in time for all wave numbers. The growth rate σ is proportional to

the wave number k and always positive since the density rate r is less than unity. This means

that a plane flame front with constant burning velocity is unstable to any perturbation. The front

curvature has a stabilizing effect on the flame front stability. As it is shown in Section 4.5, the linear

stability analysis for a burning velocity with the curvature effect retained leads to instability of the

front only for the wave number range 0 < k < k∗ = (r − 1)/(2L), whereas the front is stable to all

perturbations with k > k∗.
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Lecture 5

The Thermal Flame Theory

5.1 Premixed Flames Based on One-step Asymptotics

A classical example of an asymptotic description of the structure of a premixed flame is due to

Zeldovich and Frank-Kamenetzki in 1938. It is known as the thermal flame theory and considers

the single one-step reaction Eq. (4.15). We will assume that the reaction rate is first order with

respect to fuel and to oxygen

ω = B
ρYF
WF

ρYO2

WO2

exp
(−E
RT

)
. (5.1)

Alternative forms, in particular a rate which is first order with respect to the fuel only, may also be

considered. We will show that this case will be contained as a limit for extremely lean flames in

the expression above. In Eq. (5.1) the most important feature is the Arrhenius type temperature

dependence, where the activation energy E is assumed to be large. Both the activation energy

and the frequency factor B are adjustable parameters and cannot be deduced from elementary

kinetic data. The one-step model has widely been used in descriptions of flame stability, where

it essentially serves as model that produces a thin flame with a strong temperature sensitivity. In

this lecture we will derive an explicit expression for the burning velocity. This is to be compared

in lecture 7 to results derived from a four-step reduced mechanism for methane-air flames. The

flame structure shown schematically in Fig. 5.1. Since the reaction is assumed to be irreversible,

the reaction rate must vanish in the burnt gas. Therefore one of the reactants must be entirely

depleted: the fuel in the case of lean flames, the oxidizer for rich flames and both for stoichiometric
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Figure 5.1: The structure of a premixed laminar flame as calculated from one-step asymptotics.

flames. This leads to the condition in the burnt gas

YF,b · YO2,b = 0. (5.2)

The combustion of the reactants in the reaction zone leads to an increase in temperature and

therefore an increase of the reaction rate. In the analysis to be developed, the large temperature

dependence of the reaction rate, expressed by the large activation energy will play a crucial role.

Let us assume at first that Eq. (3.35) for the diffusion flux can be employed and that the Lewis

number is unity. The species balance equations Eq. (3.47) for the mass fractions of fuel and

oxygen read

ρusL
dYF
dx

=
d

dx

( λ
cp

dYF
dx

)
− ν′FWF ω

ρusL
dYO2

dx
=

d

dx

( λ
cp

dYO2

dx

)
− ν′O2

WO2
ω.

(5.3)

Then, using ρu = ρusL these can be combined with the temperature equation Eq. (3.46) in the

form

ρusL
dT

dx
=

d

dx

( λ
cp

dT

dx

)
− Q

cp
ω. (5.4)
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This leads to algebraic coupling relations between the mass fractions and the temperature which

may be integrated from the burnt state to any state within the flame as

YF = −ν
′
FWFcp
Q

(T − Tb) + YF,b

YO2
= −

ν′O2
WO2

cp

Q
(T − Tb) + YO2,b

(5.5)

Here Q and cp have been assumed constant for simplicity. With Eq. (5.5) the reaction rate is a

function of temperature and only Eq. (5.4) needs to be considered in the following.

In the small Mach number limit from the momentum equation one obtains the solution

p = const. (5.6)

With the aid of the thermal equation of state and Eq. (5.5) the density , the thermal conductivity

as well as the reaction rate can be expressed as a function of temperature. Again one obtains for

the solution of the continuity equation Eq. (4.16) the expression Eq. (4.19). The only differential

equation remaining describes the temperature profiles in x-direction.

ρusL
dT

dx
=

d

dx

( λ
cp

dT

dx

)
− Q

cp
ω. (5.7)

Zeldovich and Frank-Kamenetzki introduce the following assumptions introducing the ignition tem-

perature Ti:

1. in the preheat zone (T ≤ Ti) no reactions take place, therefore ω = 0 is assumed.

2. in the reaction zone (T ≥ Ti) the convective term at the left side of Eq. (5.7) can be neglected

compared to the diffusion term and the reaction term.

In particular the admissibility of the second assumption is at first glance hard to accept. However

it will become apparent when on the basis of the asymptotic theory the character of the reaction

zone as a very thin boundary layer will be introduced. A mathematical justification can be given by

a singular asymptotic expansion.

Using the first assumption Eq. (5.7) can be integrated in the pre heat zone. Considering the

boundary conditions dT/dx
∣∣
x→−∞

= 0 and T
∣∣
x→+∞

= Tu for the first derivative we have

dT

dx
=
cp ρusL
λ

(T − Tu). (5.8)
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With the second assumption Eq. (5.7) can be integrated once, if the temperature T is introduced

as an independent variable. One substitutes the heat conduction term with

d

dx

(
λ

cp

dT

dx

)
=

dT

dx

d

dT

(
λ

cp

dT

dx

)
=
cp
λ

1

2

d

dT

(
λ

cp

dT

dx

)2

. (5.9)

After multiplication with λ/cp from Eq. (5.7) it follows

1

2

d

dT

(
λ

cp

dT

dx

)2

= − (−∆H)λ

c2p
ω(T ). (5.10)

With the boundary conditions dT/dx
∣∣
x→∞

= 0 and T
∣∣
x→∞

= Tb this equation can be integrated

for a first time

dT

dx
=

√√√√√2
(−∆H)

λ2

Tb∫

T

λω(T ) dT . (5.11)

Now at the position xi for T = Ti Zeldovich and Frank-Kamenetzki set the derivatives of the preheat

zone, Eq. (5.8), and the reaction zone, Eq. (5.11) equal to each other. This yields an equation for

the burning velocity

cp ρusL
λi

(Ti − Tu) =

√√√√√2
(−∆H)

λ2i

Tb∫

Ti

λω(T ) dT. (5.12)

This corresponds to a matching process to adjust the solutions from the preheat zone and the

reaction zone. An analysis of the integral in closed form is only possible, if further simplifying

assumptions are introduced. Expanding the term in the exponent of Eq. (5.1) in a series around

Tb and neglecting higher order terms, one obtains

− E

RT = − E

RTb
+
E(T − Tb)

RT 2
b

. (5.13)

Since in the reaction zone T and Tb are only slightly different, it is useful to introduce the dimen-

sionless temperature

Θ =
E(T − Tb)

RT 2
b

, (5.14)

which stays of the order O(1) for large E/(RT 2
b ). In the reaction zone for T ≈ Tb in first approx-

imation and the properties can also assumed to be constant (ρ = ρb, λ = λb). Considering Eqs.
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(5.2) and (5.3) the reaction rate can be written as

ω = Bρ2b
cpRT 2

b

(−∆H)E
exp

(
− E

RTb

)

[
−
(
ν′FYO2,b

MO2

+
ν′O2

YF,b

MF

)
Θ+

ν′O2
ν′BcpRT 2

b

(−∆H)E
Θ2

]
expΘ.

(5.15)

Integration yields

Tb∫

Ti

λωdT = λb
RT 2

b

E

0∫

Θi

w(Θ)dΘ

=
λbBρ

2
bcpR2T 4

b

(−∆H)E
exp

(
− E

RTb

)[(
ν′FYO2,b

MO2

+
ν′O2

YF,b

MF

)
(1 + (Θi − 1) expΘi)

+2
ν′O2

ν′FcpRT 2
b

(−∆H)E

(
1−

(
1−Θi +

Θ2
i

2

)
expΘi

)]
.

(5.16)

Now a consideration is introduced which is obvious only for an asymptotic expansion for a large

activation energy. In the integral Eq. (5.16) Θi is substituted by Θu, which may be interpreted as the

assumption that the solution is valid far into the preheat zone. That is equivalent with the physical

conception that underneath the temperature Ti the integral in Eq. (5.16) is negligible because of

the strong dependence of the reaction rate on temperature. Then it makes no difference whether

integration is performed between Ti and Tb or Tu and Tb. Since Θu takes large negative values for

large activation energies, all terms containing expΘu will finally be replaced by −∞, so that they

disappear.

On the other hand on the left side of Eq. (5.12) Ti is replaced by Tb and λi by λb. This implies

the concept that the reaction zone is so thin, that the temperature in the preheat zone extends to

Tb and that Ti is hardly distinguishable from Tb. Eq. (5.12) then reads

ρusL =

√
2

Bρ2bλbR2T 4
b

cp(Tb − Tu)2E2
exp

(
− E

RTb

)
S

S =
ν′FYO2,b

MO2

+
ν′O2

YF,b

MF
+

2 ν′O2
ν′FcpRT 2

b

(−∆H)E
.

(5.17)

The contribution of the individual terms in S depends strongly on the equivalence ratio φ = 1/λ:

in very lean or very fat mixtures respectively YO2,b or YF,b are large, while both vanish for stoichio-
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metric mixtures. Therefore in stoichiometric mixtures the last term is predominant. It holds

S =





ν′FYO2,b

MO2

for φ≪ 1,

2 ν′O2
ν′FcpRT 2

b

(−∆H)E
for φ = 1,

ν′O2
YF,b

MF
for φ≫ 1.

(5.18)

Finally the assumptions introduced should be summarized:

1. In the preheat zone the reaction rate is neglected.

2. In the reaction zone the convective term is neglected

3. The reaction rate is approximated by an expansion around Tb, where only the exponential

term is expanded. Properties are set constant and are evaluated at Tb

4. The integration over the reaction zone leads to an expression that correspond to an integral

between the limits T = −∞ and T = Tb.

5. In the solution of the preheat zone the ignition temperature Ti is equalized to Tb.

Originally the thermal flame theory of Zeldovich and Frank-Kamenetzki was not derived for reaction

rates in the form of Eq. (5.1) being of first order both for the fuel and the oxidizer. Rather several

solutions were derived for the reaction rate of zeroth, first and second order. The comparison with

the result presented here, Eqs. (5.17) and (5.18) shows that a reaction of first order is conform

with a very rich or very lean mixture, for which the component in-deficit determines the reaction

rate. In contrast the stoichiometric mixture relates to a reaction of second order, since here both

components are rate determining.

5.2 Flame Thickness and Flame Time

In Section 5.1 we have identified the burning velocity sL as an eigenvalue of the problem, which

results from the solution of the one-dimensional balance equations. Under the assumption of a

one-step reaction, in which only a chemical time scale has been introduced, and with the assump-

tion of Le = 1, by which the thermal diffusivity a = λ/(ρcp) and mass diffusivity D are equal, with
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Figure 5.2: Graphical determination of the flame thickness.

Eq. (5.17) one obtains a relation for sL, which combines the parameters diffusivity and chemical

time as

sL =
√
D/tc. (5.19)

Here the mass diffusivity D is related to the thermal diffusivity using ρ = ρu and λ = λb as

D =
λb
ρucp

, (5.20)

while the chemical time is given by

tc =
ρuZe

2

2Bρ2bS
exp

(
E

RTb

)
(5.21)

Here the Zeldovich number, defined by

Ze =
E(Tb − Tu)

RT 2
b

(5.22)

appears squared. Since Ze is of the order of magnitude O(10), the chemical time tc is by two

orders of magnitude larger than a chemical time, which, irrespective of the density ratio ρu/ρb,

would be calculated from the reaction rate for example for very lean flames φ≪ 1 as the reciprocal

of

B
ρYO2

MO2

exp(
−E
RT ) at T = Tb, ρ = ρb, YO2

= YO2,b
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Obviously tc is not a time, which is solely determined by chemistry, but tc incorporates the structure

of the flame as well. This will become apparent, if from dimensional arguments one defines the

flame thickness as

ℓF =
D

sL
=

λb
cpρusL

(5.23)

Then one can further introduce the flame time

tF =
ℓF
sL

(5.24)

This is the time, which the flame front requires, to propagate the distance of the thickness of the

flame. The comparison between Eqs. (5.19) and (5.23) up to Eq. (5.24) show, that tc mit

tc =
D

s2L
=
ℓF
sL

= tF (5.25)

is equal to the flame time.

The flame thickness can be descriptively constructed from the temperature profile, Fig. 5.2.

If one attaches a tangent to the turning point of the temperature profile and determines the inter-

section with the horizontal line at Tu and Tb, the length ℓF can be taken at the abscissa. If one

substitutes in Eq. (5.8) the left side by (Tb − Tu)/ℓF and evaluates the right side at T = Tb, one

obtains

ℓF =
λb

cpρusL
(5.26)

in accordance with Eq. (5.23).

In Eq. (6.17) in Lecture 6 we will introduce a normalized coordinate which eliminates all prop-

erties from the temperature equation, as will be shown in Eq. (7.5). This suggests

ρusL

∫ ℓF

0

λ

cp
dx = 1. (5.27)

Assuming λ/cp = (λ/cp)T 0 , where T 0 is the inner layer temperature to be defined in Lecture 6,

one obtains a more suitable definition for ℓF :

ℓF =
(λ/cp)T 0

(ρsL)u
. (5.28)

Since the reaction zone was assumed to be thin, the flame thickness hence describes the thickness

of the preheat zone of the flame structure.
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The flame thickness also is a measure for the quenching distance d. This is the distance, for

whom a flame extinguishes, if it encounters a cold wall. Typically one has

d = c ℓF , c = 5...6.

Therefore a flame cannot pass through a metal grid, if the distance between the wires is smaller

than d. In former times this observation was used at pit lamps. These lamps consist of an open

flame encapsulated by a metal grid. If mine gas, normally methane, unexpectedly accumulated

in a gallery, it diffused through the metal grid with the result that the flame of the pit lamp burned

more lucidly. On the other hand there was no danger, that the mine gas got ignited by the pit lamp,

if the quenching distance was respected in choosing the proper grid spacing. In case of a brighter

pit lamp the miner knew that he has to seek shelter as fast as possible.
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Lecture 6

Asymptotic Structure of Four-Step

Premixed Stoichiometric Methane

Flames

In the previous lecture we have derived a description of premixed flames based on an assumed

one-step reaction. This has provided a basic understanding of the flame structure when a large

sensitivity to temperature was built into the model. There is no chemical basis for such a one-step

assumption and the results must be regarded with caution when conclusions are drawn about the

dependence of the burning velocity on pressure and reactant concentrations, as well as flamma-

bility and extinction limits. While numerical calculations based on full and reduced mechanisms

are able to predict these properties, they contribute little to the understanding of the fundamental

parameters that influence flame behavior. Therefore there is a need to fill the gap between the

numerical calculations based on mechanisms with elementary kinetics and asymptotic analysis

based on assumed chemistry models. The asymptotic description of stoichiometric methane-air

flames from [1], based on a four-step reduced mechanism, shall be presented in this lecture. Since

the basic chemical parameters were retained, this mechanism has been quite successful in de-

scribing the dependence of the burning velocity on pressure and preheat temperature. A similar

asymptotic analysis as in [1] was also carried out for lean methane flames [2]. This description

may, with some modifications, also serve as a model for other hydrocarbon flames. This will be

shown by using analytical approximation formulas [3] that are based on the asymptotic description
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of methane flames for flames of C2H6, C2H4, C2H2 and C3H8 in air.

6.1 The Four-Step Model for Methane-Air Flames

The four-step model for methane flames is

I CH4 + 2H+H2O ⇋ CO+ 4H2

II CO + H2O ⇋ CO2 +H2

III H + H +M ⇋ H2 +M

IV O2 + 3H2 ⇋ 2H + 2H2O.

(6.1)

The principle rates governing these global reactions are

ωI = ω11 , ωII = ω9

ωIII = ω5 , ωIV = ω1

(6.2)

which correspond to the elementary reactions

11 CH4 +H → CH3 +H2

9 CO +OH ⇋ CO2 +H

5 H+O2 +M → HO2 +M

1 H +O2 ⇋ OH+O.

(6.3)

We neglect the influence of the other reactions here in order to make the algebraic description

more tractable. Since OH and O appear in this formulation as reactants we need to express them

in terms of the species in the four-step mechanism by using the partial equilibrium assumption for

the reaction:
2 O + H2 ⇋ OH+H

3 OH+H2 ⇋ H2O+H
(6.4)

such that

[O] =
[H][OH]

K2[H2]

[OH] =
[H2O][H]

K3[H2]
.

(6.5)
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where K2 and K3 are the equilibrium constants of reactions 2 and 3, respectively. This leads to

the following reaction rates of the global steps I-IV:

ωI = k11[CH4][H]

ωII =
k9f
K3

[H]

[H2]

(
[CO][H2O]− 1

KII
[CO2][H2]

)

ωIII = k5[H][O2][M]

ωIV = k1
[H]

[H2]3

(
[O2][H2]

3 − 1

KIV
[H]2[H2O]2

)

(6.6)

which is explicit in terms of the concentrations of species appearing in the four-step mechanism.

The equilibrium constants in these rates are given by

K3 = 0.216 exp(7658/T )

KII = 0.035 exp(3652/T )

KIV = 1.48 exp(6133/T ).

(6.7)

We now want to go one step further and assume steady state of the radical H. Adding reaction IV

to I and III leads to the three steps

I′ CH4 +O2 = CO+H2 +H2O

II′ CO+H2O = CO2 +H2

III′ O2 + 2H2 = 2H2O

(6.8)

with the first three rates of Eq. (6.6). The concentration of H must now be determined from the

steady state equation for H

ωI + ωIII = ωIV. (6.9)

This may be written as

[H] = [Heq]
(
1− k5[M]

k1
− k11[CH4]

k1[O2]

)1/2
, (6.10)

where [Heq ] based on partial equilibrium of reaction IV

[Heq ] = K
1/2
IV

[O2]
1/2[H2]

3/2

H2O
. (6.11)

Eq. (6.10) shows an interesting structure: At temperatures of 1400K and above the second term
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Figure 6.1: Schematic illustration of the structure of a premixed methane-air flame.

in the brackets is small while the ratio k11/k1 is much larger than unity. It follows that [CH4]/[O2]

must be much smaller than unity, if [H] is to remain real. This will be used to develop an asymptotic

description of the inner layer below but also shows that Eq. (6.10) cannot be valid in the preheat

zone upstream of the inner layer where CH4 is entirely consumed. The structure of the flame

is schematically shown in Fig. 6.1. From Eq. (6.10) it follows that [H] vanishes in the preheat

zone which is therefore chemically inert. A further approximation that will reduce the three step

mechanism Eq. (6.8) effectively to a two-step mechanism is the assumption of partial equilibrium

of reaction II. Assuming the concentrations of H2O and CO2 to be known this leads to a coupling

between the concentrations of CO and H2 of the form

[CO] = α′[H2], (6.12)

where

α′ =
[CO2]

[H2O]
KII(T ). (6.13)

By introducing partial equilibrium of reaction II one assumes that the effective rate coefficient

k9f/K3 in the second equation of Eq. (6.6) tends to infinity while the term in parenthesis tends

to zero and ωII remains finite. Since ωII is undefined, the rate ωII must be eliminated from the
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balance equations. In order to show this the balance equations for the three-step mechanism are

written in operator form

Species Li(Yi) ≡ ρusL
dYi
dx

− 1

Lei

d

dx

( λ
cp

dYi
dx

)
= Wi

III′∑

l=I′

νilωl

Temperature LT (T ) ≡ ρusL
dT

dx
− d

dx

( λ
cp

dT

dx

)
=

1

cp

III′∑

l=I′

Qlωl.

(6.14)

In terms of the variable Γi = Yi/Wi the balance equations for the concentrations are written

LCH4
(ΓCH4

) = −ωI

LO2
(ΓO2

) = ωI + ωIII

LH2
(ΓH2

) = ωI + ωII − 2ωIII

LCO(ΓCO) = ωI − ωII

LH2O(ΓH2O) = ωI − ωII + 2ωIII.

LCO2
(ΓCO2

) = ωII.

(6.15)

The rate ωII may be eliminated from Eq. (6.15) by combining the balance equations of H2,

H2O, and CO2 with that of CO

LH2
(ΓH2

) + LCO(ΓCO) = 2ωI − 2ωIII

LH2O(ΓH2O) − LCO(ΓCO) = 2ωIII

LCO2
(ΓCO2

) + LCO(ΓCO) = ωI.

(6.16)

We will anticipate that in the thin reaction layers to be considered below, the diffusive terms dom-

inate for the same reason as in the thin reaction zone for the one-step model. Therefore we will

neglect the convective terms in the operators Eq. (6.14) for the thin reaction zones and consider

only the diffusive terms. This suggests that the concentrations should be scaled with the Lewis

numbers. We introduce the non-dimensional variables

Xi =
YiWCH4

YCH4uWi
, xi =

Xi

Lei
,

T ∗ =
T − Tu
Tb − Tu

, x∗ = ρusL

∫ x

0

cp
λ
dx,

ω∗
l =

λWCH4
ωl

cpYCH4u(ρv)
2
u

, Q∗
l =

QlYCH4u

cp(Tb − Tu)WCH4

(6.17)
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and redefine the parameter α′

α = α′ LeH2

LeCO
. (6.18)

With xCO = αxH2
one obtains the following balance equations of the two-step mechanism (the

asterisks will be removed from here on)

−d2 xCH4

dx2
= −ωI,

−d2 xO2

dx2
= −ωI − ωIII,

−d2 xH2

dx2
=

2

1 + α
(ωI − ωIII),

−d2 xCO

dx2
=

2α

1 + α
(ωI − ωIII),

−d2 xH2O

dx2
=

2α

1 + α
ωI +

2

1 + α
ωIII,

−d2 xCO2

dx2
=

1− α

1 + α
ωI +

2α

1 + α
ωIII.

(6.19)

The stoichiometric coefficients are those of the two global reactions

I′′ CH4 +O2 =
2

1 + α
(H2 + αCO) +

2α

1 + α
H2O+

1− α

1 + α
CO2,

III′ O2 +
2

1 + α
(H2 + αCO) =

2

1 + α
H2O+

2α

1 + α
CO2.

(6.20)

Here the combination H2 + αCO appears as an intermediate which is formed in I′′ and consumed

in III′′. The rates of these reactions are still the same as of I and III in the four-step mechanism.

If the balance equations Eqs. (6.19)1 and (6.19)3 are used to determine xCH4
and xH2

, all other

concentrations and the temperature can be determined deriving the following coupling equations
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from Eq. (6.19) and the corresponding temperature equation

d2

dx2
[(1 + α)xH2

+ 4xCH4
− 2xO2

] = 0,

d2

dx2
[xH2

+ 2xCH4
+ xH2O] = 0,

d2

dx2
[xH2

+ xCH4
+ xCO2

] = 0,

d2

dx2
[(qH2

+ αqCO)xH2
+ xCH4

+ T ] = 0.

(6.21)

Here the reduced heats of reaction are

qH2
=

1

2

QIII

Q
= 0.3116

qCO =
(12QIII +QII)

Q
= 0.3479,

(6.22)

where Q is the heat of reaction of the global step

CH4 + 2O2 = CO2 + 2H2O. (6.23)

In the following we approximate both qH2
and qCO by q = 0.33 for simplicity.

6.2 The Asymptotic Structure

The flame structure of the two-step mechanism is shown in Fig. 6.1 and contains three layers

1. a chemically inert preheat zone of order O(1) upstream,

2. an thin inner layer of order O(δ) in which the fuel is consumed and the intermediates H2 and

CO are formed according to the global step I′′,

3. a thin oxidation layer of order O(ε) downstream where H2 and CO are oxidized according to

the global step III′′.

At first the inner layer shall be analyzed. We will denote quantities at the inner layer with a

subscript 0 but the inner layer temperature as T 0. In this layer all concentrations except that of the

fuel, which is depleted may be assumed constant to leading order. Introducing Eq. (6.10) into the
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Eq. (6.6)1 and neglecting the second term in the paranthesis of Eq. (6.10) this leads to

ωI = DaIxCH4

(
1− xCH4

δ

)1/2
(6.24)

where the Damköhler number of reaction I is

DaI =
ρ20
ρ2us

2
L

YCH4u

WCH4

λ0
cp0

(KIVXO2
X3

H2
)
1/2
0

XH2O
LeCH4

k11(T
0). (6.25)

The small parameter δ was defined as

δ =
k1(T

0)XO2,0

k11(T 0)LeCH4

(6.26)

It denotes the ratio of the rate coefficients of reaction I and II and thereby describes the competition

of these two reactions in producing and consuming /HnR-radicals according to the global steps

IV and I. Since it happens that the reaction rate k1 is typically smaller than k11, and since also

XO2
in the inner layer is smaller than unity, δ is around 0.1 and sufficiently small for an asymptotic

expansion. If δ is small, since ωI must be real it follows from the term in paranthesis in Eq. (6.24)

that xCH4
must not exceed the value of δ. Fig. 6.1 shows that the fuel is of order O(1) in the

preheat zone but decreases rapidly towards the inner layer. In the inner layer xCH4
is then of order

O(δ) and one may introduce the scaling

y =
xCH4

δ
(6.27)

and the stretched variable

ζ =
x

δ
. (6.28)

Introducing these into the equation of Eq. (6.19)1 leads to the differential equation that governs

the structure of the inner layer
d2y

dζ2
= (δ2DaI)y(1− y)1/2. (6.29)

The downstream boundary condition of this equation is

y = 0 as ζ → +∞ (6.30)
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since reaction I is irreversible. The matching with the preheat zone should, as for the one-step

asymptotic problem, provide the second boundary condition. The solution for the fuel concentration

in the preheat zone is

xCH4
= 1− exp(LeCH4

x), (6.31)

which leads to the expansion xCH4
= −x around x = 0. It is shown in [1], however, that the

inner layer and the preheat zone are separated by an additional thin layer, the radical consumption

layer where the steady state approximation for the H-radical breaks down. This layer occurs at

y = 1, ζ = −1 in terms of the inner layer variables. Since the fuel is not consumed in this radical

layer the slope of the fuel concentration is continuous and matching across this layer leads to

y = 1,
dy

dζ
= −1 at ζ = −1. (6.32)

With the boundary conditions Eqs. (6.30) and (6.32) Eq. (6.29) can be integrated once to obtain

the eigenvalue

δ2DaI =
15

8
. (6.33)

With Eq. (6.33) one could now determine the burning velocity sL if the temperature T 0 and all other

properties at the inner layer were known. In order to determine these, the structure of the oxidation

layer also must be resolved. In the oxidation layer xCH4
= 0 and therefore ωI = 0. The temperature

varies only slowly in this layer and since the activation energy of k5 is small, temperature variations

may be neglected. Since most of the chemical activity takes place in the vicinity of the inner layer,

all properties shall be evaluated at x = 0. Choosing xH2
as the dependent variable in the oxidation

layer and scaling it in terms of a new variable z as

xH2
=

εz

(1 + α)q
(6.34)

one may use the coupling relations Eq. (6.21) to show that the downstream boundary conditions

are satisfied by

xO2
= εz/2q, T = 1− εz. (6.35)

In these expansions ε is the small parameter related to the thickness of the oxidation layer. Intro-

ducing Eqs. (6.34) and (6.36) into the third of Eqs. (6.6) leads to

ωIII = 2qDaIIIε
3z3 (6.36)
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Figure 6.2: Normalized H2-profile in the oxidation layer.

where the Damköhler number of reaction III is defined

DaIII =
ρ20
ρ2us

2
L

YCH4u

WCH4

λ0
cp0

(KIVLe
3
O2

Le3H2

25 (1 + α)3

)1/2
0

k5[M]

q4XH2O
. (6.37)

The concentration of the third body in reaction 5 may be determined approximately by using the

third body efficiencies evaluated at the burnt gas conditions. This leads to

[M] =
1.6p

RT (6.38)

which introduces a pressure dependence of DaIII and will finally determine the pressure depen-

dence of the burning velocity. Introduction of a stretched coordinate

η =
2qx

ε
(6.39)

then leads from the third equation of Eq. (6.19) with ωI = 0 to the governing equation of the

oxidation layer
d2z

dη2
= (ε4DaIII)z

3. (6.40)
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This suggests the definition

ε = Da
−1/4
III . (6.41)

It turns out that for p ≥ 1 atm ε is smaller than unity but typically larger than δ. Even though δ is not

very small, we will consider it as small enough to justify an asymptotic description of the oxidation

layer. The downstream boundary condition of Eq. (6.40) is

z = 0 for η → ∞ (6.42)

since reaction III is irreversible. The upstream boundary condition must be determined from jump

conditions across the inner layer. Since the fuel is depleted and H2 is formed in the inner layer

following reaction I′′, the stoichiometry of this reaction also determines the change of slopes of the

H2 in comparison of those of the fuel. This is written as

dxCH4

dx

∣∣∣
0−

− dxCH4

dx

∣∣∣
0+

=
1 + α

2

(dxH2

dx

∣∣∣
0−

− dxH2

dx

∣∣∣
0+

)
(6.43)

Since the thickness of the preheat zone is of order O(1) and that of the oxidation layer of order

O(ε) the upstream slope of the H2 concentration dxH2
/dx

∣∣
0+

can be neglected compared to the

downstream slope dxH2
/dx

∣∣
0−

. It then follows with Eqs. (6.34) and (6.39) that the upstream

boundary condition of Eq. (6.40) is

dz

dη
= −1 at η = 0. (6.44)

Then the solution of Eq. (6.40) with Eq. (6.41) is

z =
21/2

21/4 + η
(6.45)

with

z0 = 21/4 at η = 0. (6.46)

The form of the solution is plotted in Fig. 6.2 showing a very slow decrease of z towards η → ∞.

This may explain why in numerically and experimentally obtained concentration and temperature

profiles the downstream conditions are approached only very far behind the flame.
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Figure 6.3: The burning velocity for an undiluted stoichiometric methane-air flame at Tu = 300K.

6.3 An Analytic Expression for the Burning Velocity

The result Eq. (6.46) may now be used in Eqs. (6.34) and (6.36) to determine the quantities

required in Eq. (6.25) and thereby the burning velocity sL. Also by dividing Eq. (6.25) by Eq.

(6.39) one can eliminate sL and obtain a relation of the form

k21(T
0)

k11(T 0)k5(T 0)/(RT 0)
= 1.5p

LeCH4

LeO2

(6.47)

Here the universal gas constant R must be used as R = 82.05 atmcm3/mol/K in order to be

consistent with the units of the reaction rates and the pressure. Eq. (6.47) shows that with the

rate coefficients fixed, the inner layer temperature is function of the pressure only. It does not

depend on the preheat temperature, the dilution of the fuel concentration in the unburnt mixture

and thereby the adiabatic flame temperature. After some algebraic manipulations the expression

for the burning velocity reads

s2L =
8

15

k21
k11

1

q4XH2O

YCH4,u

WCH4

λ0
cp0

(Le5O2
Le3H2

KIV(T
0)

LeCH4
25(1 + α0)3

)1/2(T 2
u

T 0

)2 (Tb − T 0

Tb − Tu

)4
(6.48)
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where Eqs. (6.46) and (6.36) were used to relate ε to the difference between Tb and T 0

εz0 =
Tb − T 0

Tb − Tu
. (6.49)

The burning velocity calculated from Eq. (6.48) and the pressure from Eq. (6.47) are plotted in

Fig. 6.3 for an undiluted flame with Tu = 300K as a function of T 0 choosing p = 1 atm one obtains

a laminar burning velocity of 54 cm/s for stoichiometric methane flames. This value is satisfactory

in view of the many approximations that were made and the few kinetic rates that were retained.

In fact, it is seen from Eqs. (6.47) and (6.48) that only the rates of reactions 1, 5, and 11 influence

the burning velocity in this approximation.

A further consequence of Eq. (6.48) is that the burning velocity vanishes as T 0 reaches Tb.

This is seen in Fig. 6.3 with Tb = 2320K the pressure is larger than approximately 20 atm. Different

values of Tb would been obtained for a diluted or preheated flame. The fact that at a fixed pressure

T 0 is fixed by the rate of rate coefficients in Eq. (6.47) points towards the possibility to explain

flammability limits at least in terms of dilution for stoichiometric flames: if the amount of fuel is so

low that in the unburnt mixture the corresponding adiabatic flame temperature is lower than T 0, a

premixed flame cannot be established.

6.4 Relation to the Activation Energy of the One-step Model

Using the burning velocity expression Eq. (6.48) from the preceding section

ρusL =

√
2

Bρ2bλbR2T 4
b

cp(Tb − Tu)2E2
exp

(
− E

RTb

)
S

S =
ν′CH4

YO2,b

MO2

+
ν′O2

YCH4,b

MCH4

+
2 ν′O2

ν′CH4
cpRT 2

b

(−∆H)E
,

one may plot the burning velocity in an Arrhenius diagram over 1/Tb. Then in the limit of a large

activation energy all pre-exponential dependencies on Tb are small and the slope in this diagram

is given by
d ln s2L
d(1/Tb)

= −ER (6.50)

or
d ln s2L
d lnTb

=
E

RTb
(6.51)
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Figure 6.4: Variation in the value of the effective Zeldovich number with Φ for various values of p
at Tu = 300K.

Applying this form to Eq. (6.48) with T 0 fixed leads to

d ln s2L
d ln Tb

=
4Tb

Tb − T 0
− 4Tb
Tb − Tu

(6.52)

Since the second of the terms is much smaller then the first, one obtains with Eq. (6.49), when T 0

approaches Tb and ε is small,
E

RTb
=

4Tb
Tb − Tu

1

εz0
. (6.53)

Therefore the Zeldovich number

Ze =
E(Tb − Tu)

RT 2
b

introduced in Eq. (5.22) may be expressed as

Ze =
E(Tb − Tu)

RT 2
b

=
4

εz0
(6.54)

In the one-step model the thickness of the reaction zone was of the order of the inverse of the

Zeldovich number. This corresponds for the two-step model for methane flames to the thickness
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Figure 6.5: Variation of the adiabatic flame temperature Tb and the temperature at the inner layer
T 0 with equivalence ratio Φ for various values of the pressure p and for Tu = 300K.

of the oxidation layer. Therefore the oxidation layer seems to play a similar role in hydrocarbon

flames as the reaction zone in one-step asymptotics. Values of the Zeldovich number for lean to

stoichiometric methane flames, obtained by asymptotic analysis in [2] are shown in Fig. 6.4. The

Zeldovich number measures the sensitivity of the burning velocity to perturbations of the maximum

temperature. Fig. 6.4 shows that this sensitivity increases as the mixture becomes leaner and

when the pressure increases. The flame will then become very sensitive to heat loss and flame

stretch effects.

6.5 Analytic Approximations of Burning Velocities for Lean

CH4, C2H6, C2H4, C2H2, and C3H8 Flames

The burning velocity expression presented in Eqs. (6.47) and (6.48) may be generalized by writing

an approximation formula for burning velocities as

sL = Y m
F,uA(T

0)
Tu
T 0

(Tb − T 0

Tb − Tu

)n
(6.55)
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and

p = P (T 0) (6.56)

where the functions A(T 0) and P (T 0) are determined by fitting numerical or experimental data and

the values m = 1/2 and n = 2 would correspond to the previous expressions for premixed methane

flames. Eq. (6.56) assumes that the inner layer temperature is a function of pressure only, and

it does not depend, for instance, on the equivalence ratio. This is a fairly crude approximation

as may be seen from Fig. 6.5 where inner layer temperatures obtained from asymptotic analysis

[2] are plotted together with the adiabatic temperatures as a function of the equivalence ratio. If

one would replace the curves for the inner layer temperature by a horizontal line, its intersection

with the curve for Tb would yield a lower theoretical limit for the lean flammability limit. This will

be discussed in the next section. If the structure of any other hydrocarbon fuel is similar to that

of methane, these exponents should not differ very much from these numbers. Since A(T 0) and

B(T 0) contain essentially the temperature dependence due to rate coefficients, we express them

in Arrhenius form

A(T 0) = F exp(−G/T 0) (6.57)
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Figure 6.7: Burning velocity sL of propane vs. pressure p for various unburnt gas temperatures
Tu at stoichiometric mixture (solid lines). The markers denote the values of detailed numerical
calculations.

P (T 0) = B exp(−E/T 0). (6.58)

This concept was tested in [3]. The basis of the approximation was a data set of 197, 223, 252,

248, and 215 premixed flames for CH4, C2H6, C2H4, C2H2 and C3H8, respectively in the range

between p = 1 atm and 40 atm, Tu between 298K and 800K, and the fuel-air equivalence ratio

between Φ = 0.4 and Φ = 1.0. A nonlinear approximation procedure was employed, yielding the

following values for the coefficients: The approximation was surprisingly the best for C2H2, yielding

fuel B [bar] E [K] F [cm/s] G [K] m n
CH4 3.1557e8 23873.0 22.176 -6444.27 0.565175 2.5158
C2H2 56834.0 11344.4 37746.6 1032.36 0.907619 2.5874
C2H4 3.7036e5 14368.7 9978.9 263.23 0.771333 2.3998
C2H6 4.3203e6 18859.0 1900.41 -506.973 0.431345 2.1804
C3H8 2.2502e6 17223.5 1274.89 -1324.78 0.582214 2.3970

Table 6.1: Approximation coefficients for the burning velocity.

a standard deviation for sL of 2.3%, followed by C2H4 with 3.2%, C2H6 and C3H8 with 6.2%, and

CH4 with 7.4%. These deviations may be considered extremely small in view of the fact that such

a large range of equivalence ratios, pressures and preheat temperatures has been covered with
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an approximation formula containing only six coefficients which for some hydrocarbons are given

in Tab. 6.1. A closer look at the exponents mand n shows that m is close to 1/2 for CH4 and

C3H8, but close to unity for C2H2 and C2H4, suggesting that the asymptotic model for these flames

should differ from the one for CH4 in some important details. The exponent m lies around 2.5 and

thereby sufficiently close to 2 for all fuels.

Burning velocities for methane calculated from Eqs. (6.55) and (6.56) are shown as a function

of equivalence ratio for different pressures at Tu = 298K in Fig. 6.6 and compared with the values

obtained from the numerical computations. Generally the largest derivations from the numerical

computations occur around Φ = 1. The pressure and unburnt temperature variation of sL at

stoichiometric mixture is shown in Fig. 6.7 for propane.

Example 6.1

From the approximation Eq. (6.55) calculate in comparison with Eq. (5.17) those activation energy,

which describes the change of the reaction rate as function of the change in Tb. Thereby Tu and

T 0 should be considered constant.

Solution

If one writes Eq. (5.17) approximately as

(ρusL)
2 = const exp(−E/RTb)

and logarithmizes this expression

2 ln(ρusL) = ln(const)− E

RTb
,

one can determine the activation energy by differentiation with respect to 1/Tb from

E

R = −2
d ln(ρusL)

d(1/Tb)
= 2T 2

b

d

dTb

(
ln(ρusL)

)
.

Using this in Eq. (6.55) for ρu = const, it follows

2T 2
b

d

dTb

(
ln(ρusL)

)
=

2nTb
Tb − T 0

− 2nTb
Tb − Tu

.
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Therefore one obtains for the Zeldovich number Ze

Ze = n(
Tb − Tu
Tb − T 0

− 1).

Here, following Eq. (6.56) T 0 is only dependent on pressure, while Tb following Eq. (2.24) depends

both on Tu and on the fuel-air ratio φ = 1/λ via Eq. (1.55). If the difference Tb − T SSS0 is small

compared with Tb − Tu, the second term in the parenthesis can be neglected.
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Lecture 7

Flame Extinction and Flammability

Limits

Lean and rich flammability limits are a function of the temperature and the pressure of the original

mixture. Fig. 7.1 shows the flammability limits of methane and hydrogen for increasing temper-

atures as a function of 1/φ the air-fuel equivalence ratio. It is seen, that in particular for lean

mixtures, which are on the r.h.s. of this diagram, the flammability limits of hydrogen extend to

much larger values than for methane. This shows that hydrogen leakage my cause safety haz-

ards more readily than, for instance, hydrocarbons which have flammability limits close to those of

methane. Many data on flammability limits are given in [1].

The theory developed in the previous lecture shows that, differently from the one-step reaction,

a flame cannot burn if the adiabatic flame temperature, which depends on the equivalence ratio

and on dilation, is lower than the inner layer temperature T 0, the latter being determined essentially

by kinetics, as eq. (6.47) shows.

7.1 Lean Flammability Limits of Hydrocarbon Flames

Flammability is the ability of a mixture, once it has been ignited, to enable flame propagation

without further heat addition. This requires that a sufficient amount of fuel is available to reach

a temperature, that, in view of the flame structure as shown in Fig. 6.1 should exceed the inner

layer temperature T 0. Le Chatelier in 1891 was the first to point towards a criterion that relates
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Figure 7.1: Flammability limits of hydrogen and methane as a function of the temperature.

the flammability limit to the thermodynamic properties of the fuel mixture. In 1898 Le Chatelier

and Boudouard investigated experimental data and wrote that ẗhe flammability limit of most hydro-

carbons corresponds to a heat of combustion close to 12.5 kcal.̈ This is essentially Le Chatelier’s

famous m̈ixing rule.̈ It determines an adiabatic flame temperature and should be valid for mixtures

of hydrocarbons with inerts, too. Eq. (6.55) now shows that the burning velocity vanishes if the

adiabatic flame temperature is equal to the inner layer temperature. A lower theoretical limit for the

lean flammability limit is therefore given by

Tb = T 0. (7.1)

In view of this criterion the adiabatic flame temperature identified by Le Chatelier and Boudouard

corresponds to the inner layer temperature and thus describes a chemical rather than a thermo-

dynamic property.

As the lean flammability limit is approached, the burning velocity drops sharply, but shows a

finite value at the limiting point. Egerton and Thabet [2] and Powling [3] report a value of 5 cm/s at

atmospheric pressure using flat flame burners. Experimental data for the lean flammability limit are

always influenced by external disturbances, such as radiative heat loss or flame stretch. Radiation

heat loss will be discussed in Section 7.2. We note that flame extinction occurs at a finite value of
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the burning velocity. Eq. (7.1) may be used to calculate the limiting fuel mass fraction (YF,u)l.l. as

a quantity that determines the flammability limit. At the flammability limit it is accurate enough to

assume complete combustion and to use Eq. (2.20) to determine Tb as a function of YF,u and Tu.

Then, with Tb = T 0, one obtains

(YF,u)l.l. =
(T 0 − Tu)cpν

′
FWF

Qref
(7.2)

This indicates that the limiting fuel mass fraction decreases linearly with increasing Tu.

7.2 Extinction of a Plane Flame by Volumetric Heat Loss

An additional influence that affects the stability of flames is volumetric heat loss. In order to analyze

this effect we will compare the one-step model with a large activation energy and unity Lewis

number and the four-step model. We will assume that the volumetric heat loss qR is proportional

to the temperature difference T − Tu and write

qR = −α(T − Tu), (7.3)

where α is a heat loss coefficient. The one-dimensional temperature equation for a steady state

premixed flame is then written as

ρusL
dT

dx
=

d

dx

( λ
cp

dT

dx

)
+
Q

cp
ω − α(T − Tu). (7.4)

In terms of the non-dimensional quantities defined in Eq. (6.17) this may be written (with the

asterisks removed)

M
dT

dx
=

d2T

dx2
+ ω − πT. (7.5)

Here M is the burning velocity of the plane flame with heat loss normalized by the reference

burning velocity sL,ref of a plane flame without heat loss

M =
sL
sL,ref

. (7.6)

106



1

2

3

4

5

6

200

XCH4

 
4
 

300 400 500 600 700 800 900 1000

Tu [K]

10 cm/s

sL = 5 cm/s

2.5 cm/s

T
0
 = Tb

Figure 7.2: Comparison of experimental data for the lean limit CH4 mole fraction from [4] for
different preheat temperatures with the two criteria.

T

x

0

reaction zone 

heat loss zonepreheat zone

Tb π z(0+)

with heat loss

without

heat loss

Figure 7.3: Structure of a premixed flame with heat loss.

107



The non-dimensional heat loss parameter is defined

π =
λα

ρ2us
2
L,refc

2
p

. (7.7)

It will be assumed constant with λ evaluated at T = T 0. It should be noted here that π increases

rapidly as sL,ref decreases. Therefore heat loss has a strong influence close to the flammability

limit when sL,ref is small. The structure of a premixed flame with heat loss is shown in Fig. 7.3.

We will treat π as a small expansion parameter and expand the temperature as

T = T 0(1 + πz) (7.8)

where T 0 is the leading order temperature for π → 0. The reaction term ω in Eq. (7.4) can be

eliminated by coupling it with the Eq. (5.3) for the fuel mass fraction. In non-dimensional form one

then obtains the enthalpy

h = T + Y − 1 (7.9)

governed by the equation

M
dh

dx
=

d2h

dx2
− πT. (7.10)

This equation may be integrated across the thin reaction zone from x = −∞ to x = 0+. This leads

to

Mh(0+) =
dh

dx

∣∣∣
0+

− π

∫ 0+

−∞

T 0dx (7.11)

since at x → −∞ the enthalpy and its gradient vanishes. Introducing Eq. (7.8) into Eq. (7.9) at

x = 0+, where T 0 = 1 and Y = 0 one obtains

h(0+) = πz(0+). (7.12)

The integral over the preheat zone in Eq. (7.11) may evaluated by integrating the temperature

equation Eq. (7.5) to leading order

M
dT 0

dx
=

d2T 0

dx2
(7.13)

leading to

T 0 = exp(Mx) for x < 0. (7.14)
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The downstream enthalpy gradient at the flame front is equal to the downstream temperature

gradient since Y = 0 for x ≥ 0. It can be evaluated by realizing that the heat loss region behind

the flame is broad of order O(π−1). This suggest the introduction of a contracted coordinate

x̃ = πx (7.15)

into the downstream temperature equation

M
dT

dx̃
= π

d2T

dx̃2
− T x > 0. (7.16)

In the limit π → 0 the heat conduction term can now be neglected and with T 0(0+) = 1 one obtains

to leading order
dh

dx

∣∣∣
0+

=
dT

dx

∣∣∣
0+

= − π

M
. (7.17)

With Eqs. (7.12), (7.14) and (7.17) inserted into Eq. (7.11) the flame temperature perturbation is

z(0+) = − 2

M2
. (7.18)

Since for a one step flame with a large activation energy the burning velocity depends according

to Eq. (5.17) on the flame temperature as

s2L ∼ exp
(
− E

RTb

)
, (7.19)

a perturbation of the temperature at x = 0+ behind the reaction zone will lead in terms of the

dimensional temperature to

M = exp
{
− E

2R

( 1

T (0+)
− 1

T 0

)}
(7.20)

Using the expansion Eq. (7.8) in terms of the non-dimensional temperature one obtains with Eq.

(5.22)

M2 = exp(π Ze z(0+)) (7.21)

When this is combined with Eq. (7.18) one obtains

M2 lnM2 = −2πZe. (7.22)
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A similar analysis may be performed for the four-step asymptotic analysis of methane flames.

Then, since with Eq. (6.48)

s2L ∼ (Tb − T 0)4 (7.23)

one obtains with Eqs. (6.49) and (6.54)

M2 =
(Tb − T 0 + Tbπz(0+))

4

(Tb − T 0)4
=
(
1 +

πZez(0+)

4

)4
, (7.24)

since Tb = (Tb − T 0) = 1/(εz0) = Ze/4 to leading order. If this is now combined with Eq. (7.18

one obtains

M2
(
1−M1/2

)
= πZe (7.25)

instead of Eq. (7.22). Both Eqs. (7.22) and (7.25) are plotted in Fig. 7.4 showing a qualitatively

and even quantitatively very similar behavior. Only the upper branch of these curves represents a

stable solution. It shows a decrease of the burning velocity as the heat loss parameter π increases.

There is a maximum value for the product πZe for each of these curves beyond which no solution

exists. At these values heat loss extinguishes the flame. The non-dimensional burning rates

at which this happens are very close to each other: Mex = 0.61 for the one step kinetics and

Mex = 0.64 for the four-step kinetics. This is surprising because the kinetics for both cases are

fundamentally different. This supports the previous conclusion that the one-step large activation

energy model is a good approximation for the temperature sensitivity of hydrocarbon flames.
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Lecture 8

Laminar Diffusion Flames: Basic

Theory

In this lecture we will consider systems, where fuel and oxidizer enter separately into the combus-

tion chamber. Mixing then takes place by convection and diffusion. Only where fuel and oxidizer

are mixed on the molecular level, chemical reactions can occur. Since the time scale of reaction is

much shorter than the time scale for diffusion, the latter processes is rate determining. This is why

flames in non-premixed combustion are called diffusion flames. A classical example of a diffusion

flame is a candle flame shown in Fig. 8.1.

Its structure is similar to that shown in the introduction, except that the flow entraining the air

into the flame is driven by buoyancy rather than by forced convection as in a jet flame. The paraffin

of the candle first melts due to radiative heat from the flame to the candle, mounts by capillary

forces into the wick where it then evaporates to become paraffin vapor, a gaseous fuel. In this

lecture we will focus on the structure of the combustion zones in a diffusion flame. These are best

described by an asymptotic expansion for very fast chemistry starting from the limit of complete

combustion. To leading order one obtains the adiabatic flame temperature which is a function of

mixture fraction only as already shown in Lecture 2. The asymptotic expansion around this limit

will then describe the influence of finite rate chemistry. If the expansion takes the temperature

sensitivity of the chemistry into account diffusion flame quenching can also be described. It will

be shown that by introducing the mixture fraction as an independent coordinate for all reacting

scalars, a universal coordinate transformation leads in the limit of sufficiently fast chemistry to a
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Figure 8.1: The candle flame as the classical example of a laminar diffusion flame.

one-dimensional problem for the reaction zone. This is the basis of the flamelet formulation for

non-premixed combustion.

8.1 Flamelet Structure of a Diffusion Flame

Under the condition that equal diffusivities of chemical species and temperature can be assumed

(an assumption that is good for hydrocarbon flames but much less realistic for hydrogen flames),

all Lewis numbers

Lei = λ/(cpρDi) = 1, i = 1, 2, . . . , k (8.1)

are unity, and a common diffusion coefficient D = λ/(ρcp) can be introduced. In Cartesian coordi-

nates the balance equation for mixture fraction Z Eq. (3.58), temperature T Eq. (3.46)and species
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Figure 8.2: Schematic picture of a diffusion flame illustrating the flamelet transformation.

Yi Eq. (3.47) read

ρ
∂Z

∂t
+ ρvα

∂Z

∂xα
− ∂

∂xα

(
ρD

∂Z

∂xα

)
= 0,

ρ
∂T

∂t
+ ρvα

∂T

∂xα
− ∂

∂xα

(
ρD

∂T

∂xα

)
=

k∑

i=1

ṁi
hi
cp

+
q̇R
cp

+
1

cp

∂p

∂t
,

ρ
∂Yi
∂t

+ ρvα
∂Yi
∂xα

− ∂

∂xα

(
ρD

∂Yi
∂xα

)
= ṁi i = 1, 2, . . . , k.

(8.2)

Here the low Mach number limit that leads to zero spatial pressure gradients has been employed,

but the temporal pressure change ∂p/∂t has been retained. The heat capacity cp is assumed

constant for simplicity. The Eqs. (3.47) for the mass fractions of the species could also have been

written down and can be analyzed in a similar way as the temperature equation. They are omitted

here for brevity. Eq. (8.2)1 does not contain a chemical source term, since the mixture fraction

Z represents the chemical elements originally contained in the fuel, and elements are conserved

during combustion. We assume the mixture fraction Z to be given in the flow field as a function of

space and time by solution of Eq. (8.2)1 as shown schematically in Fig. 3.2. Then the surface of

the stoichiometric mixture can be determined from

Z(xα, t) = Zst. (8.3)

Combustion occurs in a thin layer in the vicinity of this surface if the local mixture fraction gradient

is sufficiently high ([1]). Let us locally introduce an orthogonal coordinate system x1, x2, x3, t
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attached to the surface of stoichiometric mixture as shown in Fig. 8.1, where x1 points normal

to the surface Z(xα, t) = Zst and x2 and x3 lie within the surface. We replace the coordinate

x1 by the mixture fraction Z and x2, x3 and t by Z2 = x2, Z3 = x3 and t = τ . This is a

coordinate transformation of the Crocco type. (Crocco expressed the temperature in a flat-plate

boundary layer as functions of another dependent variable, the velocity.) Here the temperature T ,

and similarly the mass fractions Yi, will be expressed as a function of the mixture fraction Z. By

definition, the new coordinate Z is locally normal to the surface of the stoichiometric mixture. With

the transformation rules
∂

∂t
=

∂

∂τ
+
∂Z

∂t

∂

∂Z
,

∂

∂xα
=

∂

∂Zα
+

∂Z

∂xα

∂

∂Z
(α = 2, 3),

∂

∂x1
=

∂Z

∂x1
+

∂

∂Z

(8.4)

we obtain the temperature equation in the form

ρ
(∂T
∂τ

+ v2
∂T

∂Z2
+ v3

∂T

∂Z3

)
− ∂(ρD)

∂x2

∂T

∂Z2
− ∂(ρD)

∂x3

∂T

∂Z3

−ρD
[( ∂Z
∂xα

)2 ∂2T
∂Z2

+ 2
∂Z

∂x2

∂2T

∂Z∂Z2
+ 2

∂Z

∂x3

∂2T

∂Z∂Z3
+
∂2T

∂Z2
2

+
∂2T

∂Z2
3

]

=

k∑

i=1

ṁi
hi
cp

+
q̇R
cp

+
1

cp

∂p

∂t
.

(8.5)

The transformation of the equation for the mass fraction is similar. If the flamelet is thin in the Z

direction, an order-of-magnitude analysis similar to that for a boundary layer shows that the second

derivative with respect to Z is the dominating term on the left-hand side of Eq. (8.5). This term

must balance the terms on the right-hand side. All other terms containing spatial derivatives in

x2 and x3 directions can be neglected to leading order. This is equivalent to the assumption that

the temperature derivatives normal to the flame surface are much larger than those in tangential

direction. The term containing the time derivative in Eq. (8.5) is important only if very rapid

changes, such as extinction, occur. Formally, this can be shown by introducing the stretched

coordinate ξ and the fast time scale σ

ξ = (Z − Zst)/ε, σ = τ/ε2 (8.6)
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where ε is a small parameter, the inverse of a large Damköhler number or a large activation energy,

for example, representing the width of the reaction zone. If the time derivative term is retained, the

flamelet structure is to leading order described by the one-dimensional time-dependent equations

ρ
∂T

∂t
− ρ

χst

2

∂2T

∂Z2
=

r∑

l=1

Ql

cp
ωl +

q̇R
cp

+
1

cp

∂p

∂t

ρ
∂Yi
∂t

− ρ
χst

2

∂Yi
∂Z2

= ṁi i = 1, 2, . . . , k.

(8.7)

Here

χst = 2D
( ∂Z
∂xα

)2
st

(8.8)

is the instantaneous scalar dissipation rate at stoichiometric conditions. It has the dimension

1/s and may be interpreted as the inverse of a characteristic diffusion time. It may depend on t

and Z and acts as a prescribed parameter in Eq. (8.7)1, representing the flow and the mixture

field. As a result of the transformation, it implicitly incorporates the influence of convection and

diffusion normal to the surface of the stoichiometric mixture. In the limit χst → 0, equations for

the homogeneous reactor, are obtained. The neglect of all spatial derivatives tangential to the

flame front is formally only valid in the thin reaction zone around Z = Zst. This is shown in [9.1].

There are, however, a number of typical flow configurations where Eq. (8.7)1 is valid in the entire

Z-space. As example, we will analyze here the planar counterflow diffusion flame.

8.2 The Planar Counterflow Diffusion Flame

Counterflow diffusion flames are very often used experimentally because they represent an essen-

tially one-dimension diffusion flame structures. Fig. 8.3 shows two typical cases where counterflow

flames have been established between an oxidizer stream from above and a fuel stream from be-

low. The latter may either be a gaseous fuel or an evaporating liquid fuel. If one assumes that

the flow velocities of both streams are sufficiently large and sufficiently removed from the stagna-

tion plane, the flame is embedded between two potential flows, one coming from the oxidizer and

one from the fuel side. Prescribing the potential flow velocity gradient in the oxidizer stream by

a = −∂v∞/∂y, the velocities and the mixture fraction are there

y → ∞ : v∞ = −ay, u∞ = ax, Z = 0. (8.9)

117



∇

stagnation

plane

nozzle nozzle

nozzle

oxidizer oxidizer

flameflame

stream

line

pool of liquid fuelgaseous

fuel

y

x

y

x

Figure 8.3: A schematic illustration of the experimental configuration for counterflow flames for
gaseous and liquid fuels.

Equal stagnation point pressure for both streams requires that the velocities in the fuel stream are

y → −∞ : v−∞ = −
√

ρ∞
ρ−∞

ay, u−∞ =

√
ρ∞
ρ−∞

ax, Z = 1. (8.10)

The equations for continuity, momentum and mixture fraction are given by

∂(ρu)

∂x
+
∂(ρv)

∂y
= 0,

ρu
∂u

∂x
+ ρv

∂u

∂y
= − ∂p

∂x
+

∂

∂y

(
µ
∂u

∂y

)
,

ρu
∂Z

∂x
+ ρv

∂Z

∂y
=

∂

∂y

(
ρD

∂Z

∂y

)
.

(8.11)

Introducing the similarity transformation

η =
( a

(ρµ)∞

)1/2 y∫

0

ρ dy, ξ = x (8.12)
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one obtains the system of ordinary differential equations

f =

η∫

0

f ′dη (8.13)

∂

∂η

(
C
∂f ′

∂η

)
+ f

∂f ′

∂η
+
ρ∞
ρ

− f ′2 = 0 (8.14)

∂

∂η

( C
Sc

∂Z

∂η

)
+ f

∂Z

∂η
= 0 (8.15)

in terms of the non-dimensional stream function

f =
ρv√

(ρµ)∞a
(8.16)

and the normalized tangential velocity

f ′ =
u

ax
. (8.17)

Furthermore the Chapman-Rubesin parameter C and the Schmidt number Sc are defined

C =
ρµ

(ρµ)∞
, Sc =

µ

ρD
. (8.18)

The boundary equations are

η = +∞ : f ′ = 1, Z = 0

η = −∞ : f ′ =
√
ρ∞/ρ−∞, Z = 1.

(8.19)

An integral of the Z-equation is obtained as

Z =
1

2

I(∞)− I(η)

I(∞)
(8.20)

where the integral I(η) is defined as

I(η) =

∫ η

0

Sc

C
exp

{
−
∫ η

0

f Sc/Cdη
}
dη. (8.21)
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For constant properties (ρ = ρ∞, C = 1) f = η satisfies Eq. (8.14) and

Z =
1

2
erfc

(
η/

√
2
)
. (8.22)

The instantaneous scalar dissipation rate is here

χ = 2D
(∂Z
∂y

)2
= 2
( C
Sc

)
a
(∂Z
∂η

)2
(8.23)

where Eqs. (8.12) and (8.18) have been used. When the scalar dissipation rate is evaluated with

the assumptions that led to Eq. (8.22) one obtains

χ =
a

π
exp[−η2(Z)] = a

π
exp(−2[erfc−1(2Z)]2) (8.24)

where η(Z) is obtained as inverse of Eq. (8.22). For small Z one obtains with l’Hospital’s rule

dZ

dη
= −1

2

dI

dη

1

I(∞)
= −dI

dη

Z

I(∞)− I(η)
= −Sc

C
fZ. (8.25)

Therefore, in terms of the velocity gradient a the scalar dissipation rate becomes

χ = 2af2Z2(Sc/C) (8.26)

showing that χ increases as Z2 for small Z.

8.3 Steady State Combustion and Quenching of Diffusion Flam es

with One-Step Chemistry

If the unsteady term is neglected, Eq. (8.7) is an ordinary differential equation that describes

the structure of a steady state flamelet normal to the surface of stoichiometric mixture. It can be

solved for general reaction rates either numerically or by asymptotic analysis. In the following we

will express the chemistry by a one-step reaction with a large activation energy, assume constant

pressure and the radiative heat q̇R to be negligible. We will analyze the upper branch of the

S-shaped curve shown in Fig. 8.4. We will introduce an asymptotic analysis for large Damköhler

numbers and large activation energies. In the limit of large Damköhler numbers which corresponds

to complete combustion the chemical reaction is confined to an infinitely thin sheet around Z = Zst.
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Figure 8.4: The S-shaped curve showing the maximum temperature in a diffusion flame as a
function of the inverse of the scalar dissipation rate at stoichiometric mixture.

Assuming constant cp the temperature and the fuel, oxidizer, and product mass fraction profiles

are piecewise linear functions of Z. These are shown in Figs. 1.1 and 2.1. The temperature profile

is given by Eq. (2.24) with Eq. (2.23). This is called the Burke-Schumann solution. The coupling

relations Eq. (5.5) yield the corresponding profiles for YF and YO2
:

lean mixture, Z ≤ Zst:

T (Z) = Tu(Z) +
QYF,1
cpν′FWF

Z, YF = 0, YO2
= YO2,2

(
1− Z

Zst

)
, (8.27)

rich mixture, Z ≥ Zst:

T (Z) = Tu(Z) +
QYO2,2

cpν′O2
WO2

(1− Z), YO2
= 0, YF = YF,1

(Z − Zst

1− Zst

)
, (8.28)

where

Tu(Z) = T2 + Z (T1 − T2). (8.29)

The mass fractions of product species may be written similarly. We define the reaction rate as in

Eq. (5.1) to show that Eq. (8.7) is able to describe diffusion flame quenching. For simplicity we will
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assume T1 = T2 = Tu. Then, for one reaction with

Q

cp
=

(Tst − Tu)ν
′
FWF

YF,1Zst
(8.30)

Eq. (8.7) is written as
d2T

dZ2
= −2Bν′Fρ(Tst − Tu)

χYF,1ZstWO2

YFYO2
exp

(−E
RT

)
. (8.31)

The temperature and the fuel and oxygen mass fraction are expanded around Zst as

T = Tst − ε(Tst − Tu)y

YF = YF,1ε(Zsty + ξ)

YO2
= YO2,2ε((1− Zst)y − ξ),

(8.32)

where ε is a small parameter to be defined during the analyses. The exponential term in the

reaction rate may be expanded as

exp
(−E
RT

)
= exp

( −E
RTst

)
= exp(−Zeεy), (8.33)

where the Zeldovich number is defined as

Ze =
E(Tst − Tu)

RT 2
st

(8.34)

If all other quantities in Eq. (8.31) are expanded around their value at the stoichiometric flame

temperature one obtains

d2y

dξ2
= 2Da ε3 (Zsty + ξ)((1 − Zst)y − ξ) exp(−Ze ε y), (8.35)

where

Da =
Bρstν

′
O2
YF,1

χstWF(1− Zst)
exp

(−E
RT

)
(8.36)
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is the Damköhler number. The differential equation Eq. (8.35) is cast into the same form as the

one that governs Linn’s diffusion flame regime [2] by using the further transformation

z = 2y(1− Zst)Zst − γξ

γ = 2Zst − 1

β = Ze/[2Zst(1− Zst)]

(8.37)

to yield
d2z

dξ2
= Da ε3(z2 − ξ2) exp[−β ε (z + γξ)]. (8.38)

There are evidently two ways to define the expansion parameter ε, either by setting β ε = 1 or by

setting Da ε3 = 1. The first one would be called a large activation energy expansion and the second

one a large Damköhler number expansion. Both formulations are interrelated if we introduce the

distinguished limit where the rescaled Damköhler number

δ = Da/β3 (8.39)

is assumed to be of order one. Thus a definite relation between the Damköhler number and the

activation energy is assumed as ε goes to zero. We set

ε = Da−1/3 = δ−1/3/β (8.40)

to obtain Liñán’s equation for the diffusion flame regime

d2z

dξ2
= (z2 − ξ2) exp[−δ−1/3(z + γξ)]. (8.41)

The boundary conditions are obtained by matching to the outer flow solution

dz

dξ
= 1 for ξ → ∞,

dz

dξ
= −1 for ξ → −∞.

(8.42)

The essential property of this equation, as compared to the large Damköhler number limit (δ → ∞)

is that the exponential term remains, since δ was assumed to be finite. This allows extinction to

occur if the parameter δ decreases below a critical value δq. Liñán gives an approximation of δq
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Figure 8.5: Temperature and fuel mass fraction profiles over mixture fraction for diffusion flamelet
at increasing Damköhler numbers.

in terms of |γ|. For small values of Zst extinction occurs at the transition to the premixed-flame

regime [2]. He obtains

δq = e (1− |γ|). (8.43)

Characteristic profiles for the temperature over Z are schematically shown in Fig. 8.5 with δ as

a parameter. There is a limiting profile Tq(Z) corresponding to δq. Any solution below this profile

is unstable, and the flamelet would be extinguished. The extinction condition δ = δq defines with

Eqs. (8.39) and (8.36) a maximum dissipation rate χq at the surface of stoichiometric mixture for a

flamelet to be burning, namely

χq =
8Bρstν

′
O2
YF,1Z

3
st(1− Zst)

2

WFδqZe
3 exp

( −E
RTst

)
. (8.44)

We may interpret χst as the inverse of a characteristic diffusion time. If χst is large, heat will be

conducted to both sides of the flamelet at a rate that is not balanced by the heat production due

to chemical reaction. Thus the maximum temperature will decrease until the flamelet is quenched

at a value of χst = χq. This is shown in Fig. 8.4. Burning of the flamelet corresponds to the

upper branch of the S-shaped curve. If χst is increased, the curve is traversed to the left until

χq is reached, beyond which value only the lower, nonreacting branch exists. Thus at χst = χq

the quenching of the diffusion flamelet occurs. The transition from the point Q to the lower state
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corresponds to the unsteady transition. Auto-ignition, which would correspond to an unsteady

transition from the point I to the upper curve, is unlikely to occur in open diffusion flames, since

the required very large residence times (very small values of χst) are not reached. An example for

auto-ignition in non-premixed systems is the combustion in a Diesel engine. Here interdiffusion of

the fuel from the Diesel spray with the surrounding hot air leads to continuously decreasing mixture

fraction gradients and therefore to decreasing scalar dissipation rates. This corresponds to a shift

on the lower branch of the S-shaped curve up to the point I where ignition occurs.

8.4 Time and Length Scales in Diffusion Flames

We will define the chemical time scale at extinction as

tc = Z2
st(1 − Zst)

2/χq. (8.45)

This definition is motivated by expression Eq. (8.44) for χq. By comparing this with the time scale

of a premixed flame with the same chemical source term one obtains

tc =
δq(ρλ/cp)st
2(ρusL)2st

, (8.46)

where ρusL has been calculated using Eqs. (5.17) and (5.18) for a stoichiometric premixed flame.

This indicates that there is a fundamental relation between a premixed flame and a diffusion flame

at extinction: In a diffusion flame at extinction the heat conduction out of the reaction zone towards

the lean and the rich side just balances the heat generation by the reaction. In a premixed flame

the heat conduction towards the unburnt mixture is such that it balances the heat generation by the

reaction for a particular burning velocity. These two processes are equivalent. A diffusion flame,

however, can exist at lower scalar dissipation rates and therefore at lower characteristic flow times.

The flow time in a premixed flow is fixed by the burning velocity, which is an eigenvalue of the

problem. Therefore combustion in diffusion flame offers an additional degree of freedom: that of

choosing the ratio of the convective to the reactive time, represented by the Damköhler number

defined in Eq. (8.36) as long as χst is smaller than χq. This makes non-premixed combustion to be

better controllable and diffusion flames more stable. It is also one of the reasons why combustion

in Diesel engines which operate in the non-premixed regime is more robust and less fuel quality

dependent than that in spark ignition engines where fuel and air are premixed before ignition.
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Eqs. (8.45) and (8.24) may now be used to calculate chemical time scales for diffusion flames.

The inverse complementary error function erfc−1(2Zst) is 1.13 for methane-air flames with Zst =

0.055 and 1.34 for H2-air flames with Zst = 0.0284. Extinction of the H2-air diffusion flame occurs at

a strain rate aq = 14260/s and that of the CH4-air flame at 420/s. This leads to tc = 0.64 · 10−5 s for

hydrogen-air/diffusion flames and to tc = 0.29 · 10−3s for methane-air/diffusion flames. The latter

estimate is of the same order of magnitude as tc for stoichiometric premixed methane flames.

In diffusion flames, in contrast to premixed flames, there is no velocity scale, such as the

burning velocity, by which a characteristic length scale such as the premixed flame thickness ℓF

could be defined. There is, however, the velocity gradient a, the inverse of which may be interpreted

as a flow time.

Based on this flow time one may define an appropriate diffusive length scale. Dimensional

analysis leads to a diffusive flame thickness

ℓF =

√
Dref

a
. (8.47)

Here the diffusion coeffcient D should be evaluated at a suitable reference condition, conve-

niently chosen at stoichiometric mixture. Assuming a one-dimensional mixture fraction profile in

y-direction as for the insteady mixing layer the flame thickness in mixture fraction space may be

defined

(∆Z)F =
(∂Z
∂y

)
F
ℓF . (8.48)

Here (∂Z/∂y)F is the mixture fraction gradient normal to the flamelet. This flamelet thickness

contains the reaction zone and the surrounding diffusive layers. Eq. (8.48) leads with Eqs. (8.47)

and (8.8) to

(∆Z)F =

√
χref

2a
, (8.49)

where χref represents the scalar dissipation rate at the reference condition. If χref is evaluated at

Zst and Eq. (8.26) is used, it is seen that (∆Z)F is of the order of Zst, if Zst is small. With an

estimate (∆Z)F = 2Zst the flame thickness would cover the reaction zone and the surrounding

diffusive layers in a plot of the flamelet structure in mixture fraction space.
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Figure 8.6: Temperature profiles of methane-air diffusion flames for a = 100/s and a = 400/s as a
function of mixture fraction.
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8.5 Diffusion Flame Structure of Methane-Air Flames

The one-step model with a large activation energy is able to predict important features such as

extinction, but for small values of Zst it predicts the leakage of fuel through the reaction zone.

This was schematically shown in Fig. 8.5. Experiments of methane flames, on the contrary, show

leakage of oxygen rather than of fuel through the reaction zone. A numerical calculation with the

four-step reduced mechanism

CH4 + 2H+H2O = CO+ 4H2

CO+H2O = CO2 +H2

H+H+M = H2 +M

O2 + 3H2 = 2H+ 2H2O

(8.50)

has been performed [3] for the counter-flow diffusion flame in the stagnation region of a porous

cylinder. This flow configuration, initially used by Tsuji and Yamaoka [4], will be presented in the

next lecture 9 in Fig. 9.1.

Temperature and fuel and oxygen mass fractions profiles are plotted in Figs. 8.6 and 8.7 for

the strain rates of a = 100/s and a = 400/s as a function of mixture fraction. The second value

of the strain rate corresponds to a condition close to extinction. It is seen that the temperature in

the reaction zone decreases and the oxygen leakage increases as extinction is approached. An

asymptotic analysis [5] based on the four-step model shows a close correspondence between the

different layers identified in the premixed methane flame in Lecture 6 and those in the diffusion

flame. The structure obtained from the asymptotic analysis is schematically shown in Fig. 8.8.

The outer structure of the diffusion flame is the classical Burke-Schumann structure governed

by the overall one-step reaction CH4 + 2O2 → CO2 + 2H2O, with the flame sheet positioned at

Z = Zst. The inner structure consists of a thin H2 − CO oxidation layer of thickness O(ε) toward

the lean side and a thin inner layer of thickness O(δ) slightly toward the rich side of Z = Zst.

Beyond this layer the rich side is chemically inert because all radicals are consumed by the fuel.

The comparison of the diffusion flame structure with that of a premixed flame shows that the rich

part of the diffusion flame corresponds to the upstream preheat zone of the premixed flame while

its lean part corresponds to the downstream oxidation layer. The maximum temperature which

corresponds to the inner layer temperature of the asymptotic structure, is shown in Fig. 8.9 as a

function of the inverse of the scalar dissipation rate. This plot corresponds to the upper branch
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of the S-shaped curve shown in Fig. 8.4. The calculations agree well with numerical [3] and

experimental [6] data and also show the vertical slope of T 0 versus χ−1
st which corresponds to

extinction.
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Lecture 9

Laminar Diffusion Flame

Configurations:

Different Flame Geometries and Single Droplet Burning

In this lecture we want to present solutions for the velocities and the mixture fraction fields

for some typical laminar flame configurations. Based on the assumption of fast chemistry we

will then be able to calculate the flame contour defined by the condition Z(x, t) = Zst. We will

for simplicity always assume the Lewis number to be equal to unity and the heat capacity to be

constant. The first case to be considered is the flame stagnation point boundary layer, which is

similar to the counterflow flow of the previous lecture but with different boundary conditions. We

then will investigate a laminar plane jet diffusion flame and determine its flame length. The third

example will include the effect of buoyancy in a vertical plane diffusion flame. Finally we will also

calculate the combustion of a single droplet surrounded by a diffusion flame.

9.1 Diffusion Flames in a Stagnation Point Boundary Layer:

The Tsuji Flame

Let us consider the flame configuration shown in Fig. 9.1. Gaseous fuel from a sinter metal tube

is injected into the surrounding air which flows vertically upwards. Below the tube a stagnation

point is formed. This burner is known as the Tsuji burner [1]. If the Reynolds number based on the

cylinder radius and the free stream velocity is large, the flow field may be split into an inviscid outer
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flow and a boundary layer close to the surface. The potential flow solution for the flow around a

cylinder then yields the velocity gradient at the stagnation point

a =
2v∞
R

, (9.1)

where v∞ is the velocity very far from the cylinder. The free-stream velocities at the edge of the

boundary layer are

ue = ax, ve = −ay. (9.2)

If the kinematic viscosity is small, the boundary layer thickness δ is proportional to the viscous

length

lν =

√
νe
a
, (9.3)

where νe is the kinematic viscosity at the edge of the boundary layer. In case the boundary layer

thickness is thin compared to the cylinder radius the curvature of the cylinder surface may be

neglected and the boundary may be treated as two-dimensional allowing the usage of a Cartesian

coordinate system. The equations describing the boundary layer flow are the

continuity
∂(ρu)

∂x
+
∂(ρu)

∂y
= 0, (9.4)

momentum

ρu
∂u

∂x
+ ρv

∂u

∂y
= −dp

dx

∣∣∣
e
+

∂

∂y

(
ρν
∂u

∂y

)
, (9.5)

mixture fraction

ρu
∂Z

∂x
+ ρv

∂Z

∂y
=

∂

∂y

(
ρD

∂Z

∂y

)
. (9.6)

The pressure gradient at the boundary layer edge is obtained from Bernoulli’s equation

ρeue
due
dx

= −dp

dx

∣∣∣
e
= ρea

2x. (9.7)

The boundary conditions are

u = 0, ṁw = (ρv)w, (ρD)w
∂Z

∂y

∣∣∣
w
= mw(Zw − 1) at y = 0, (9.8)

and

u = ax, Z = 0 at y → ∞. (9.9)
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Figure 9.1: Schematic diagram of a stagnation point diffusion flame in front of a porous cylinder.

Here u = 0 is the symmetry condition at the surface. The mass flow rate ṁw of fuel issuing

through the porous metal into the boundary layer is imposed. The boundary condition for the

mixture fraction equation represents the integrated mixture fraction balance at the surface of the

porous metal by assuming that the mixture fraction gradient within the metal is zero. The continuity

equation is satisfied by introducing the stream function ψ such that

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
. (9.10)

Introducing the similarity variable

η =
( a
νe

)1/2 ∫ y

0

ρ

ρe
dy (9.11)

a non-dimensional stream function f(η), that depends on the similarity variable η only, is then

defined as

f(η) =
ψ

ρex
√
aνe

, (9.12)

such that the velocities are

u = ax
∂f

∂η
, v = −ρe

ρ
(aνe)

1/2f(η). (9.13)
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One obtains the similarity equations

−f d
2f

dη2
=

[ρe
ρ

−
(df
dη

)2] d

dη

(
C
d2f

dη2

)

−f dZ
dη

=
d

dη

( C
Sc

dZ

dη

)
.

(9.14)

Here Sc = ν/D is the Schmidt number and C is the Chapman-Rubesin parameter

C =
ρ2ν

ρ2eνe
. (9.15)

Since ν changes with temperature as T 1.7 and ρ as T 1, this quantity changes less than the viscosity

itself in a flow with strong heat release. The boundary conditions for the similar solution are

fw = − (ρv)w
(ρ2eaνe)

1/2
, f ′ = 0 ,

C

Sc

dZ

dη

∣∣∣
w
= fw(1 − Z) at η = 0 (9.16)

f ′(∞) = 1 for η → ∞. (9.17)

The mixture fraction equation may be transformed into

d

dη

[
ln
( C
Sc

dZ

dη

)]
= −fSc

C
(9.18)

which can formally be solved as

Z = fw
I(η) − I(∞)

1− fwI(∞)
, (9.19)

where

I(η) =

∫ η

0

Sc

C
exp

(
−
∫ η

0

fSc

C
dη
)
dη. (9.20)

The mixture fraction at the surface is given by

Zw =
−fwI(∞)

1− fwI(∞)
. (9.21)

This indicates that the mixture fraction varies between Z = 0 and Z = Zw rather than between

0 and 1. The boundary condition for the fuel and oxidizer fractions satisfy the Burke-Schumann

solution at Zw, as may easily be shown. The boundary condition for the temperature at the surface

is to be imposed at Z = Zw.
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Figure 9.2: Velocity profiles for the Tsuji geometry.
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Figure 9.3: Mixture fraction and temperature profiles for the Tsuji geometry.
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Figure 9.4: Chapman-Rubesin parameter and temperature profiles for the Tsuji geometry.

If the mass flow rate at the surface is increased and fw takes large negative values, the mix-

ture fraction at the surface tends towards unity. This is the limit of a counter-flow diffusion flame

detached from the surface. Eqs. (9.14) have been solved numerically using the Burke-Schumann

solution for combustion of methane in air Eqs. (2.24), (2.25) with Zst = 0.055, Tu = 300K, and

Tst = 2263K. The profiles of u = ax, v, T , Z, ρ = ρe, and C are shown in Figs. 9.2, 9.3 and 9.4.

9.2 The Round Laminar Diffusion Flame

In many applications fuel enters into the combustion chamber as a round jet, either laminar or

turbulent. To provide an understanding of the basic properties of jet diffusion flames, we will

consider here the easiest case, the laminar axisymmetric jet flame without buoyancy, for which

we can obtain approximate analytical solutions. This will enable us to determine, for instance,

the flame length. The flame length is defined as the distance from the nozzle to the point on the

centerline of the flame where the mixture fraction is equal to Zst. The flow configuration and the

flame contour of a vertical jet diffusion flame are shown schematically in Fig. 9.5.

We consider a fuel jet issuing from a nozzle with diameter d and exit velocity u0 into quiescent

air. The indices 0 and ∞ denote conditions at the nozzle and in the ambient air, respectively. Using
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Figure 9.5: Schematic representation of a vertical laminar jet flame into quiescent air.

the boundary layer assumption with constant pressure we obtain a system of two-dimensional

axisymmetric equations, in terms of the axial coordinate x and the radial coordinate r:

continuity
∂(ρur)

∂x
+
∂(ρvr)

∂r
= 0, (9.22)

momentum in x direction

ρur
∂u

∂x
+ ρvr

∂u

∂r
=

∂

∂r

(
µr
∂u

∂r

)
, (9.23)
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mixture fraction

ρur
∂Z

∂x
+ ρvr

∂Z

∂r
=

∂

∂r

( µ
Sc
r
∂Z

∂r

)
(9.24)

scalar flux we have replaced D by introducing the Schmidt number Sc = ν/D. The dimensionality

of the problem may be reduced by introducing the similarity transformation

η =
r̄

ξ
, r̄2 = 2

∫ r

0

ρ

ρ∞
r dr, ξ = x+ x0, (9.25)

which contains a density transformation defining the density weighted radial coordinate r̄. The new

axial coordinate ξ starts from the virtual origin of the jet located at x = −x0. Introducing a stream

function ψ by

ρur =
∂ψ

∂r
, ρvr = −∂ψ

∂x
(9.26)

we can satisfy the continuity equation. The convective terms in the momentum equation and in the

equation for the mixture fraction may be expressed using the transformation rules

∂

∂x
=

∂

∂ξ
+
∂η

∂x

∂

∂η
,

∂

∂r
=
∂η

∂r

∂

∂η
(9.27)

which leads to

ρur
∂

∂x
+ ρvr

∂

∂r
=
∂η

∂r

(∂ψ
∂η

∂

∂ξ
− ∂ψ

∂ξ

∂

∂η

)
. (9.28)

For the diffusive terms one obtains

∂

∂r

(
µr

∂

∂r

)
= µ∞

∂η

∂r

∂

∂η

(
Cη

∂

∂η

)
. (9.29)

Here the Chapman-Rubesin-parameter

C =
ρµr2

2µ∞

∫ r

0

ρrdr

(9.30)

was introduced. For constant density with µ = µ∞ one obtains C = 1. The axial and radial velocity

components may now be expressed in terms of the nondimensional stream function F (ξ, η) defined

by

ψ = µ∞ ξ F (ξ, η) (9.31)
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as

u =

∂F

∂η

η

µ∞

ρ∞ξ
, ρvr = −µ∞(ξ

∂F

∂ξ
+ F − ∂F

∂η
η). (9.32)

For the mixture fraction the ansatz

Z = ZCL(ξ)ω(η) (9.33)

is introduced, where ZCL stands for the mixture fraction on the centerline.

For a jet into still air a similarity solution exists if the nondimensional stream function F and

Chapman Rubesin parameter C are no function of ξ. Introducing Eqs. (9.25)-(9.33) into Eqs.

(9.22)-(9.24) one obtains the ordinary differential equations, valid in the similarity region of the jet:

− d

dη

(F
η

dF

dη

)
=

d

dη

(
Cη

d

dη

(1
η

dF

dη

))

− d

dη
(Fω) =

d

dη

( C
Sc
η
dω

dη

)
.

(9.34)

To derive an analytical solution we must assume that C is a constant in the entire jet. With a

constant value of C one obtains from Eq. (9.34) the solutions

F (η) =
C(γη)2

1 + (γη/2)2
, ω(η) =

( 1

1 + (γη/2)2

)2 Sc

. (9.35)

The axial velocity profile then is obtained from Eq. (9.32) as

u =
2Cγ2ν

ξ

( 1

1 + (γη/2)2

)2
, (9.36)

where the jet spreading parameter

γ2 =
3 ·Re2
64

ρ0
ρ∞C2

(9.37)

is obtained from the requirement of integral momentum conservation along the axial direction:

∫ ∞

0

ρu2rdr = ρ0u
2
0d

2/8 (9.38)

Here ρ0 is the density of the fuel and Re = ρ∞u0d/µ∞ is the Reynolds number. Similarly, conser-

vation of the mixture fraction integral across the jet yields the mixture fraction on the centerline

ZCL =
Re(1 + 2Sc)

32

ρ0
ρ∞C

d

ξ
(9.39)
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such that the mixture fraction profile is given by

Z =
(1 + 2Sc)d

ξ

Re

32

ρ0
ρ∞C)

( 1

1 + (γη/2)2

)2Sc
. (9.40)

From this equation the flame length L can be calculated by setting Z = Zst at x = L, r = 0:

L+ x0
d

=
(1 + 2Sc)

32 · Zst

ρ0
ρ∞C

u0d

ν
(9.41)

This shows that the flame length of a laminar round jet increases linearly with increasing exit

velocity u0.

9.3 Single Droplet Combustion

In many practical applications liquid fuel is injected into the combustion chamber resulting in a

fuel spray. By the combined action of aerodynamical shear, strain, and surface tension the liquid

spray will decompose into a large number of single droplets of different diameters. The fuel will

then evaporate and a non-homogeneous fuel air mixture will be formed in the flow field surround-

ing the droplets. When the spray is ignited, the droplets will burn either as a cloud surrounded

by a enveloping flame or as single droplets, each being surrounded by its own diffusion flame.

The former will the case if the fuel air mixture between different droplets is fuel rich such that the

surface of stoichiometric mixture will surround the droplet cloud. We will consider here the latter

case, where the surface of stoichiometric mixture surrounds the single droplet. We will further-

more consider very small droplets which follow the flow very closely and assume that the velocity

difference between the droplet and the surrounding fuel is zero. Therefore we may consider the

case of a spherically symmetric droplet in a quiescent surrounding. We assume the evaporation

and combustion process as quasi-steady and can therefore use the steady state equations (cf. [2])

continuity
d

dr
(r2ρv) = 0 (9.42)

mixture fraction

ρv
dZ

dr
=

1

r2
d

dr

(
r2ρD

dZ

dr

)
(9.43)

temperature

ρv
dT

dr
=

1

r2
d

dr

(
r2
λ

cp

dT

dr

)
+
Q

cp
ω (9.44)
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In these equations r is the radial coordinate, and v is the flow velocity in radial direction. Here

again a unity Lewis number leading to λ = ρcpD and a one step reaction with fast chemistry

will be assumed. The reaction rate ω is then a δ-function at the flame surface located at Z =

Zst. The expected temperature and mixture fraction profiles are schematically shown in Fig. 9.6.

The boundary conditions for Eqs. (9.42)and (9.44) at the droplet surface r = R are obtained by

integrating the balance equations once in radial direction. Since temperature and concentration

gradients within the droplet are assumed negligible, the convective flux through the surface equals

the diffusive flux in the gas phase at the droplet surface. The convective heat flux through the

boundary involves a change of enthalpy, namely the enthalpy of evaporation hL. Therefore

r = R : λ
dT

dr

∣∣∣
R
= (ρv)R hL. (9.45)

Here (ρv)R is the convective mass flux through the surface. The mixture fraction of the convec-

tive flux involves the difference between the mixture fraction within the droplet, which is unity by

definition, and that in the gas phase at the droplet surface, where Z = ZR. This leads to

r = R : ρD
dZ

dr

∣∣∣
R
= (ρv)R(ZR − 1). (9.46)

The changes of temperature and mixture fraction at the surface are also shown in Fig. 9.6. The

boundary conditions in the surrounding air are

r → ∞ : T = T2, Z = 0. (9.47)

In addition, we assume that the temperature at the droplet surface is equal to the boiling tempera-

ture of the liquid

T = TL. (9.48)

Then the temperature equation must satisfy three boundary conditions. This leads to an eigen-

value problem for the mass burning rate

ṁ = 4πR2(ρv)R (9.49)

of the droplet which thereby can be determined. Integration of the continuity equation leads to

ρvr2 = R2(ρv)R (9.50)
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Figure 9.6: Temperature and mixture fraction profiles at the surface and in the surroundings of a
burning spherical droplet.

We will now introduce the nondimensional coordinate

η =

∫ ∞

r

v

D
exp(−ζ)dr, (9.51)

where

ζ =

∫ ∞

r

v

D
dr =

ṁ

4π

∫ ∞

r

(ρDr2)−1dr. (9.52)

Between η and ζ there is the relation

dη

dζ
=

dη/dr

dζ/dr
= exp(−ζ). (9.53)

This may be integrated with the boundary conditions at r → ∞ : ζ = 0, η = 0 to yield

η = 1− exp(−ζ) (9.54)

and at r = R

ηR = 1− exp(−ζR). (9.55)
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Transformation of Eqs. (9.43)and (9.44) with their boundary conditions leads to

d2Z

dη2
= 0 (9.56)

η = ηR : (ηR − 1)
dZ

dη
= ZR − 1 (9.57)

η → ∞ : Z = 0 , ρD
(dη
dr

)2 d2T
dη2

= −Q

cp
ω (9.58)

η = ηR : (η − 1)
dT

dη
=
hL
cp
, TR = TL (9.59)

η → 0 : T = T2 (9.60)

The solution of the mixture fraction equation with its boundary condition is readily seen to be

Z = η (9.61)

If this is introduced into the temperature equation and the scalar dissipation rate for the present

problem is defined as

χ = 2D
(dZ
dr

)2
= 2D

(dη
dr

)2
(9.62)

one obtains

ρ
χ

2

d2T

dZ2
= −Q

cp
ω (9.63)

which reducescompares to Eq. (8.7) if the steady state, negligible heat loss, and one-step chem-

istry was assumed. We therefore find that the one-dimensional droplet combustion problem sat-

isfies the laminar flamelet assumptions exactly. Here we want to consider the Burke-Schumann

solution Eq. (2.24). Then, in the fuel rich region between r = R and r = rF (conf. Fig. 9.6) we

have

T (Z) = T2 + Z(T1 − T2) +
YO2,2Q

cpν′O2
WO2

(1− Z). (9.64)
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Here T1 is by definition the temperature at Z = 1, which does not exist in the present problem. We

know, however, from the boundary conditions Eq. (9.59) the slope and the value at Z = ZR where

TL = T2 + ZR(T1 − T2) +
YO2,2Q

cpν′O2
WO2

(1− ZR). (9.65)

Introducing Eqs. (9.64) and (9.65) into Eq. (9.59) one obtains

T1 = TL − hL
cp
. (9.66)

This is a hypothetical temperature corresponding to the fuel if one considers the droplet as a point

source of gaseous fuel. The heat of vaporization then decreases the temperature of the liquid fuel

by the amount hL/cp. It should be used in flamelet calculations if one wishes to calculate flamelet

profiles in the range 0 < Z < 1 rather than 0 < Z < ZR. The boundary condition Eq. (9.59) may

also be used with Eqs. (9.64) and (9.55) to calculate the non-dimensional mass burning rate

ζR = ln
(
1 +

cp(T2 − TL) + YO2,2Q/ν
′
O2
WO2

hL

)
. (9.67)

From this, the mass burning rate may be determined using Eq. (9.52). We will introduce radially

averaged properties ρD defined by

(ρD)−1 = R

∫ ∞

R

dr

ρDr2
(9.68)

to obtain

ṁ = 4πρDRζR. (9.69)

Now it is possible to determine the time needed to burn a droplet with initial radius R0 at time

t = 0. The droplet mass is m = 4πρLR
3/3, where ρL is the density of the liquid. Its negative time

rate of change equals the mass loss due to the mass burning rate

dm

dt
= 4πρLR

2 dR

dt
= −ṁ. (9.70)

Introducing Eq. (9.69) and assuming ρD independent of time one obtains by separation of vari-

ables

dt = − ρL

ζRρD
R dR, t ∼= R2

0 −R2. (9.71)
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Figure 9.7: Droplet radius versus time (d2-Law) for single droplet combustion Eq. (9.72).

Integrating from R = R0 to R = 0 one obtains the burnout time

tb =
ρL

8ζRρD
d2 (9.72)

where d = 2R0 is the initial droplet diameter. This is called the d2-law of droplet combustion and

shown in Fig. 9.7. It represents a very good first approximation for the droplet combustion time

and has often be confirmed by experiments.

Finally, we want to calculate the radial position of the surrounding flame. Evaluating Eq. (9.54)

for Z = Zst = ηst one obtains

1− Zst = exp(−ζst), (9.73)

where with Eqs. (9.50) and (9.52)

ζst =
ṁ

4πρDrst
. (9.74)

Here ρD is defined as in Eq. (9.68) but averaging by an integration from rst to ∞ rather than from

R to ∞. If both are assumed equal one may use Eq. (9.69) to determine the flame radius as

rst
R

=
ζR

− ln(1− Zst)
. (9.75)
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For sufficiently small values of Zst the denominator of Eq. (9.75) may be approximated by Zst itself

showing that ratio rst/R may take quite large values.

Exercise 9.1

Determine the non-dimensional mass burning rate and rst/R for a Diesel fuel where hL/cp =

160K, TL = 560K, T2 = 800K and Tst − Tu(Zst) = 2000K, Zst = 0.036.

Solution

Using the Burke-Schumann solution the non-dimensional mass burning rate may be written as

ζR = ln
[
1 +

T2 − TL + (Tst − Tu(Zst))/(1 − Zst)

hL/cp

]
= 2.74. (9.76)

The ratio of the flame radius to the droplet radius is then

rst
R

≈ 75. (9.77)

Exercise 9.2

Compare the evaporation rate for the same droplet as in problem Fig. 9.1 to that of the mass

burning rate.

Solution

The non-dimensional evaporation rate of a droplet may be obtained in a similar way as Eq. (9.67).

It follows from Eq. (9.67) in the limit Q = 0, therefore

ζR = ln
(
1 +

T2 − TL
hL/cp

)
= 0.916 (9.78)

The combustion rate is approximately three times faster than the evaporation rate.
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Lecture 10

Turbulent Combustion: The State of

the Art

10.1 What is Specific about Turbulence with Combustion?

Since the flow is turbulent in nearly all engineering applications, the urgent need for resolving

engineering problems has led to preliminary solutions called turbulence models. These models

use systematic mathematical derivations based on the Navier-Stokes equations up to a certain

point, but then they introduce closure hypotheses that rely on dimensional arguments and require

empirical input. This semi-empirical nature of turbulence models puts them into the category of an

art rather than a science.

The apparent success of turbulence models in solving engineering problems for non-reactive

flows has encouraged similar approaches for turbulent combustion which consequently led to the

formulation of turbulent combustion models. This is, however, where problems arise. Combustion

requires that fuel and oxidizer are mixed at the molecular level. How this takes place in turbulent

combustion depends on the turbulent mixing process. The general view is that once a range of

different size eddies has developed, strain and shear at the interface between the eddies enhance

the mixing. During the eddy break-up process and the formation of smaller eddies, strain and shear

will increase and thereby steepen the concentration gradients at the interface between reactants,

which in turn enhances their molecular interdiffusion. Molecular mixing of fuel and oxidizer, as a

prerequisite of combustion, therefore takes place at the interface between small eddies.
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Figure 10.1: The S-shaped curve showing the maximum temperature in a well-stirred reactor as a
function of the Damköhler number.

There remains, however, the question to what extend we can expect an interaction between

chemical and turbulent scales. Here, we must realize that combustion differs from isothermal

mixing in chemically reacting flows by two specific features:

• heat release by combustion induces an increase of temperature which in turn

• accelerates combustion chemistry. Due to the competition between chain branching and

chain breaking reactions this process is very sensitive to temperature changes.

Heat release combined with temperature sensitive chemistry leads to typical combustion phe-

nomena like ignition and extinction. This is illustrated in Fig. 10.1 where the maximum temperature

in a homogeneous flow combustor is plotted as a function of the Damköhler number, which here

represents the ratio of the residence time to the chemical time. This is called the S-shaped curve

in the combustion literature. The lower branch of this curve corresponds to a slowly reacting state

of the combustor prior to ignition, where the short residence times prevent a thermal runaway. If

the residence time is increased by lowering the flow velocity, for example, the Damköhler number

increases until the ignition point I is reached. For values larger than DaI thermal runaway leads to

a rapid unsteady transition to the upper close-to-equilibrium branch. If one starts on that branch

and decreases the Damköhler number, thereby moving to the left in Fig. 10.1, one reaches the

point Q where extinction occurs. This is equivalent to a rapid transition to the lower branch. The
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middle branch between the point I and Q is unstable. In the range of Damköhler numbers be-

tween DaQ and DaI, where two stable branches exist, any initial state with a temperature in the

range between the lower and the upper branch is rapidly driven to either one of them. Due to the

temperature sensitivity of combustion reactions the two stable branches represent strong attrac-

tors. Therefore, only regions close to chemical equilibrium or close to the non-reacting state are

frequently accessed.

10.2 Statistical Description of Turbulent Flows

The aim of stochastic methods in turbulence is the description of the fluctuating velocity and scalar

fields in terms of their statistical distributions. A convenient starting point for this description is the

distribution function of a single variable of the velocity component u, for instance. The distribution

function Fu(U) of u is defined by the probability p of finding a value of u < U

Fu(U) = p(u < U) (10.1)

where U is the so-called sample space variable associated with the random stochastic variable u.

The sample space of the random stochastic variable u consists of all possible realizations of u.

The probability of finding a value of u in a certain interval U− < u < U+ is given by

p(U− < u < U+) = Fu(U+)− Fu(U−). (10.2)

The probability density function (pdf) of u is now defined as

Pu(U) =
dFu(U)

dU
. (10.3)

It follows that Pu(U)dU is the probability of finding u in the range U ≤ u < U + dU . If the possible

realizations of u range from −∞ to +∞, it follows that

∫ +∞

−∞

Pu(U)dU = 1 (10.4)

which states that the probability of finding the value u between −∞ and +∞ is certain, i.e. it has

the probability unity. It also serves as a normalizing condition for Pu.

In turbulent flows the pdf of any stochastic variable depends, in principle, on the position x and
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on time t. These functional dependencies are expressed by the following notation

Pu(U ;x, t). (10.5)

The semicolon used here indicates that Pu is a probability density in U -space and a function of x

and t. In stationary turbulent flows it does not depend on t and in homogeneous turbulent fields

not on x. In the following we will, for simplicity of notation, not distinguish between the random

stochastic variable u and the sample space variable U , drop the index and write the pdf as

P (u;x, t). (10.6)

Once the pdf of a variable is known one may define its moments by

u(x, t)n =

∫ +∞

−∞

unP (u;x, t)du. (10.7)

Here the overbar denotes the average or mean value, sometimes also called expectation, of un.

The first moment (n = 1) is called the mean of u

u(x, t) =

∫ +∞

−∞

uP (u;x, t)du. (10.8)

Similarly, the mean value of a function g(u) can be calculated from

g(x, t) =

∫ +∞

−∞

g(u)P (u;x, t)du. (10.9)

For flows with large density changes as they occur in combustion, it is often convenient to

introduce a density-weighted average ũ, called the Favre average, by splitting u(x, t) into ũ(x, t)

and u′′(x, t) as

u(x, t) = ũ(x, t) + u′′(x, t). (10.10)

This averaging procedure is defined by requiring that the average of the product of u′′ with the

density ρ (rather than u′′ itself) vanishes

ρu′′ = 0. (10.11)
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The definition for ũ may then be derived by multiplying Eq. (10.10) by the density ρ and averaging

ρu = ρũ+ ρu′′ = ρ̄ũ. (10.12)

Here the average of the product ρũ is equal to the product of the averages ρ̄ and ũ, since ũ is

already an average defined by

ũ = ρu/ρ̄. (10.13)

This density-weighted average can be calculated, if simultaneous measurements of ρ and u are

available. Then, by taking the average of the product ρu and dividing it by the average of ρ one ob-

tains ũ. While such measurements are often difficult to obtain, Favre averaging has considerable

advantages in simplifying the formulation of the averaged Navier-Stokes equations in variable den-

sity flows. In the momentum equations, but also in the balance equations for the temperature and

the chemical species, the convective terms are dominant in high Reynolds number flows. Since

these contain products of the dependent variables and the density, Favre averaging is the method

of choice. For instance, the average of the product of the density ρ with the velocity components u

and v would lead with conventional averages to four terms

ρuv = ρ̄ u v + ρ̄u′v′ + ρ′u′v + ρ′v′u+ ρ′u′v′. (10.14)

Using Favre averages one writes

ρuv = ρ(ũ+ ũ′′)(ṽ + v′′)

= ρũṽ + ρu′′ṽ + ρv′′ũ+ ρu′′v′′.

(10.15)

Here fluctuations of the density do not appear. Taking the average leads to two terms only

ρuv = ρ̄ũṽ + ρ̄ũ′′v′′. (10.16)

This expression is much simpler than Eq. (10.14) and has formally the same structure as the

conventional average of uv for constant density flows

uv = u v + u′v′. (10.17)

Difficulties arising with Favre averaging in the viscous and diffusive transport terms are of less
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importance since these terms are usually neglected in high Reynolds number turbulence.

The introduction of density weighted averages requires the knowledge of the correlation be-

tween the density and the other variable of interest. A Favre pdf of u can be derived from the joint

pdf P (ρ, u) as

ρ̄P̃ (u) =

∫ ρmax

ρmin

ρP (ρ, u)dρ =

∫ ρmax

ρmin

ρP (ρ|u)P (u)dρ = 〈ρ|u〉P (u). (10.18)

Multiplying both sides with u and integrating yields

ρ̄

∫ +∞

−∞

uP̃ (u)du =

∫ +∞

−∞

〈ρ|u〉uP (u)du (10.19)

which is equivalent to ρ̄ũ = ρu. The Favre mean value of u therefore is defined as

ũ =

∫ +∞

−∞

P̃ (u)du. (10.20)

10.3 Navier-Stokes Equations and Turbulence Models

In the following we will first describe the classical approach to model turbulent flows. It is based on

single point averages of the Navier-Stokes equations. These are commonly called Reynolds Av-

eraged Navier-Stokes Equations (RANS). We will formally extend this formulation to non-constant

density by introducing Favre averages. In addition we will present the most simple model for turbu-

lent flows, the k-ε model. Even though it certainly is the best compromise for engineering design

using RANS, the predictive power of the k-ε model is, except for simple shear flows, often found

to be disappointing. We will present it here, mainly to be able to define turbulent length and time

scales.

For non-constant density flows the Navier-Stokes equations are written in conservative form

(cf. Lecture 3)

Continuity
∂ρ

∂t
+∇·(ρv) = 0 (10.21)

Momentum
∂(ρv)

∂t
+∇·(ρvv) = −∇p−∇·τ + ρg . (10.22)

In Eq. (10.22) the two terms on the left hand side (l.h.s.) represent the local rate of change

154



and convection of momentum, respectively, while the first term on the right hand side (r.h.s.) is

the pressure gradient and the second term on the r.h.s. represents molecular transport due to

viscosity. Here τ is the viscous stress tensor (cf. Lecture 3, Eq. (3.32))

τ = −µ
[
2S − 2

3
∇·v

]
(10.23)

and

S =
1

2
(∇v +∇vT ) (10.24)

is the rate of strain tensor, where ∇vT is the transpose of the velocity gradient and µ is the

dynamic viscosity. It is related to the kinematic viscosity ν as µ = ρν. The last term in Eq. (10.22)

represents forces due to buoyancy.

Using Favre averaging on Eqs. (10.21) and (10.22) one obtains

∂ρ̄

∂t
+∇·(ρ̄ṽ) = 0 (10.25)

∂(ρ̄ṽ)

∂t
+∇·(ρ̄ṽṽ) = −∇p̄−∇·τ̄ −∇·(ρ̄ṽ′′v′′) + ρ̄g. (10.26)

Eq. (10.26) is similar to Eq. (10.22) except for the third term on the l.h.s. containing the correlation

−ρ̄ṽ′′v′′, which is called the Reynolds stress tensor.

An important simplification is obtained by introducing the kinematic eddy viscosity νt which

leads to the following expression for the Reynolds stress tensor

−ρ̄ ṽ′′v′′ = ρ̄νt

[
2S̃ − 2

3
∇·ṽI

]
+

2

3
ρ̄ k̃. (10.27)

Here I is the unit tensor. The kinematic eddy viscosity νt is related to the Favre average turbulent

kinetic energy

k̃ =
1

2
ṽ′′ ·v′′ (10.28)

and its dissipation ε̃ by

νt = cµ
k̃2

ε̃
, cµ = 0.09. (10.29)

The introduction of the Favre averaged variables k̃ and ε̃ requires that modeled equations are

available for these quantities. These equations are given here in their most simple form
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Turbulent kinetic energy

ρ̄
∂k̃

∂t
+ ρ̄ṽ ·∇k̃ = ∇·( ρ̄νt

σk
∇k̃)− ρ̄ṽ′′v′′ : ∇ṽ − ρ̄ε̃, (10.30)

Turbulent dissipation

ρ̄
∂ε̃

∂t
+ ρ̄ṽ ·∇ε̃ = ∇·

(
ρ̄
νt
σε

∇ε̃

)
− cε1ρ̄

ε̃

k̃
ṽ′′v′′ : ∇ṽ − cε2ρ̄

ε̃2

k̃
. (10.31)

In these equations the two terms on the l.h.s. represent the local rate of change and convection,

respectively. The first term on the r.h.s. represents the turbulent transport, the second one turbu-

lent production and the third one turbulent dissipation. As in the standard k-ε model, the constants

σk = 1.0, σε = 1.3, cε1 = 1.44 and cε2 = 1.92 are generally used. A more detailed discussion

concerning additional terms in the Favre averaged turbulent kinetic energy equation may be found

in Libby and Williams (1994) [1].

10.4 Two-Point Velocity Correlations and Turbulent Scales

A characteristic feature of turbulent flows is the occurrence of eddies of different length scales. If

a turbulent jet shown in Fig. 10.2 enters with a high velocity into initially quiescent surroundings,

the large velocity difference between the jet and the surroundings generate a shear layer instability

which after a transition, becomes turbulent further downstream from the nozzle exit. The two shear

layers merge into a fully developed turbulent jet. In order to characterize the distribution of eddy

length scales at any position within the jet, one measures at point x and time t the axial velocity

u(x, t), and simultaneously at a second point (x+ r, t) with distance r apart from the first one, the

velocity u(x+ r, t). Then the correlation between these two velocities is defined by the average

R(x, r, t) = u′(x, t)u′(x+ r, t). (10.32)

For homogeneous isotropic turbulence the location x is arbitrary and r may be replaced by its

absolute value r = |r|. For this case the normalized correlation

f(r, t) = R(r, t)/u′2(t) (10.33)

is plotted schematically in Fig. 10.3.
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Figure 10.2: Schematic representation of two-point correlation measurements in a turbulent jet.

Kolmogorov’s 1941 theory for homogeneous isotropic turbulence assumes that there is a steady

transfer of kinetic energy from the large scales to the small scales and that this energy is being

consumed at the small scales by viscous dissipation. This is the eddy cascade hypothesis. By

equating the energy transfer rate (kinetic energy per eddy turnover time) with the dissipation ε it

follows that this quantity is independent of the size of the eddies within the inertial range. For

the inertial subrange, extending from the integral scale ℓ to the Kolmogorov scale η, ε is the only

dimensional quantity apart from the correlation co-ordinate r that is available for the scaling of

f(r, t). Since ε has the dimension [m2/s3], the second order structure function defined by

F2(r, t) = (u′(x, t) − u′(x + r, t))2 = 2 u′2(t)(1− f(r, t)) (10.34)

with the dimension [m2/s2] must therefore scale as

F2(r, t) = C(ε r)2/3 (10.35)

where C is a universal constant called the Kolmogorov constant.

There are eddies of a characteristic size which contain most of the kinetic energy. At these

eddies there still is a relatively large correlation f(r, t) before it decays to zero. The length scale of
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Figure 10.3: The normalized two-point velocity correlation for homogeneous isotropic turbulence
as a function of the distance r between the two points.

these eddies is called the integral length scale ℓ and is defined by

ℓ(t) =

∫ ∞

0

f(r, t)dr. (10.36)

The integral length scale is also shown in Fig. 10.3.

We denote the root-mean-square (r.m.s.) velocity fluctuation by

v′ =
√
2 k/3 (10.37)

which represents the turnover velocity of integral scale eddies. The turnover time ℓ/v′ of these

eddies is then proportional to the integral time scale

τ =
k

ε
. (10.38)

For very small values of r only very small eddies fit into the distance between x and x + r. The

motion of these small eddies is influenced by viscosity which provides an additional dimensional
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quantity for scaling. Dimensional analysis then yields the Kolmogorov length scale

η =

(
ν3

ε

)1/4

(10.39)

which is also shown in Fig. 10.3.

The range of length scales between the integral scale and the Kolmogorov scale is called the

inertial range. In addition to η a Kolmogorov time and a velocity scale may be defined as

tη =
(ν
ε

)1/2
, vη = (νε)1/4. (10.40)

According to Kolmogorov’s 1941 theory the energy transfer from the large eddies of size ℓ is equal

to the dissipation of energy at the Kolmogorov scale η. Therefore we will relate ε directly to the

turnover velocity and the length scale of the integral scale eddies

ε ∼ v′3

ℓ
. (10.41)

We now define a discrete sequence of eddies within the inertial subrange by

ℓn =
ℓ

2n
≥ η, n = 1, 2, ... . (10.42)

Since ε is constant within the inertial subrange, dimensional analysis relates the turnover time tn

and the velocity difference vn across the eddy ℓn to ε in that range as

ε ∼ v2n
tn

∼ v3n
ℓn

∼ ℓ2n
t3n
. (10.43)

This relation includes the integral scales and also holds for the Kolmogorov scales as

ε =
v2η
tη

=
v3η
η
. (10.44)

A Fourier transform of the isotropic two-point correlation function leads to a definition of the kinetic

energy spectrum E(k), which is the density of kinetic energy per unit wave number k. Here, rather

than to present a formal derivation, we relate the wave number k to the inverse of the eddy size ℓn

as

k = ℓ−1
n . (10.45)
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Figure 10.4: Schematic representation of the turbulent kinetic energy spectrum as a function of
the wave number k.

The kinetic energy v2n at scale ℓn is then

v2n ∼ (ε ℓn)
2/3 = ε2/3k−2/3 (10.46)

and its density in wave number space is proportional to

E(k) =
dv2n
dk

∼ ε2/3k−5/3. (10.47)

This is the well-known k−5/3 law for the kinetic energy spectrum in the inertial subrange.

If the energy spectrum is measured in the entire wave number range one obtains a behavior

that is shown schematically in a log-log plot in Fig. 10.4. For small wave numbers corresponding

to large scale eddies the energy per unit wave number increases with a power law between k2

and k4. This range is not universal and is determined by large scale instabilities which depend

on the boundary conditions of the flow. The spectrum attains a maximum at a wave number that

corresponds to the integral scale, since eddies of that scale contain most of the kinetic energy.

For larger wave numbers corresponding to the inertial subrange the energy spectrum decreases

following the k−5/3 law. There is a cut-off due to viscous effects at the Kolmogorov scale η. Beyond
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this cut-off, in the range called the viscous subrange, the energy per unit wave number decreases

exponentially due to viscous effects.

In one-point averages the energy containing eddies at the integral length scale contribute the

most to the kinetic energy. Therefore RANS averaged mean quantities essentially represent av-

erages over regions in physical space that are of the order of the integral scale. In Large Eddy

Simulations (LES) the filtering over smaller regions than the integral length scale leads to different

mean values and, in particular, to smaller variances.

10.5 Balance Equations for Reactive Scalars

For simplicity, we will assume that the specific heat capacities cp,i are all equal and constant, the

pressure is constant and the heat transfer due to radiation is neglected. Then the temperature

equation becomes (cf. Lecture 3, Eq. (3.46))

ρ
∂T

∂t
+ ρv ·∇T = ∇·(ρD∇T ) + ω. (10.48)

Here Eq. (3.44) with unity Lewis number was used and the heat release (cf. Lecture 3, Eq. (3.44))

due to chemical reactions is written as

ωT = − 1

cp

k∑

i=1

hiṁi. (10.49)

This form of the temperature equation is similar to that for the mass fractions of species i (cf.

Lecture 3, Eq. (3.17)), which becomes with the binary diffusion approximation

ρ
∂Yi
∂t

+ ρv ·∇Yi = ∇·(ρDi∇Yi) + ṁi. (10.50)

If, in addition, a one-step reaction and equal diffusivities (Di = D) were assumed, coupling re-

lations between the temperature and the species mass fractions can be derived (cf. Williams,

(1985)a [2]). These assumptions are often used in mathematical analyzes of combustion prob-

lems.

In the following we will use the term “reactive scalars” for the mass fraction of all chemical

species and temperature and introduce the vector

ψ = (Y1, Y2, . . . , Yk, T ). (10.51)
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Here k is the number of reactive species. For simplicity of notation, the balance equation for the

reactive scalar ψi will be written

ρ
∂ψi

∂t
+ ρv ·∇ψi = ∇·(ρDi∇ψi) + σi, i = 1, 2, . . . , k + 1, (10.52)

where i = 1, 2, . . . , k + 1. The diffusivities Di (i = 1, 2, . . . , k) are the mass diffusivities for the

species and Dk+1 = D denotes the thermal diffusivity. Similarly, σi (i = 1, 2, . . . , k) are the species

source terms ṁi, i = 1, 2, . . . , k (cf. Lecture 3, Eq. (3.12)) and σk+1 is defined as ωT Eq. (10.49)

(cf. Lecture 3, Eq. (3.46)). The chemical source term will also be written as

σi = ρSi. (10.53)

10.6 Moment Methods for Reactive Scalars

Favre averaged equations for the mean and the variance of the reactive scalars can be derived by

splitting ψi(x, t) into a Favre mean and a fluctuation

ψi(x, t) = ψ̃i(x, t) + ψi
′′(x, t) . (10.54)

When this is introduced into Eq. (10.52) one obtains in a similar way as for the momentum equation

after averaging

ρ̄
∂ψ̃i

∂t
+ ρ̄ṽ ·∇ψ̃i = ∇·(ρDi∇ψi)−∇·(ρ̄ṽ′′ψ′′

i ) + ρ̄S̃i . (10.55)

In this equation the terms on the l.h.s. are closed, while those on the r.h.s. must be modeled. In

high Reynolds number flows the molecular transport term containing the molecular diffusivities Di

are small and can be neglected. Closure is required for the second term on the r.h.s., the turbulent

transport term, and for the last term, the mean chemical source term.

The modeling of the mean chemical source term has often been considered as the main prob-

lem of moment methods in turbulent combustion. In order to discuss the difficulties associated with

the closure of this term, we assume that coupling relations exist between the chemical species and

the temperature. As noted before, such coupling relations can easily be derived for the case of a

one step reaction and equal diffusivities. With this assumption we consider the following form of

the heat release rate

ωT (T ) = ρ ST (T ) = ρB(Tb − T ) exp

(
− E

RT

)
. (10.56)
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Here B contains the frequency factor and the heat of reaction, Tb is the adiabatic flame tempera-

ture, E the activation energy and R the universal gas constant. Introducing T = T̃ + T ′′ into Eq.

(10.56) the argument of the exponential term may be expanded around T̃ for small T ′′ as

E

RT =
E

RT̃
− ET ′′

RT̃ 2
. (10.57)

If the expansion is also introduced into the preexponential term, the quantity ST becomes

ST (T ) = ST (T̃ )

(
1− T ′′

Tb − T̃

)
exp

(
ET ′′

RT̃ 2

)
. (10.58)

Typically, the grouping E/RT̃ is of the order of 10 in the reaction zone of a flame and the absolute

value of T ′′/T̃ varies between 0.1 ·/· 0.3. Therefore the exponential term in Eq. (10.58) causes

enhanced fluctuations of the chemical source term around its mean value evaluated with the mean

temperature T̃ . It may be concluded that moment methods for reactive scalars will fail due to the

strong nonlinearity of the chemical source term.

10.7 Dissipation and Scalar Transport of Non-Reacting Scal ars

As an example for a nonreactive scalar we will use the mixture fraction Z Eq. (3.58). It is gen-

eral practice in turbulent combustion to employ the gradient transport assumption for non-reacting

scalars. The scalar flux then takes the form

−ṽ′′Z ′′ = Dt∇Z̃. (10.59)

Here Dt is a turbulent diffusivity which is modeled by analogy to the eddy viscosity as

Dt =
νt
Sct

, (10.60)

where Sct is a turbulent Schmidt number. The equation for the mean mixture fraction then reads

ρ
∂Z̃

∂t
+ ρṽ ·∇Z̃ = ∇·(ρ̄Dt∇Z̃), (10.61)

where the molecular term has been neglected. In order to derive an equation for Z̃ ′′2 we first must

derive an equation for Z ′′. By subtracting Eqs. (10.55) and (10.52), when the source terms have
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been removed and Di is set to D, and after both have been divided by ρ and ρ̄, respectively, an

equation for the fluctuation Z ′′ is obtained:

∂Z ′′

∂t
+ (ṽ + v′′)·∇Z ′′ +v′′ ·∇Z̃ =

1

ρ
∇·(ρD∇Z)

−1

ρ̄
∇·
(
ρD∇Z

)
+∇·(ρ̄ṽ′′Z ′′).

(10.62)

Also the continuity equation was used. If derivatives of ρ and D and their mean values are ne-

glected for simplicity, the first two terms on the r.h.s. of Eq. (10.62) can be combined to obtain a

term proportional to Di∇
2Z ′′. Introducing this and multiplying Eq. (10.62) by 2ρZ ′′ one obtains an

equation for Z ′′2. With the use of the continuity equation and averaging one obtains

ρ̄
∂Z̃ ′′2

∂t
+ ρ̄ṽ ·∇Z̃ ′′2 = −∇·(ρ̄ṽ′′Z ′′2)

+ 2ρ̄(−ṽ′′Z ′′)·∇Z̃ − ρ̄χ̃.

(10.63)

As before, the terms on the r.h.s. describe the local change and convection. The first term on the

r.h.s. is the turbulent transport term. The second term on the r.h.s. accounts for the production

of scalars fluctuations. The mean molecular transport term has been neglected for simplicity but

the molecular diffusivity still appears in the dissipation term. The Favre scalar dissipation rate is

defined as

χ̃ = 2D(∇̃Z ′′)2. (10.64)

An integral scalar time scale can be defined by

τZ =
Z̃ ′′2

χ̃
. (10.65)

It is often set proportional to the flow time τ = k̃/ε̃

τ = cχτZ , (10.66)
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where the constant of proportionality cχ is of order unity but its value varies between 1.5 and 3.0.

A value cχ = 2.0 is often used. Combining Eqs. (10.65) and (10.66) leads to the model

χ̃ = cχ
ε̃

k̃
Z̃ ′′2. (10.67)

10.8 The Eddy Break Up and the Eddy Dissipation Model

An early attempt to provide a closure for the chemical source term is due to Spalding (1971) [3] who

argued that since turbulent mixing may be viewed as a cascade process from the integral down to

the molecular scales, the cascade process also controls the chemical reactions as long as mixing

rather than reaction is the rate determining process. This model was called the Eddy-Break-Up

model (EBU). The turbulent mean reaction rate of products was expressed as

ωP = ρCEBU
ε

k

(
Y ′′2
P

)1/2
(10.68)

where Y ′′2
P is the variance of the product mass fraction and CEBU is the Eddy-Break-Up constant.

This model has been modified by Magnussen and Hjertager (1977) [4] who replaced (Y ′′2
P )1/2

simply by the mean mass fraction of the deficient species (fuel for lean or oxygen for rich mixtures)

calling it the Eddy Dissipation Model (EDM). The model takes the minimum of three rates, those

defined with the mean fuel mass fraction

ωF = ρ̄A YF
ε

k
, (10.69)

with the mean oxidizer mass fraction

ωO2
= ρ̄

AYO2

ν

ε

k
, (10.70)

and with the product mass fraction

ωP = ρ̄
A ·B
(1 + ν)

YP
ε

k
, (10.71)

in order to calculate the mean chemical source term. In Eqs. (10.69)-(10.71)A andB are modeling

constants and ν is the stoichiometric oxygen to fuel mass ratio defined in Eq. (1.32).

The Eddy Break-Up model and its modifications are based on intuitive arguments. The main
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idea is to replace the chemical time scale of an assumed one-step reaction by the turbulent time

scale τ = k/ε. Thereby the model eliminates the influence of chemical kinetics, representing the

fast chemistry limit only. When these models are used in CFD calculations, it turns out that the

constants CEBU or A and B must be “tuned” within a wide range in order to obtain reasonable

results for a particular problem.

10.9 The Pdf Transport Equation Model

Similar to moment methods, models based on a pdf transport equation for the velocity and the

reactive scalars are usually formulated for one-point statistics. Within that framework, however,

they represent a general statistical description of turbulent reacting flows, applicable to premixed,

nonpremixed and partially premixed combustion. A joint pdf transport equation for the velocity

and the reactive scalars can be derived, which is equivalent to an infinite hierarchy of one-point

moment equations for these quantities, Pope (1990) [5].

For simplicity, we will consider here the transport equation for the joint pdf of velocity and

reactive scalars only. Denoting the set of reactive scalars, such as the temperature and the mass

fraction of reacting species by the vector ψ, P (v,ψ;x, t)dvdψ is the probability of finding at point

x and time t the velocity components and the reactive scalars within the intervals v − dv/2 < v <

v + dv/2 and ψ − dψ/2 < ψ < ψ + dψ/2.

There are several ways to derive a transport equation for the probability density P (v,ψ;x, t)

(cf. O’Brien (1980) [6]). We refer here to the presentation in Pope (1985) [7] cf. also Pope (2000)

[8], but write the convective terms in conservative form

∂(ρP )

∂t
+∇·(ρvP ) + (ρg −∇p̄)·∇vP +

n∑

i=1

∂

∂ψi
[ωi P ] =

∇v · [〈−∇·τ +∇〈p′|v,ψ〉P ]−
n∑

i=1

∂

∂ψi
[〈∇·(ρD∇ψi)|v,ψ〉P ].

(10.72)

In deriving this equation, the equations for all reactive scalars, including that for temperature have

been cast into the form Eq. (10.52), for simplicity. The symbol ∇v denotes the divergence op-

erator with respect to the three components of velocity. The angular brackets denote conditional

averages, conditioned with respect to fixed values of v and ψ. For simplicity of presentation we
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do not use different symbols for the random variables describing the stochastic fields and the

corresponding sample space variables which are the independent variables in the pdf equation.

The first two terms on the l.h.s. of Eq. (10.72) are the local change and convection of the

probability density function in physical space. The third term represents transport in velocity space

by gravity and the mean pressure gradient. The last term on the l.h.s. contains the chemical

source terms. All these terms are in closed form, since they are local in physical space. Note that

the mean pressure gradient does not present a closure problem, since the pressure is calculated

independently of the pdf equation using the mean velocity field. For chemical reacting flows it is

of particular interest that the chemical source terms can be treated exactly for arbitrarily complex

chemical kinetics. It has often been argued that in this respect the transported pdf formulation has

a considerable advantage compared to other formulations.

However, on the r.h.s. of the transport equation there are two terms that contain gradients of

quantities conditioned on the values of velocity and composition. Therefore, if gradients are not

included as sample space variables in the pdf equation, these terms occur in unclosed form and

have to be modeled. The first unclosed term on the r.h.s. describes transport of the probability

density function in velocity space induced by the viscous stresses and the fluctuating pressure

gradient. The second term represents transport in reactive scalar space by molecular fluxes. This

term represents molecular mixing.

When chemistry is fast, mixing and reaction take place in thin layers where molecular transport

and the chemical source term balance each other. Therefore, the closed chemical source term and

the unclosed molecular mixing term, being leading order terms in a asymptotic description of the

flame structure, are closely linked to each other. Pope and Anand (1984) [9] have illustrated this for

the case of premixed turbulent combustion by comparing a standard pdf closure for the molecular

mixing term with a formulation, where the molecular diffusion term was combined with the chemical

source term to define a modified reaction rate. They call the former distributed combustion and the

latter flamelet combustion and find considerable differences in the Damköhler number dependence

of the turbulent burning velocity normalized with the turbulent intensity.

From a numerical point of view, the most apparent property of the pdf transport equation is

its high dimensionality. Finite-volume and finite-difference techniques are not very attractive for

this type of problem, as memory requirements increase roughly exponentially with dimensional-

ity. Therefore, virtually all numerical implementations of pdf methods for turbulent reactive flows

employ Monte-Carlo simulation techniques (cf. Pope (1981), (1985) [10, 7]). The advantage of

Monte-Carlo methods is that their memory requirements depend only linearly on the dimensional-
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ity of the problem. Monte-Carlo methods employ a large number, N , of particles. In the Lagrangian

algorithm (Pope (1985) [7]) the particles are not bound to grid nodes. Instead, each particle has

its own position and moves through the computational domain with its own instantaneous velocity.

The particles should be considered as different realizations of the turbulent reactive flow problem

under investigation. The state of the particle is described by its position and velocity, and by the

values of the reactive scalar that it represents as a function of time. These particles should not be

confused with real fluid elements, which behave similarly in a number of respects.

10.10 The Laminar Flamelet Concept

The view of a turbulent diffusion flame as an ensemble of stretched laminar flamelets is due to

Williams (1975) [11]. Flamelet equations based on the mixture fraction as independent variable,

using the scalar dissipation rate for the mixing process, were independently derived by Peters

(1980) [12] and Kuznetsov (1982) [13]. A first review of diffusion flamelet models was given by

Peters (1984) [14]. For premixed and diffusion flames the flamelet concept was reviewed by Peters

(1986) [15] and Bray and Peters (1994) [16].

Flamelets are thin reactive-diffusive layers embedded within an otherwise non-reacting turbu-

lent flow field. Once ignition has taken place, chemistry accelerates as the temperature increases

due to heat release. When the temperature reaches values that are of the order of magnitude of

those of the close-to-equilibrium branch in Fig. 10.1, the reactions that determine fuel consump-

tion become very fast. For methane combustion, for example, the rate determining reaction in the

fuel consumption layer is the reaction of CH4 with the H◦0-radical. Since the chemical time scale

of this reaction is short, chemistry is active only within a thin layer, namely the fuel consumption or

inner layer. If this layer is thin compared to the size of a Kolmogorov eddy, it is embedded within

the quasi-laminar flow field of such an eddy and the assumption of a laminar flamelet structure

is justified. If, on the contrary, turbulence is so intense, that Kolmogorov eddies become smaller

than the inner layer and can penetrate into it, they are able to destroy its structure. Under these

conditions the entire flame is likely to extinguish.

The location of the inner layer defines the flame surface. Differently from moment methods or

methods based on a pdf transport equation, statistical considerations in the flamelet concept focus

on the location of the flame surface and not on the reactive scalars themselves. That location is

defined as an iso-surface of a non-reacting scalar quantity, for which a suitable field equation is

derived. For nonpremixed combustion the mixture fraction Z is that scalar quantity, for premixed
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combustion the scalar G will be introduced. Once equations that describe the statistical distribu-

tions of Z and G are solved, the profiles of the reactive scalars normal to the surface are calculated

using flamelet equations. These profiles are assumed to be attached to the flame surface and are

convected with it in the turbulent flow field. Therefore the statistical moments of the reactive scalars

can be obtained from the statistical distribution of the scalar quantities Z and G. Details of this

procedure will be discussed in Lecture 12.

10.11 The BML-Model and the Coherent Flamelet Model

For premixed combustion, flamelet models are typically based on the progress variable c. The

progress variable c is defined as a normalized temperature or normalized product mass fraction

c =
T − Tu
Tb − Tu

or c =
YP
YP,b

(10.73)

which implies a one-step reaction A → P and a corresponding heat release raising the temperature

from Tu to Tb. In flamelet models based on the progress variable the flame structure is assumed

to be infinitely thin and no intermediate values of temperature between Tu and Tb are resolved.

This corresponds to the fast chemistry limit. The progress variable therefore is a step function that

separates unburnt mixture and burnt gas in a given flow field.

The classical model for premixed turbulent combustion, the Bray-Moss-Libby (BML) model was

initiated by Bray and Moss (1977) [17] by assuming the pdf of the progress variable c to be a two

delta function distribution. This assumption only allows for entries at c = 0 and c = 1 in a turbulent

premixed flame, but it illustrates important features, like counter-gradient diffusion of the progress

variable. This appears in the equation for the Favre mean progress variable c̃

ρ̄
∂c̃

∂t
+ ρ̄v ·∇c̃+∇·(ρ̄ṽ′′c′′) = wc (10.74)

where the molecular diffusion term has been neglected. This equation requires the modeling of

the turbulent transport term ṽ′′c′′ and the mean reaction term ωc. Libby and Bray (1981) [18]

and Bray et al. (1981) [19] have shown that the gradient transport assumption Eq. (10.59) is not

applicable to ṽ′′c′′. This is due to gas expansion effects at the flame surface and is called counter-

gradient diffusion. Counter-gradient diffusion has been found in many experiments and in many

one-dimensional numerical analyzes. However, there is no model available that could be used in
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three-dimensional calculations solving Eq. (10.74) with counter-gradient diffusion included.

Models for the mean reaction rate by Bray et al. (1984a) [20] and Bray and Libby (1986) [21]

focus on a time series of step function events of the progress variable. This makes the mean

source term proportional to the flamelet crossing frequency. Further modeling, discussed in more

detail in Bray and Libby (1994) [22], then leads to the expression

ωc = ρusLI0Σ (10.75)

where sL is the laminar burning velocity, I0 is a stretch factor and Σ is the flame surface density

(flame surface per unit volume).

A model for Σ has been proposed by Candel et al. (1990) [23]. This is called the Coherent

Flame Model (CFM). A comparison of the performance of different formulations of the model for

one-dimensional turbulent flames was made by Duclos et al. (1993) [24]. Modeling based on DNS

data has led Trouvé and Poinsot (1994) [25] to the following equation for the flame surface density

Σ:
∂Σ

∂t
+∇·(ṽΣ) = ∇·(Dt∇Σ) + C1

ε

k
Σ− C2sL

Σ2

1− c̄
. (10.76)

The terms on the l.h.s. represent the local change and convection, the first term on the r.h.s.

represents turbulent diffusion, the second term production by flame stretch and the last term flame

surface annihilation. The stretch term is proportional to the inverse of the integral time scale

τ = k/ε which is to be evaluated in the unburnt gas.

10.12 Combustion Models used in Large Eddy Simulation

Turbulence models based on Reynolds Averaged Navier-Stokes Equations (RANS) employ turbu-

lent transport approximations with an effective turbulent viscosity that is by orders of magnitude

larger than the molecular viscosity. In particular if steady state versions of these equations are

used, this tends to suppress large scale instabilities which occur in flows with combustion even

more frequently than in non-reacting flows. If those instabilities are to be resolved in numerical

simulations, it is necessary to recur to more advanced, but computationally more expensive meth-

ods such as Large Eddy Simulation (LES).

Large Eddy Simulation does not intend to numerically resolve all turbulent length scales, but

only a fraction of the larger energy containing scales within the inertial subrange. Modeling is

then applied to represent the smaller unresolved scales which contain only a small fraction of
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the turbulent kinetic energy. Therefore the computed flows are usually less sensitive to modeling

assumptions. The distinction between the resolved large scales and the modeled small scales is

made by the grid resolution that can be afforded. The model for the smaller scales is called the sub-

grid model. In deriving the basic LES equations, the Navier-Stokes equations are spatially filtered

with a filter of size ∆, which is of the size of the grid cell (or a multiple thereof) in order to remove

the direct effect of the small scale fluctuations (cf. Ghosal and Moin (1995) [26]). These show

up indirectly through nonlinear terms in the subgrid-scale stress tensor as subgrid-scale Reynolds

stresses, Leonard stresses, and subgrid-scale cross stresses. The latter two contributions result

from the fact that, unlike with the traditional Reynolds averages, a second filtering changes an

already filtered field. In a similar way, after filtering the equations for non-reacting scalars like

the mixture fraction, one has to model the filtered scalar flux vectors which contain subgrid scalar

fluxes, Leonard fluxes, and subgrid-scale cross fluxes.

The reason why LES still provides substantial advantages for modeling turbulent combustion

is that the scalar mixing process is of paramount importance in chemical conversion. Nonreac-

tive and reactive system studies show that LES predicts the scalar mixing process and dissipation

rates with considerably improved accuracy compared to RANS, especially in complex flows. For

example, to study the importance of turbulent scalar dissipation rate fluctuations on the combus-

tion process and to highlight the differences between RANS and LES, [27] compared the results

of two different LES simulations using unsteady flamelet models in which the scalar dissipation

rate appears as a parameter. The only difference between the simulations was that only the

Reynolds-averaged dissipation rate was used in one simulation [28], whereas the other consid-

ered the resolved fluctuations of the filtered scalar dissipation rate predicted by LES. The results

show substantially improved predictions, especially for minor species, when fluctuations are con-

sidered. Another such example is the simulation of a bluff-body stabilized flame [29], where a

simple steady-state diffusion flamelet model [14] in the context of an LES with a recursive filter

refinement method led to excellent results. Such accuracy has not been achieved with RANS

simulations of the same configuration [30], [31]. Both studies are discussed in more detail below.

Similar arguments can be made for premixed turbulent combustion LES.

In RANS modeling it has long been realized that the direct closure of the mean chemical source

term in the averaged species transport equations can hardly be accomplished, and conserved

scalar methods have been used in many applications. Using so-called coupling functions, the rate

of mixing of fuel and oxidizer can be described by a nonreactive scalar, the mixture fraction. Differ-

ent definitions have been used for the mixture fraction [32], [33], but essentially the mixture fraction
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is a measure of the local equivalence ratio. Hence, the mixture fraction is a conserved scalar, in-

dependent of the chemistry. This leads to the so-called conserved scalar method, which forms

the basis for most of the combustion models for nonpremixed turbulent combustion. Considering

the simplest case of infinitely fast chemistry, all species mass fractions and the temperature are

a function of mixture fraction only. If the subfilter probability distribution of the mixture fraction is

known, the Favre-filtered mass fractions Ỹi , for instance, can then be obtained as

Ỹi =

∫ 1

0

Yi(Z)f(Z)dZ, (10.77)

where Z is the mixture fraction and f(Z) is the marginal density-weighted filter probability density

function (FPDF) of the mixture fraction. Applications of simple conserved scalar models in LES

have been based on infinitely fast irreversible chemistry [34] and equilibrium chemistry [35]. The

flamelet model is a conserved scalar model that can account for finite-rate chemistry effects. Many

models that have been formulated for LES are variants of these and some are discussed below.

These models essentially provide state relationships for the reactive scalars as functions of mixture

fraction and other possible parameters, such as the scalar dissipation rate. Filtered quantities are

then obtained by a relation similar to Eq. (10.77), but using a presumed joint FPDF of the mixture

fraction and, for example, the scalar dissipation rate.

Because the probability density function (PDF) plays a central role in most models for non-

premixed combustion, it is necessary to emphasize the special meaning of the FPDF in LES.

Here, the example of the marginal FPDF of the mixture fraction is discussed, but similar argu-

ments can be made for the joint composition FPDF. In Reynolds-averaged methods, a one-point

PDF can be determined by repeating an experiment many times and recording the mixture fraction

at a given time and position in space. For a sufficiently large number of samples, the PDF of the

ensemble can be determined with good accuracy. In LES, assuming a simple box filter, the data of

interest is a one-time, one-point probability distribution in a volume corresponding to the filter size

surrounding the point of interest. If an experimentally observed spatial mixture fraction distribution

is considered at a given time, the FPDF cannot simply be evaluated from these data, because the

observed distribution is characteristic of this particular realization and it is not a statistical prop-

erty. As a statistical property, the FPDF must be defined by an ensemble that can potentially have

an arbitrary large number of samples. In the context of transported PDF model formulations for

LES, which are discussed below, [5] introduced the notion of the filtered density function (FDF),

which describes the local subfilter state of the considered experiment. The FDF is not an FPDF,
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because it describes a single realization. The FPDF is defined only as the average of the FDF

of many realizations given the same resolved field [36]. It is important to distinguish between the

FDF and the FPDF, especially in using direct numerical simulation (DNS) data to evaluate models,

and in the transported FDF models discussed below. Only the FDF can be evaluated from typical

DNS data, whereas the FPDF is required for subfilter modeling. For conserved scalar models,

a presumed shape of the FPDF has to be provided. Similar to RANS models, a beta-function

distribution is usually assumed for the marginal FPDF of the mixture fraction, and parameterized

by the first two moments of the mixture fraction. The filtered mixture fraction is determined by the

solution of a transport equation, whereas algebraic models are mostly used for the subfilter scalar

variance. The beta-function is expected to be a better model for the FPDF in LES than for the PDF

in RANS, because the FPDF is generally more narrow, and hence the exact shape is less impor-

tant. It can also be expected that intermittency, which is a main source of error when using the

beta-function in RANS, will mostly occur on the resolved scales. The validity of the beta-function

representation of the FPDF of the mixture fraction has been investigated by several authors using

DNS data of nonpremixed reacting flows of both constant and variable density [35], [37], [38]. The

main conclusion of these studies is that the beta-function distribution provides a good estimate for

the FPDF of the mixture fraction and that this estimate is even better in LES than in RANS models.

Furthermore, the model is particularly good when evaluated using the mixture fraction variance

taken from DNS data, suggesting that the beta-function as a model for the statistical distribution

of the mixture fraction performs much better than the commonly used subgrid-scale models for

the mixture fraction variance. However, recent studies by [39] and [40] show that the FPDF often

substantially deviates from the beta-function. This is discussed in more detail below.

In the following, different variants of the flamelet model are discussed. Because all such mod-

els require the scalar dissipation rate, modeling of this quantity is discussed first. We follow the

presentation in [41].

10.13 Modeling the Scalar Dissipation Rate

Although different conceptual ideas and assumptions are used in the combustion models dis-

cussed here, most of them need a model for the scalar dissipation rate. The dissipation rate of

the mixture fraction is a fundamental parameter in nonpremixed combustion, which determines

the filtered reaction rates, if combustion is mixing controlled. High rates of dissipation can also

lead to local or global flame extinction. Models based on presumed FPDFs also require a model
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for the subfilter scalar variance. Here, the most commonly used model formulations for LES are

reviewed briefly, differences with the typical RANS models are pointed out, and potential areas of

improvement are discussed.

An illustration of the importance of the scalar variance and dissipation rate in LES of non-

premixed combustion modeling is given by the following example. [43] pointed out that LES is an

incomplete model if the filter size can be arbitrarily specified. This is an important issue, especially

for combustion LES, because of the importance of the subfilter models. To fix the arbitrariness of

the filter, [29] proposed a recursive filter refinement method, where the local filter width is deter-

mined such that the ratio of subfilter scalar variance to the maximum possible variance is smaller

than a specified value. The maximum possible variance can be expressed in terms of the resolved

mixture fraction as Z̃(1 − Z̃). It was demonstrated in the simulation of a bluff-body stabilized

flame that this method better resolves high scalar variance and dissipation regions, which leads to

significant improvement in results. Some of these results are shown in Fig. 10.5.

In RANS models, typically a transport equation is solved for the scalar variance (Z ′2), in which

the Reynolds-averaged scalar dissipation rate χ appears as an unclosed sink term that requires

modeling. The additional assumption of a constant ratio of the integral timescale of the velocity τt

and the scalar fields leads to the expression

〈χ〉 = cφ
1

τt
〈Z ′2〉, (10.78)

where cφ is the so-called timescale ratio.

In the models most commonly used in LES [45, 34], the scalar variance transport equation

and the timescale ratio assumption are actually used in the opposite sense. Instead of solving the

subfilter variance equation, the assumption that the scalar variance production appearing in that

equation equals the dissipation term leads to an algebraic model for the dissipation rate of the form

χ̃ = 2Dt(∇Z̃)2, (10.79)

where an eddy diffusivity model was used for the subfilter scalar flux in the production term. Dt =

(cZ∇)2S̃ is the eddy diffusivity, where cZ can be determined using a dynamic procedure and

S̃ = |2S̃ijS̃ij |1/2 is the characteristic Favre-filtered rate of strain. Writing Eq. (10.78) for the

subfilter scales and combining it with Eq. (10.79) then leads to the model for the scalar variance

Z̃ ′2 = cV ∆
2(∇Z̃)2, (10.80)
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Figure 10.5: Results from large-eddy simulation of the Sydney bluff-body flame [29]. Flame rep-
resentation from simulation results (left) and time-averaged radial profiles of temperature and CO
mass fraction at x = 30mm and x = 120mm, which are in and downstream of the recirculation
region, respectively. The left figure shows computed chemiluminescence emissions of CH◦ col-
lected in an observation plane with a ray tracing technique (M. Herrmann, private communication).
Experimental data are taken from [42]. Courtesy of [41].

where τt,∆ ∼ 1/S̃ is assumed, and a new coefficient cV is introduced, which can be determined

dynamically following [34]. From Eqs. (10.78) and (10.79), and the dynamically determined coeffi-

cients of the eddy diffusivity and the scalar variance, the timescale ratio cφ can be determined as

cφ = 2c2Z/cV .

Pitsch and Steiner (2000) [28, 46] used the Lagrangian flamelet model (LFM) [33] as a subfilter

combustion model for LES in an application to a piloted methane/air diffusion flame [44] using a

20-step reduced chemical scheme based on the GRI 2.11 mechanism [47]. The unsteady flamelet

equations are solved coupled with the LES solution to provide the filtered density and other filtered

scalar quantities using a presumed FPDF of the mixture fraction. The scalar dissipation rate χ

required to solve the flamelet equation Eq. (8.7)2

ρ
∂Yi
∂t

− ρ
χ

2

∂2Yi
∂Z2

= ṁi, i = 1, 2, . . . , k (10.81)

is determined from the LES fields as a cross-sectional conditionally averaged value using a model
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Figure 10.6: Results from large-eddy simulation of Sandia flame D ([27], [28]) using the Eulerian
flamelet model (solid lines) and the Lagrangian flamelet model (dashed lines) compared with ex-
perimental data of [44]. Temperature distribution (left), scalar dissipation rate distribution (center),
and comparison of mixture fractionconditioned averages of temperature and mass fractions of NO,
CO, and H2 at x/D = 30. Courtesy of [41].

similar to the conditional source term estimation method by [48], which is described below. The

unconditional scalar dissipation rate was determined from a dynamic model [34]. This study is the

first demonstration of combustion LES of a realistic configuration using a detailed description of

the chemistry. The results are promising, especially for NO, but because of the cross sectional

averaging of the scalar dissipation rate, local fluctuations of this quantity are not considered and

the potential of LES is not fully realized. Also, this model cannot be easily applied in simulations

of more complex flow fields. In a more recent formulation, the Eulerian flamelet model [27], the

flamelet equations are rewritten in an Eulerian form, which leads to a full coupling with the LES

solver, and thereby enables the consideration of the resolved fluctuations of the scalar dissipation

rate in the combustion model. Examples of the results are shown in Fig. 10.6. The resolved scalar

dissipation rate field is dominated by features occurring on the large scale of the turbulence. Layers

of high dissipation rate alternate with low dissipation rate regions. In the LFM results, as well as

in several earlier RANS-type modeling studies [51], where these fluctuations are not considered,

some heat release occurs on the rich partially premixed side of the flame, which leads to strong

CO formation in these regions. Accounting for the richness of the predicted spatial distribution of
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Figure 10.7: Large-eddy simulation of a modern Pratt & Whitney gas turbine combustor ([49, 50]).
The combustor bulkhead is to the left of the flame. Fuel and air enter the combustor through the
injector/swirler assembly, which has three different air passages. Fuel droplets are shown in green.
The remaining color representation shows iso-surfaces of the temperature. Dilution by secondary
air occurs to the right of the figure and is not shown. Courtesy of [41].

the scalar dissipation rate substantially improves the comparison with the experimental data by

suppressing the heat release in the rich regions, and hence the formation of CO.

10.14 LES of Real Combustion Devices

Several investigators have reported simulations of real combustion devices with LES. Most of these

use either structured or block-structured curvi-linear meshes, which cannot deal with very com-

plex geometries. Simulations of gas turbines, for instance, typically require unstructured meshing

strategies, for which the formulation of energy conserving and accurate numerical algorithms, of

particular importance for combustion LES, proves to be even more difficult. Among the few fully

unstructured multiphysics LES codes are the AVBP code of CERFACS, which has been applied in

many studies on combustion instabilities and flashback in premixed gas turbines [52, 53], and the

Stanford CDP code1 CDP solves both low-Ma number variable-density and fully compressible LES

equations using the unstructured collocated finite volume discretization of [54] and its subsequent
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improvements by [55]. It applies Lagrangian particle tracking with adequate models for breakup,

particle drag, and evaporation for liquid fuel sprays. Closure for subfilter transport terms and other

turbulence statistics is accomplished using dynamic models. The FPV combustion model is ap-

plied to model turbulence/chemistry interactions. The code is parallelized with advanced load

balancing procedures for both gas and particle phases. Computations have been conducted with

over two billion cells using several thousand processors. A state-of-the-art simulation of a section

of a modern Pratt & Whitney gas turbine combustor that uses all these capabilities has been per-

formed [49, 50] and is shown in Fig. 10.7. The figure shows the spray and temperature distribution

and demonstrates the complexity of the geometry and the associated flow physics.
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Lecture 11

Premixed Turbulent Combustion:

The Regime Diagram

11.1 Regimes in Premixed Turbulent Combustion

Diagrams defining regimes of premixed turbulent combustion in terms of velocity and length scale

ratios have been proposed by Borghi (1985) [1], Peters (1986) [2], Abdel-Gayed and Brandley

(1989) [3], Poinsot et al. (1990) [4] and many others. For scaling purposes it is useful to assume

equal diffusivities for all reactive scalars, a Schmidt number Sc = ν/D of unity and to define the

flame thickness ℓF and the flame time tF as

ℓF =
D

sL
, tF =

D

s2L
. (11.1)

Then, using ν = D and the turbulent intensity v′ and the turbulent length scale ℓ introduced in

Lecture 10, we define the turbulent Reynolds number as

Re =
v′ℓ

sLℓF
(11.2)

and the turbulent Damköhler number

Da =
sLℓ

v′ℓF
. (11.3)
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Furthermore, with the Kolmogorov time, length, and velocity scales defined in Lecture 10, we

introduce two turbulent Karlovitz numbers, the first one defined as

Ka =
tF
tη

=
ℓ2F
η2

=
v2η
s2L

(11.4)

measures the ratios of the flame scales in terms of the Kolmogorov scales. Using the definitions

Eqs. (10.39)–(10.40) with ν = D and Eq. (10.43) taken as equality it is seen that Eqs. (11.2)–

(11.4) can be combined to show that

Re = Da2Ka2. (11.5)

Referring to the discussion about the appropriate reaction zone thickness δ in premixed flames, a

second Karlovitz number Kaδ may be introduced as

Kaδ =
ℓ2δ
η2

= δ2K (11.6)

where ℓδ = δ ℓF has been used.

In the following we will discuss a regime diagram, Fig. 11.1, for premixed turbulent combustion,

where the logarithm of v′/sL is plotted versus the logarithm of ℓ/ℓF . Using Eqs. (11.1) and (11.2)

and the definition of the Kolmogorov length scale Eq. (10.39) where, for scaling purposes, ε is set

equal to v′3/ℓ, the ratios v′/sL and ℓ/ℓF may be expressed in terms of the two non-dimensional

numbers Re and Ka as
v′

sL
= Re

(
ℓ

ℓF

)−1

= Ka2/3
(
ℓ

ℓF

)1/3

. (11.7)

Using these relations the lines Re = 1, Ka = 1 represent boundaries between different regimes of

premixed turbulent combustion in Fig. 11.1. Other boundaries of interest are the line v′/sL = 1,

which separates the wrinkled flamelets from the corrugated flamelets, and the line denoted by

Kaδ = 1, which separates thin reaction zones from broken reaction zones.

The line Re = 1 separates all turbulent flame regimes characterized by Re > 1 from the regime

of laminar flames (Re < 1), which is situated in the lower-left corner of the diagram. As stated in the

introduction, we will consider turbulent combustion in the limit of large Reynolds numbers, which

corresponds to a region sufficiently removed from the line Re = 1 towards the upper right in Fig.

11.1. We will not consider the wrinkled flamelet regime, because it is not of much practical interest.

In that regime, where v′ < sL, the turn-over velocity v′ of even the large eddies is not large enough

to compete with the advancement of the flame front with the laminar burning velocity sL. Laminar
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flame propagation therefore is dominating over flame front corrugations by turbulence. We will also

not consider the broken reaction zones regime in any detail for reasons to be discussed at the end

of this lecture.

Among the remaining two regimes, the corrugated flamelets regime is characterized by the

inequalities Re > 1 and Ka < 1. In view of Eq. (11.4) the latter inequality indicates that ℓF < η,

which means that the entire reactive-diffusive flame structure is embedded within eddies of the

size of the Kolmogorov scale, where the flow is quasi-laminar. Therefore the flame structure is not

perturbed by turbulent fluctuations and remains quasi-steady.

The boundary of the corrugated flamelets regime to the thin reaction zones regime is given by

Ka = 1, which, according to Eq. (11.4), is equivalent to the condition that the flame thickness is

equal to the Kolmogorov length scale. This is called the Klimov-Williams criterion. From Eq. (11.4)

also follows that for Ka = 1 the flame time is equal to the Kolmogorov time and the burning velocity

is equal to the Kolmogorov velocity.

The thin reaction zones regime is characterized by Re > 1, Kaδ < 1, and Ka > 1, the last

inequality indicating that the smallest eddies of size η can enter into the reactive-diffusive flame

structure since η < ℓF . These small eddies are still larger than the inner layer thickness ℓδ and

can therefore not penetrate into that layer. The non-dimensional thickness δ of the inner layer in a

premixed flame is typically one tenth, such that ℓδ is one tenth of the preheat zone thickness, which

is of the same order of magnitude as the flame thickness ℓF . Using Eq. (11.6) we see that the line

Kaδ = 1 corresponds with δ = 0.1 to Ka = 100. This value is used in Fig. 11.1 for the upper limit

of the thin reaction zones regime. It seems roughly to agree with the flamelet boundary obtained

in numerical studies by Poinsot et al. (1991) [5], where two-dimensional interactions between a

laminar premixed flame front and a vortex pair were analyzed. These simulations correspond to

Ka = 180 for cases without heat loss and Ka = 25 with small heat loss. The authors argued that

since quenching by vortices occurs only for larger Karlovitz numbers, the region below the limiting

value of the Karlovitz number should correspond to the flamelet regime.

We will now enter into a more detailed discussion of the two flamelet regimes. In the regime of

corrugated flamelets there is a kinematic interaction between turbulent eddies and the advancing

laminar flame. Here we have with Ka < 1

v′ ≥ sL ≥ vη. (11.8)

To determine the size of the eddy that interacts locally with the flame front, we set the turn-over
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Figure 11.1: Kinematic interaction between a propagating flame front and an eddy of the size
ℓn = ℓG. The dashed line marks the thickness of the preheat zone.

velocity vn in Eq. (10.43) equal to the burning velocity sL. This determines the corresponding

length ℓn as the Gibson scale (cf. Peters (1986) [2])

ℓG =
s3L
ε
. (11.9)

Only eddies of size ℓG, which have a turnover velocity vn = sL can interact with the flame front.

This is illustrated in Fig. 11.2. Since the turn-over velocity of the large eddies is larger than

the laminar burning velocity, these eddies will push the flame front around, causing a substantial

corrugation. Smaller eddies of size ℓn < ℓG having a turnover velocity smaller than sL will not even

be able to wrinkle the flame front. Replacing ε by v′3/ℓ one may also write Eq. (11.9) in the form

ℓG
ℓ

=
(sL
v′

)3
. (11.10)
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Figure 11.2: Kinematic interaction between a propagating flame front and an eddy of the size
ℓn = ℓG. The dashed line marks the thickness of the preheat zone.

A graphical derivation of the Gibson scale ℓG within the inertial range is shown in Fig. 11.3. Here,

following Kolmogorov scaling in the inertial range given by Eq. (10.43), the logarithm of the velocity

vn is plotted over the logarithm of the length scale ℓn. We assume v′ and ℓ and thereby ε, and also

ν and thereby vη and η to be fixed. If one enters on the vertical axis with the burning velocity sL

equal to vn into the diagram, one obtains ℓG as the corresponding length scale on the horizontal

axis. The laminar flame thickness ℓF , which is smaller than η in the corrugated flamelets regime

is also shown. This diagram illustrates the limiting values of ℓG: If the burning velocity is equal

to v′, ℓG is equal to the integral length scale ℓ. This case corresponds to the borderline between

corrugated and wrinkled flamelets in Fig. 11.1. Conversely, if sL is equal to the Kolmogorov velocity

vη, ℓG is equal to η, which corresponds to the line Ka = 1 in Fig. 11.1.

It has been shown by Peters (1992) [6] that the Gibson scale ℓG is the lower cut-off scale of the

scalar spectrum function in the corrugated flamelets regime. At that cut-off there is only a weak

change of slope in the scalar spectrum function. This is the reason why the Gibson scale is difficult
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to measure. The stronger diffusive cut-off occurs at the Obukhov-Corrsin scale defined by

ℓC =

(
D3

ε

)1/4

. (11.11)

Since we have assumed D = ν this scale is equal to the Kolmogorov scale η.

The next flamelet regime in Fig. 11.1 is the regime of thin reaction zones. As noted earlier,

since η < ℓF in this regime, small eddies can enter into the preheat zone and increase scalar

mixing, but they cannot penetrate into the inner layer since η > ℓδ. The burning velocity is smaller

than the Kolmogorov velocity which would lead to a Gibson scale that is smaller than η. Therefore

the Gibson scale has no meaning in this regime.

A time scale, however, can be used in the thin reaction zones regime to define a characteristic

length scale using Kolmogorov scaling in the inertial range. That time scale should represent the

response of the thin reaction zone and the surrounding diffusive layer to unsteady perturbations.

The appropriate time is the as the flame time tF . Combining tF with the diffusivity D, the resulting

diffusion thickness ℓD

ℓD =
√
D tF (11.12)

is then of the order of the flame thickness ℓF . By setting tn = tF in Eq. (10.45), one obtains the

length scale

ℓm = (εt3F )
1/2. (11.13)

An appropriate interpretation is that of a mixing length scale, which has been advocated based on

the concept of thin reaction zones by Peters (1999) [7]. It is the size of an eddy within the inertial

range which has a turnover time equal to the time needed to diffuse scalars over a distance equal

to the diffusion thickness ℓD. During its turnover time an eddy of size ℓm will interact with the

advancing reaction front and will be able to transport preheated fluid from a region of thickness ℓD

in front of the reaction zone over a distance corresponding to its own size. This is schematically

shown in Fig. 11.4. Much smaller eddies will also do this but since their size is smaller, their

action will be masked by eddies of size ℓm. Larger eddies have a longer turn-over time and would

therefore be able to transport thicker structures than those of thickness ℓD. They will therefore

corrugate the broadened flame structure at scales larger than ℓm. The physical interpretation of

ℓm is therefore that of the maximum distance that preheated fluid can be transported ahead of the

flame. As a mixing length scale ℓm had already been identified by Zimont (1979) [8].

Differently from the Gibson length scale the mixing length scale can be observed experimen-
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Figure 11.3: Graphical illustration of the Gibson scale ℓG within the inertial range for the corrugated
flamelets regime.

tally. Changes of the instantaneous flame structure with increasing Karlovitz numbers have been

measured by Buschmann et al. (1996) [9] who used 2D-Rayleigh thermometry combined with

2D laser-induced fluorescence on a turbulent premixed Bunsen flame. They varied the Karlovitz

number between 0.03 and 13.6 and observed at Ka > 5 thermal thicknesses that largely exceed

the size of the smallest eddies in the flow.

The derivation of ℓm also is illustrated in a diagram in Fig. 11.5, showing Eq. (10.45) in a

log-log plot of tn over ℓn. If one enters the time axis at tF = tn, the mixing length scale ℓm on the

length scale axis is obtained. If tF is equal to the Kolmogorov time tη, Fig. 11.5 shows that ℓm is

equal to the Kolmogorov scale η. In this case, one obtains ℓm = ℓD ≈ ℓF at the border between

the thin reaction zones regime and the corrugated flamelets regime. Similarly, from Fig. 11.5, if

the flame time tF is equal to the integral time τ = k/ε ≈ ℓ/v′, ℓm is equal to the integral length

scale. This corresponds to Da = 1, which Borghi (1985) [1] interpreted as the borderline between

two regimes in turbulent combustion. However, it merely sets a limit for the mixing scale ℓm which

cannot increase beyond the integral scale ℓ.
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Figure 11.4: Transport of preheated gas from a region of thickness ℓD by an eddy of size ℓn = ℓm
during half a turnover time tn = tq.

The diffusion thickness ℓD, lying between η and ℓm, is also marked in Fig. 11.5. There also

appears the Obukhov-Corrsin scale ℓC , which is the lower cut-off scale of the scalar spectrum in

the thin reaction zones regime. Since we have assumed ν = D, the Obukhov-Corrsin scale ℓC is

equal to the Kolmogorov length scale η.

As a final remark related to the corrugated flamelets regime and the thin reaction zones regime,

it is important to realize that turbulence in high Reynolds number turbulence is intermittent and

the dissipation ε has a statistical distribution. This refinement of Kolmogorov’s theory has led to

the notion of intermittency or “spottiness” of the activity of turbulence in a flow field (cf. Monin

and Yaglom (1975) [10]). This may have important consequences on the physical appearance

of turbulent flames at sufficiently large Reynolds numbers. One may expect that the flame front

shows manifestations of strong local mixing by small eddies as in the thin reaction zones regime

as well as rather smooth regions where corrugated flamelets appear. The two regimes discussed
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Figure 11.5: Graphical illustration of the mixing scale ℓm within the inertial range for the thin reac-
tion zones regime.

above may therefore both be apparent in the same experimentally observed turbulent flame.

Beyond the line Kaδ = 1 there is a regime called the broken reaction zones regime where

Kolmogorov eddies are smaller than the inner layer thickness ℓδ. They may therefore enter into

the inner layer and perturb it with the consequence that chemistry breaks down locally due to

enhanced heat loss to the preheat zone followed by temperature decrease and the loss of radicals.

When this happens the flame will extinguish and fuel and oxidizer will interdiffuse and mix at lower

temperatures where combustion reactions have ceased.

In a series of papers Mansour et al. (1992) [11], Chen et al. (1996) [12], Chen and Mansour

(1997) [13] and Mansour et al. (1998) [14] have investigated highly stretched premixed flames on

a Bunsen burner, which were surrounded by a large pilot. Among the flames F1, F2 and F3 that

were investigated, the flame F1 with an exit velocity of 65m/s was close to total flame extinction

which occured on this burner at 75m/s. A photograph of the flame is shown in Chen et al. (1996)

[12]. Mansour (1999) [15] has reviewed the recent results obtained from laser-diagnostics applied
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Figure 11.6: Line cuts of one-dimensional temperature and CH concentration profiles in the images
presented in Mansour et al. (1998).

to turbulent premixed and partially premixed flames.

Mansour et al. (1998) [14] have shown that the flame F1 is on the borderline to the broken

flamelets regime in Fig. 11.1 having a Karlovitz number of Ka = 91. In simultaneous temperature

and CH measurements shown in Fig. 11.6 they found a thin reaction zone, as deduced from the

CH profile and steep temperature gradients in the vicinity of that zone. There also was evidence

of occasional extinction of the reaction zone. This corresponds to instantaneous shots where the

CH profile was absent as in the picture on the upper r.h.s. in Fig. 11.6. Such extinction events

do not occur in the flame F3 which has a Karlovitz number of 23 and is located in the middle

of the thin reaction zones regime. It can be expected that local extinction events would appear

more frequently, if the exit velocity is increased and the flame enters into the broken reaction

zones regime. This will occur at an exit velocity close to 75m/s so frequently that the entire flame

extinguishes. Therefore one may conclude that in the broken reaction zones regime a premixed

flame is unable to survive.

The pictures in Fig. 11.6 also show strong perturbations of the temperature profile on the

193



unburnt side of the reaction zone. This is most evident in the picture on the lower l.h.s., where

the temperature reaches more than 1100K but falls back to 800K again. This seems to be due to

small eddies that enter into the preheat zone and confirms the concept of the thin reaction zones

regime.

11.2 Regimes in Premixed Combustion LES

A similar diagram as in Fig. 11.1 can be constructed for LES using the filter size ∆ as the length

scale and the subfilter velocity fluctuation v′∆ as the velocity scale. Such a representation intro-

duces both physical and modeling parameters into the diagram. A change in the filter size, how-

ever, also leads to a change in the subfilter velocity fluctuation. This implies that the effect of the

filter size, which is a numerical or model parameter, cannot be studied independently. In response

to this issue, an LES regime diagram for characterizing subfilter turbulence/flame interactions in

premixed turbulent combustion was proposed by Pitsch & Duchamp de Lageneste (2002) [16],

and recently extended by Pitsch (2005) [17]. This diagram is shown in Fig. 11.7. In contrast to the

RANS regime diagrams, ∆/ℓF and the Karlovitz number Ka are used as the axes of the diagram.

The Karlovitz number, defined as the ratio of the Kolmogorov timescale to the chemical timescale,

describes the physical interaction of flow and combustion on the smallest turbulent scales. It is

defined solely on the basis of physical quantities, and is hence independent of the filter size.

The subfilter Reynolds and Damköhler numbers and the Karlovitz number relevant in the dia-

gram are defined as

Re∆ =
v′∆∆

sLℓF
, Da∆ =

sL∆

v′∆ℓF
, and Ka =

ℓ2F
η2

=
(v′3∆ℓF
s3L∆

)1/2
(11.14)

where η is the Kolmogorov scale.

In LES, the Karlovitz number is a fluctuating quantity, but for a given flow field and chemistry

it is fixed. The effect of changes in filter size can therefore easily be assessed at constant Ka

number. An additional benefit of this regime diagram is that it can be used equally well for DNS if

∆ is associated with the mesh size. In the following, the physical regimes are briefly reviewed and

relevant issues for LES are discussed.

The three regimes with essentially different interactions of turbulence and chemistry are the

corrugated flamelet regime, the thin reaction zones regime, and the broken reaction zones regime.

In the corrugated flamelet regime, the laminar flame thickness is smaller than the Kolmogorov
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Figure 11.7: Regime diagram for large-eddy simulation (LES) and direct numerical simulation of
premixed turbulent combustion (Pitsch (2006) [18]). Conditions for the simulation correspond to
flame F3 of Chen et al. (1996). Courtesy of [18].

scale, and hence Ka < 1. Turbulence will therefore wrinkle the flame, but will not disturb the

laminar flame structure. In the thin reaction zones regime, the Kolmorogov scale becomes smaller

than the flame thickness, which implies Ka > 1. Turbulence then increases the transport within the

chemically inert preheat region. In this regime, the reaction zone thickness ℓδ is still smaller than

the Kolmogorov scale. Because the reaction zone, which appears as a thin layer within the flame,

can be estimated to be an order of magnitude smaller than the flame thickness, the transition to the

broken reaction zones regime occurs at approximately Ka = 100. The thin reaction zone retains

a laminar structure in the thin reaction zones regime, whereas the preheat region is governed

by turbulent mixing, which enhances the burning velocity. In the broken reaction zones regime,

the Kolmogorov scale becomes smaller than the reaction zone thickness. This implies that the

Karlovitz number based on the reaction zone thickness, Kaδ , becomes larger than one.

Most technical combustion devices are operated in the thin reaction zones regime, because

mixing is enhanced at higher Ka numbers, which leads to higher volumetric heat release and

shorter combustion times. The broken reaction zones regime is usually avoided in fully premixed
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systems. In this regime, mixing is faster than the chemistry, which leads to local extinction. This

can cause noise, instabilities, and possibly global extinction. However, the broken reaction zones

regime is significant, for instance, in partially premixed systems. In a lifted jet diffusion flame,

the stabilization occurs by partially premixed flame fronts, which burn fastest at conditions close

to stoichiometric mixture. Away from the stoichiometric surface toward the center of the jet, the

mixture is typically very rich and the chemistry slow. Hence, the Ka number becomes large. This

behavior has been found in the analysis of DNS results of a lifted hydrogen/air diffusion flame

(Mizobuchi et al. (2002) [19]).

The effect of changing the LES filter width can be assessed by starting from any one of these

regimes at large ∆/ℓF . As the filter width is decreased, the subfilter Reynolds number, Re∆,

eventually becomes smaller than one. Then the filter size is smaller than the Kolmogorov scale,

and no subfilter modeling for the turbulence is required. However, the entire flame including the

reaction zone is only resolved if ∆ < δ. In the corrugated flamelets regime, if the filter is decreased

below the Gibson scale ℓG, which is the smallest scale of the subfilter flame-front wrinkling, the

flame-front wrinkling is completely resolved. It is apparent that in the corrugated flamelet regime,

where the flame structure is laminar, the entire flame remains on the subfilter scale, if ∆/ℓF is

larger than one. This is always the case for LES. In the thin reaction zones regime, the preheat

region is broadened by the turbulence. Peters (1999) [7] estimated the broadened flame thickness

from the assumption that the timescale of the turbulent transport in the preheat zone has to be

equal to the chemical timescale, which for laminar flames leads to the burning velocity scaling

given in the beginning of this section. From this, the ratio of the broadened flame thickness ℓm and

the filter size can be estimated as (Pitsch (2006) [18])

ℓm
∆

=
(v′∆ℓF
sL∆

)3/2
= Ka

ℓF
∆

= Da
−3/2
∆ . (11.15)

Hence, the flame is entirely on the subfilter scale as long as Da∆ > 1, and is partly resolved

otherwise. It is important to realize that the turbulence quantities, especially v′∆, and hence most of

the nondimensional numbers used to characterize the flame/turbulence interactions, are fluctuating

quantities and can significantly change in space and time. To give an example, the variation of

these quantities from a specific turbulent stoichiometric premixed methane/air flame simulation is

shown in Fig. 11.7. This simulation was done for an experimental configuration with a nominal Ka

number of Ka = 11, based on experimentally observed integral scales. The simulated conditions

correspond to flame F3 of Chen et al. (1996) [12], and details of the simulation can be found in
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Pitsch & Duchamp de Lageneste (2002) [20]. For a given point in time, the Ka number has been

evaluated using appropriate subfilter models for all points on the flame surface. Because of the

spatially varying filter size, but also because of heat losses to the burner, which locally lead to

changes in ℓF , there is a small scatter in ∆/ℓF . Although the flame is mostly in the thin reaction

zones regime, there is a strong variation in Ka number, ranging from the corrugated to the broken

reaction zones regime.
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Lecture 12

The Level Set Approach for

Turbulent Premixed Combustion

A model for premixed turbulent combustion, based on the non-reacting scalar G rather than on the

progress variable, has been developed in recent years. It avoids complications associated with

counter-gradient diffusion and, since G is non-reacting, there is no need for a source term closure.

An equation for G can be derived by considering an iso-scalar surface

G(x, t) = G0. (12.1)

As shown in Fig. 12.1 this surface divides the flow field into two regions where G > G0 is the

region of burnt gas and G < G0 is that of the unburnt mixture. The choice of G0 is arbitrary, but

fixed for a particular combustion event. This is called the level set approach (cf. Sethian (1996)

[1]).

We introduce the vector normal to the front in direction of the unburnt gas, as shown in Fig.

12.1, by

n = − ∇G

|∇G| . (12.2)

In a general three-dimensional flow field the propagation velocity dxf/dt of the front is equal to the

sum of the flow velocity and the burning velocity in normal direction

dxf

dt
= vf + n sL. (12.3)
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Figure 12.1: A schematic representation of the flame front as an iso-scalar surface G(x, t) = G0.

A field equation can now be derived by differentiating Eq. (12.1) with respect to t

∂G

∂t
+∇G· dxf

dt
= 0 (12.4)

and by introducing Eq. (12.3) and ∇G = −n|∇G| to obtain the field equation

∂G

∂t
+ vf ·∇G = sL|∇G|. (12.5)

This equation was introduced by Williams (1985b) [2] and is known as the G-equation in the com-

bustion literature. It is applicable to thin flame structures which propagate with a well-defined

burning velocity. It therefore is well-suited for the description of premixed turbulent combustion in

the corrugated flamelets regime, where it is assumed that the laminar flame thickness is smaller

than the smallest turbulent length scale, the Kolmogorov scale. Therefore, the entire flame struc-

ture is embedded within a locally quasi-laminar flow field and the laminar burning velocity remains

well-defined. Eq. (12.5) contains a local and a convective term on the l.h.s, a propagation term with

the burning velocity sL on the r.h.s but no diffusion term. G is a scalar quantity which is defined at

the flame surface only, while the surrounding G-field is not uniquely defined. This originates simply

from the fact that the kinematic balance Eq. (12.3) describes the dynamics of a two-dimensional

surface while the G-equation Eq. (12.5) is an equation in three-dimensional space. In this respect

G(x, t) differs fundamentally from the mixture fraction Z(x, t) used in nonpremixed combustion,

which is a conserved scalar that is well defined in the entire flow field.
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The distance xn from the flame surface in normal direction, however, can be uniquely defined

by introducing its differential increase towards the burnt gas side by

dxn = −n·dx =
∇G

|∇G| ·dx. (12.6)

Here dx is a differential vector pointing from the front to its surroundings, as shown in Fig. 12.1. If

we consider a frozen G-field, a differential increase of the G-level is given by

dG = ∇G·dx. (12.7)

Introducing this into Eq. (12.6) it is seen that the differential increase dxn is related to dG by

dxn =
dG

|∇G| . (12.8)

In the following the absolute value of the gradient of G at G(x, t) = G0 will be denoted by

σ = |∇G|. (12.9)

Its value depends on the ansatz that is introduced in solving a particular problem using the G-

equation.

For illustration purpose we choose as ansatz for the G-field

G(x, t)−G0 = x+ F (y, z, t). (12.10)

Thereby the flame front displacement F (y, z, t) is assumed to be a single-valued function of y and

z as shown for the two-dimensional case in Fig. 12.2. This assumption does not allow for multiple

crossings of the flame surface. Note that x is the co-ordinate normal to the mean flame surface. In

Fig. 12.2 G is measured in x-direction. It is also seen that the angle β between the flame normal

direction −n and the x-axis is equal to the angle between the tangential direction t and the y-axis.

In the corrugated flamelets regime the reactive-diffusive flame structure is assumed to be thin

compared to all length scales of the flow. Therefore it may be approximated by a jump of tem-

perature, reactants and products. For such a very thin flame structure the iso-scalar surface

G(x, t) = G0 is often defined to lie in the unburnt mixture immediately ahead of the flame structure.

Since Eq. (12.5) was derived from Eq. (12.3), the velocity vf and the burning velocity sL are

values defined at the surface G(x, t) = G0. In numerical studies values for these quantities must
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Figure 12.2: Graphical interpretation of the G-field. The movement of the instantaneous flame
front position G = G0 is related to spatial fluctuations F .

be assigned in the entire flow field. The flow velocity vf can simply be replaced by the local flow

velocity v, a notation which we will adopt in the following.

The burning velocity sL appearing in Eqs. (12.3) and (12.5) may be modified to account for the

effect of flame stretch as already has been discussed in Lecture 4, Section 4.4. Performing two-

scale asymptotic analyses of corrugated premixed flames Pelce and Clavin (1982) [3] and Matalon

and Matkowsky (1982) [4] derived first order correction terms for small curvature and strain. The

expression for the modified burning velocity sL becomes

sL = s0L − s0LLκ− LS. (12.11)

Here s0L is the burning velocity of the unstretched flame, κ is the curvature and S is the strain rate.

The flame curvature κ is defined in terms of the G-field as

κ = ∇·n = ∇·
(
− ∇G

|∇G|

)
= −∇

2G− n·∇(n·∇G)

|∇G| , (12.12)

where ∇(|∇G|) = −∇(n·∇G) has been used. It is positive if the flame is convex with respect to
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the unburnt mixture. The strain rate imposed on the flame by velocity gradients is defined as

S = −n·∇v ·n. (12.13)

Strain due to flow divergence can be interpreted as stream line curvature. Since strain and

curvature have similar effects on the burning velocity they may be summarized as flame stretch (cf.

Matalon (1983) [5]). The concept of stretch was generalized to account for finite flame thickness

(cf. de Goey and Ten Thije Boonkhamp (1997) [6], de Goey et al. (1997) and Echekki (1997)

[7]). In these papers a quasi-one-dimensional analysis of the governing equations was performed

to identify different contributions to flame stretch. Experimental studies of stretched flames were

performed by Egolfopoulos et al. (1990a) [8], (1990b) [9], Erard et al. (1996) [10], Deshaies and

Cambray (1990) [11] and many others.

The Lewis number is approximately unity for methane flames and larger than unity for fuel-rich

hydrogen and all fuel-lean hydrocarbon flames other than methane. Therefore, since the first term

on the r.h.s. of Eq. (4.36)

Lu

ℓF
=

1

γ
ln

1

1− γ
+

Ze(Le− 1)

2

(1− γ)

γ

∫ γ/(1−γ)

0

ln(1 + x)

x
dx (12.14)

is always positive, the Markstein length is positive for most practical applications of premixed hy-

drocarbon combustion, occuring typically under stoichiometric or fuel-lean conditions. Whenever

the Markstein length is negative, as in lean hydrogen-air mixtures, diffusional-thermal instabilities

tend to increase the flame surface area. This is believed to be an important factor in gas cloud

explosions of hydrogen-air mixtures. Although turbulence tends to dominate such local effects

the combustion of diffusional-thermal instabilities and instabilities induced by gas expansion could

lead to strong flame accelerations.

If Eq. (12.11) is introduced into the G-equation Eq. (12.5) it may be written as

∂G

∂t
+ v ·∇G = s0L|∇G| − DLκ|∇G| − LS|∇G|. (12.15)

Here

DL = s0LL (12.16)

is defined as the Markstein diffusivity. The curvature term adds a second order derivative to the

G-equation. This avoids the formation of cusps that would result from Eq. (12.5) for a constant
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value s0L. If L > 0, the mathematical nature of Eq. (12.15) is that of a Hamilton-Jacobi equation

with a parabolic second order differential operator coming from the curvature term. While the

solution of the G-equation Eq. (12.5) with a constant s0L is solely determined by specifying the

initial conditions, the parabolic character of Eq. (12.15) requires that the boundary conditions for

each iso-surface G must be specified. For the iso-surface G(x, t) = G0 in particular, the flame

front position at the boundaries is that where the flame is anchored.

As an illustration of the level set approach, in Lecture 4 Section 4.3 we already presented an

examples of laminar flames to determine the flame front position by solving the G-equation.

12.1 The Level Set Approach for the Thin Reaction Zones Regim e

Eq. (12.15) is suitable for thin flame structures in the corrugated flamelets regime, where the

entire flame structure is quasi-steady and the laminar burning velocity is well defined, but not for

the thin reaction zones regime. We now want to derive a level set formulation for the case, where

the flame structure cannot be assumed quasi-steady because Kolmogorov eddies enter into the

preheat zone and cause unsteady perturbations. The resulting equation will be valid in the thin

reaction zones regime.

Since the inner layer shown in Fig. 6.1 is responsible for maintaining the reaction process alive,

we define the thin reaction zone as the inner layer. Its location will be determined by the iso-scalar

surface of the temperature setting T (x, t) = T 0, where T 0 is the inner layer temperature. We now

consider the temperature equation

ρ
∂T

∂t
+ ρv ·∇T = ∇·(ρD∇T ) + ωT , (12.17)

where D is the thermal diffusivity and ωT the chemical source term. Similar to Eq. (12.4) for the

scalar G the iso-temperature surface T (x, t) = T 0 satisfies the condition

∂T

∂t
+∇T · dx

dt

∣∣∣∣
T=T 0

= 0. (12.18)

Gibson (1968) [12] has derived an expression for the displacement speed sd for an iso-surface

of non-reacting diffusive scalars. Extending this result to the reactive scalar T this leads to

dx

dt

∣∣∣∣
T=T 0

= v0 + n sd, (12.19)
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where the displacement speed sd is given by

sd =

[
∇·(ρD∇T ) + ωT

ρ|∇T |

]
0. (12.20)

Here the index 0 defines conditions immediately ahead of the thin reaction zone. The normal

vector on the iso-temperature surface is defined as

n = − ∇T

|∇T |

∣∣∣∣
T=T 0

. (12.21)

We want to formulate a G-equation that describes the location of the thin reaction zones such that

the iso-surface T (x, t) = T 0 coincides with the iso-surface defined by G(x, t) = G0. Then the

normal vector defined by Eq. (12.21) is equal to that defined by Eq. (12.2) and also points towards

the unburnt mixture. Using Eqs. (12.2) and (12.4) together with Eq. (12.20) leads to

∂G

∂t
+ v ·∇G =

[
∇·(ρD∇T ) + ωT

ρ|∇T |

]
|∇G|, (12.22)

where the index 0 is omitted here and in the following for simplicity of notation.

Echekki and Chen (1999) [13] and Peters et al. (1998) [14] show that the diffusive term ap-

pearing in the brackets in this equation may be split into one term accounting for curvature and

another for diffusion normal to the iso-surface

∇·(ρD∇T ) = −ρD|∇T |∇·n+ n·∇(ρDn·∇T ). (12.23)

This is consistent with the definition of the curvature in Eq. (12.12) if the iso-surface G(x, t) = G0

is replaced by the iso-surface T (x, t) = T 0 and if ρD is assumed constant. Introducing Eq. (12.23)

into Eq. (12.22) one obtains

∂G

∂t
+ v ·∇G = (sn + sr)|∇G| −Dκ|∇G|. (12.24)

Here κ = ∇ ·n is to be expressed by Eq. (12.12) in terms of the G-field. The quantities sn and

sr are contributions due to normal diffusion and reaction to the displacement speed of the thin
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reaction zone and are defined as

sn =
n·∇(ρDn·∇T )

ρ|∇T | , (12.25)

sr =
ωT

ρ|∇T | . (12.26)

In a steady unstretched planar laminar flame the sum of sn and sr would be equal to the burning

velocity s0L. In the thin reaction zones regime, however, the unsteady mixing and diffusion of

chemical species and the temperature in the regions ahead of the thin reaction zone will influence

the local displacement speed. Then the sum of sn and sr, denoted by sL,s

sL,s = sn + sr, (12.27)

is not equal to s0L, but is a fluctuating quantity that couples the G-equation to the solution of the

balance equations of the reactive scalars. There is reason to expect, however, that sL,s is of the

same order of magnitude as the laminar burning velocity. The evaluation of DNS-data by Peters et

al. (1998) [14] confirms this estimate. In that paper it was also found that the mean values of sn

and sr slightly depend on curvature. This leads to a modification of the diffusion coefficient which

partly takes Markstein effects into account. We will ignore these modifications here and consider

the following level set equation for flame structures of finite thickness

∂G

∂t
+ v ·∇G = sL,s|∇G| −Dκ|∇G|. (12.28)

This equation is defined at the thin reaction zone and v, sL,s, and D are values at that position. Eq.

(12.28) is very similar to Eq. (12.15), which was derived for thin flame structures in the corrugated

flamelets regime. An important difference, apart from the difference between s0L and sL,s, is the

difference between DL and D and the disappearance of the strain term. The latter is implicitly

contained in the burning velocity sL,s.

In an analytical study of the response of one-dimensional constant density flames to time-

dependent strain and curvature, Joulin (1994) [15] has shown that in the limit of high frequency

perturbations the effect of strain disappears entirely and Lewis-number effects also disappear in

the curvature term such that DL approaches D. This analysis was based on one-step large acti-

vation energy asymptotics with the assumption of a single thin reaction zone. It suggests that Eq.

(12.28) could also have been derived from Eq. (12.15) for the limit of high frequency perturbations

of the flame structure. This strongly supports it as level set equation for flame structures of finite
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thickness and shows that unsteadiness of that structure is an important feature in the thin reaction

zones regime.

Since the derivation of Eq. (12.28) was based on the balance equation Eq. (12.17) for the

temperature, the diffusion coefficient is the thermal diffusivity. However, a similar derivation could

have been based on any other reactive scalar defining the position of the inner layer. Then the

diffusivity of that particular scalar would appear in Eq. (12.28). In order to obtain the same result

we therefore must assume equal diffusivities for all reactive scalars. Since the temperature plays a

particular role in combustion due to the strong temperature sensitivity of chemistry, the use of the

thermal diffusivity D is the appropriate.

The important difference between the level set formulation Eq. (12.28) and the equation for

the reactive scalar Eq. (12.17), from which it has been derived, is the appearance of a burning

velocity which replaces normal diffusion and reaction at the flame surface. It should be noted that

both level set equations, Eqs. (12.15) and (12.28), are only defined at the flame surface, while Eq.

(12.17) is valid in the entire field.

12.2 A Common Level Set Equation for Both Regimes

It has been anticipated that the two different formulations Eqs. (12.15) and (12.28) of the G-

equation apply to different regimes in premixed turbulent combustion, namely to the corrugated

flamelets regime and the thin reaction zones regime of Fig. 11.1, respectively. In order to show

this we will analyze the order of magnitude of the different terms in (12.28). This can be done

by normalizing the independent variables and the curvature in this equation with respect to Kol-

mogorov length, time and velocity scales

t∗ = t/tη , x∗ = x/η , v∗ = v/vη ,

κ∗ = ηκ , ∇
∗ = η∇.

(12.29)

Using η2/tη = ν one obtains

∂G

∂t∗
+ v∗ ·∇∗G =

sL,s

vη
|∇∗G| − D

ν
κ∗|∇∗G|, (12.30)

where the density ρ has been canceled. Since Kolmogorov eddies can perturb the flow field as

well as the G-field, all derivatives, the curvature and the velocity v∗ are typically of order unity. In
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flames D/ν is also of order unity. However, since sL,s is of the same order of magnitude as sL,

the definition Eq. (11.4) shows that the ratio sL,s/vη is proportional to Ka−1/2. Since Ka > 1 in the

thin reaction zones regime it follows that

sL,s < vη (12.31)

in that regime. The propagation term therefore is small and the curvature term will be dominant.

Relative small mean values of sL,s may, for instance, result from instantaneously negative values

of the burning velocity. Even though wrinkling of the reaction zone by small eddies leading to large

local curvatures is an important feature, it is the enhanced mixing within the preheat zone that

is responsible for the advancement of the front. On the contrary, as can be shown by a similar

analysis of Eq. (12.15) in the corrugated flamelets regime where Ka < 1 and therefore

s0L > vη, (12.32)

the propagation term s0L σ is dominant in Eq. (12.15) and the curvature and strain terms are of

higher order.

We want to base the following analysis on an equation which contains only the leading order

terms in both regimes. Therefore we take the propagation term with a constant laminar burning ve-

locity s0L from the corrugated flamelets regime and the curvature term multiplied with the diffusivity

D from the thin reaction zones regime. The strain term LS in the G-equation Eq. (12.15) will be

neglected in both regimes. Since the Markstein length L is of the order of the flame thickness, this

term is unimportant in the corrugated flamelets regime, where L is smaller than the Kolmogorov

scale. A term called scalar-strain co-variance resulting from this term is effective in the diffusive

subrange of the scalar spectrum only (cf. Peters (1992) [16]). It therefore does not interact with the

turbulent part of the spectrum and is unimportant for leading order scaling arguments required for

turbulent closure. In the thin reaction zone regime there is no quasi-steady laminar flame structure

and a Markstein length cannot be defined.

The leading order equation valid in both regimes then reads

ρ
∂G

∂t
+ ρv ·∇G = (ρs0L)σ − (ρD)κσ. (12.33)

For consistency with other field equations that will be used as a starting point for turbulence mod-

eling, we have multiplied all terms in this equation with ρ. This will allow to apply Favre averaging
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to all equations. Furthermore, we have set (ρs0L) constant and denoted this by paranthesis. This

takes into account that the mass flow rate (ρs0L) through a planar steady flame is constant as

shown by Eq. (4.19). The paranthesis of (ρD) also denote that this product was assumed con-

stant in deriving Eq. (12.23). There it was defined at T 0, and since ρD = λ/cp, it is equal to (λ/cp)0

used in the definition of the flame thickness in Eq. (5.28). With that definition the last term in Eq.

(12.33) can also be expressed as (ρs0L)ℓFκσ. Again, Eq. (12.33) is defined at the flame surface

G(x, t) = G0 only.

12.3 Modeling Premixed Turbulent Combustion Based on the

Level Set Approach

If the G-equation is to be used as a basis for turbulence modeling, it is convenient to ignore at

first its non-uniqueness outside the surface G(x, t) = G0. Then the G-equation would have similar

properties as other field equations used in fluid dynamics and scalar mixing. This would allow to

define, at point x and time t in the flow field, a probability density function P (G;x, t) for the scalar

G. From P (G;x, t) the first two moments of G, the mean and the variance, can be calculated as

G(x, t) =

∫ +∞

−∞

GP (G;x, t)dG , (12.34)

G′2(x, t) =

∫ +∞

−∞

(G−G)2P (G;x, t)dG. (12.35)

If modeled equations for these two moments are formulated and solved, one could, for instance,

use the presumed shape pdf approach to calculate P (G;x, t) by presuming a two-parameter shape

function. However, since G is only defined at the flame front, P (G;x, t) and its moments carry the

non-uniqueness of its definition outside G(x, t) = G0.

There is, nevertheless, a quantity that is well-defined and of physical relevance, which may be

derived from P (G;x, t). This is the probability density of finding the flame surface G(x, t) = G0 at

x and t given by

P (G0,x, t) =

∫ +∞

−∞

δ(G−G0)P (G;x, t)dG = P (x, t). (12.36)

This quantity can be measured, for instance, by counting the number of flame crossings in a small

volume ∆V located at x over a small time difference ∆t.

In Figs. 12.3 and 12.4 two experimental examples of this pdf are shown. The pdf P (G′) in
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Figure 12.3: Probability density function of flame front fluctuations in an internal combustion en-
gine. —— Gaussian distribution. Measurements by Wirth et al. (1993) [17].

Fig. 12.3 was obtained by Wirth et al. (1993) [17] by evaluating photographs of the flame front in

the transparent spark-ignition engine. Smoke particles, which burnt out immediately in the flame

front, were added to the unburnt mixture. Thereby the front could be visualized by a laser sheet

as the borderline of the region where Mie scattering of particles could be detected. Experimental

details may be found in Wirth and Peters (1992) [19] and Wirth et al. (1993) [17]. The pdf P (G′)

represents the pdf of fluctuations around the mean flame contour of several instantaneous images.

By comparing the measured pdf in Fig. 12.3 with a Gaussian distribution it is seen to be slightly

skewed to the unburnt gas side. This is due to the non-symmetric influence of the laminar burning

velocity on the shape of the flame front: there are rounded leading edges towards the unburnt

mixture, but sharp and narrow troughs towards the burnt gas.

This non-symmetry is also found in the experimental pdfs shown in Fig. 12.4. Plessing et al.

(1999) [18] have measured the probability density of finding the flame surface in steady turbulent

premixed flames on a weak swirl burner. The flames were stabilized nearly horizontally on the

burner thus representing one-dimensional steady turbulent flames. The pdfs were obtained by

averaging over 300 temperature images obtained from Rayleigh scattering. The three profiles of

P (x), shown in Fig. 12.4, for three velocity ratios v′/sL, nearly coincide and are slightly skewed

towards the unburnt gas side.
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Figure 12.4: The probability density of finding the instantaneous flame front at the axial position
x in a turbulent flame stabilized on a weak swirl burner (Measurements by Plessing et al. (1999)
[18].

Without loss of generality, we now want to consider, for illustration purpose, a one-dimensional

steady turbulent flame propagating in x-direction. We will analyze its structure by introducing the

flame-normal coordinate x, such that all turbulent quantities are a function of this coordinate only.

Then the pdf of finding the flame surface at a particular location x within the flame brush simplifies

to P (G0;x) which we write as P (x). We normalize P (x) by

∫ +∞

−∞

P (x)dx = 1 (12.37)

and define the mean flame position xf as

xf =

∫ +∞

−∞

xP (x)dx. (12.38)

The turbulent flame brush thickness ℓF,t can also be defined using P (x). With the definition of the

variance

(x− xf )2 =

∫ +∞

−∞

(x− xf )P (x)dx (12.39)
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a plausible definition is

ℓF,t =
(
(x − xf )2

)1/2
. (12.40)

We note that from P (x) two important properties of a premixed turbulent flame, namely the mean

flame position and the flame brush thickness can be calculated.

The G-equation has been used in a number of papers to investigate quantities relevant to

premixed turbulent combustion. An early review was given by Ashurst (1994) [20]. Kerstein et al.

(1988) [21] have performed direct numerical simulations of Eq. (12.5) in a cubic box assigning

a stationary turbulent flow field and constant density. The constant density assumption has the

advantage that the flow field is not altered by gas expansion effects. The gradient ∂G/∂x in

direction of mean flame propagation was fixed equal to unity and cyclic boundary conditions in the

two other directions were imposed. In this formulation all instantaneous G-levels can be interpreted

as representing different flame fronts. Therefore G0 was considered as a variable and averages

over all G-levels were taken in order to show that for large times the mean gradient σ̄ can be

interpreted as the flame surface area ratio.

Peters (1992) [16] considered turbulent modeling of the G-equation in the corrugated flamelets

regime and derived Reynolds-averaged equations for the mean and the variance of G. Constant

density was assumed and G and the velocity v were split into a mean and a fluctuation. The main

sink term in the variance equation resulted from the propagation term s0L|∇G| = s0Lσ in Eq. (12.15)

and was defined as

ω = −2 s0LG
′σ′. (12.41)

The quantity ω was called kinematic restoration in order to emphasize the effect of local laminar

flame propagation in restoring theG-field and thereby the flame surface. Corrugations produced by

turbulence, which would exponentially increase the flame surface area with time of a non-diffusive

iso-scalar surface are restored by this kinematic effect. Closure of this term was achieved by

deriving the scalar spectrum function of two-point correlations of G in the limit of large Reynolds

numbers. From that analysis resulted a closure assumption which relates ω to the variance G′2

and the integral time scale k/ε as

ω = cω
ε

k
G′2, (12.42)

where cω = 1.62 is a constant of order unity. This expression shows that kinematic restoration

plays a similar role in reducing fluctuations of the flame front as scalar dissipation does in reducing

fluctuations of diffusive scalars.

It was also shown by Peters (1992) [16] that kinematic restoration is active at the Gibson scale
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ℓG, since the cut-off of the inertial range in the scalar spectrum function occurs at that scale.

A dissipation term involving a positive Markstein diffusivity DL was shown to be effective at the

Obukhov-Corrsin scale ℓC and a term called scalar-strain co-variance was shown to be most ef-

fective at the Markstein length L . In the corrugated flamelets regime the Gibson scale ℓG is larger

than ℓC and L . Therefore these additional terms are higher order corrections, which, in view of the

order of magnitude assumptions used in turbulence modeling, will be neglected.

A similar analysis was performed by Peters (1999) [16] for the thin reaction zones regime. In

that regime the diffusion term in Eq. (12.28) is dominant as shown by the order of magnitude

analysis of Eq. (12.30). This leads to a dissipation term replacing kinematic restoration as the

leading order sink term in the variance equation. It is defined as

χ = 2D(∇G′)2. (12.43)

Closure of that term is obtained in a similar way as for non-reacting scalars and leads to

χ = cχ
ε

k
G′2. (12.44)

Below we will use the two closure relations Eqs. (12.42) and (12.43) as the basis for the modeling

of the turbulent burning velocity in the two different regimes.

12.4 Equations for the Mean and the Variance of G

In order to obtain a formulation that is consistent with the well-established use of Favre averages

in turbulent combustion, we split G and the velocity vector v into Favre means and fluctuations

G = G̃+G′′ , v = ṽ + v′′. (12.45)

Here G̃ and ṽ are at first viewed as unconditional averages. At the end, however, only the respec-

tive conditional averages are of interest. Since in a turbulent flame G was interpreted as the scalar

distance between the instantaneous and the mean flame front, evaluated at G(x, t) = G0, the

Favre mean G̃ = ρG/ρ̄ represents the Favre average of that distance. If G(x, t) = G0 is defined to

lie in the unburnt mixture immediately ahead of the thin flame structure, as often assumed for the

corrugated flamelets regime, the density at G(x, t) = G0 is constant equal to ρu. Similarly, if it is

an iso-temperature surface, as assumed for the thin reaction zones regime, changes of the density
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along that surface are expected to be small. In both cases the Favre average G̃ is approximately

equal to the conventional mean value G. Using Favre averages rather than conventional aver-

ages, which might have appeared more appropriate for a non-conserved quantity like the scalar

G, therefore has no practical consequences.

Using a number of closure assumptions described in Peters (2000) [22], one finally obtains the

following equations for the Favre near and variance of G.

ρ̄
∂G̃

∂t
+ ρ̄ṽ ·∇G̃ = (ρ̄s0T )|∇G̃| − ρ̄Dtκ̃|∇G̃|, (12.46)

ρ̄
∂G̃′′2

∂t
+ ρ̄ṽ ·∇G̃′′2 = ∇|| ·(ρ̄Dt∇||G̃′′2) + 2ρ̄Dt(∇G̃)2 − csρ̄

ε̃

k̃
G̃′′2. (12.47)

It is easily seen that Eq. (12.46) has the same form as Eq. (12.33) and therefore shares its

mathematical properties. It also is valid at G̃(x, t) = G0 only, while the solution outside of that

surface depends on the ansatz for G̃(x, t) that is introduced. The same argument holds for Eq.

(12.47) since the variance is a property of the flame front. The solution of that equation will provide

the conditional value (G̃′′2)0 at the mean flame surface G̃(x, t) = G0. Following Eq. (12.40), its

square root is a measure of the flame brush thickness ℓF,t, which for an arbitrary value of |∇G̃| at

the front, will be defined as

ℓF,t =
(G̃′′2(x, t))1/2

|∇G̃|

∣∣∣∣∣
G̃=G0

. (12.48)

In order to solve Eq. (12.46), a model for the turbulent burning velocity s0T must be provided.

A first step would be to use empirical correlations from the literature. Alternatively, a modeled

balance equation for the mean gradient σ̄ will be derived. According to [21] σ̄ represents the flame

surface area ratio, which is proportional to the turbulent burning velocity.

Example 12.1

An Example Solution for the Turbulent Flame Brush Thickness

For illustration purpose we want to solve the variance equation for a one-dimensional unsteady

planar flame using |∇G̃| = 1. We pose the problem such that at time t = 0 a one-dimensional

steady laminar flame with flame thickness ℓF is already present and that the laminar flow is sud-

denly replaced by a fully developed turbulent flow field. We assume that the turbulence quantities

Dt, k̃ and ε̃ are constant, independent of time. Since the flame is planar and, furthermore, since

the variance must not depend on the coordinate normal to the mean flame, if it is supposed to
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Figure 12.5: Time evolution of the turbulent flame brush thickness ℓF,t normalized by the integral
length scale ℓ. the time t is normalized by the integral time scale τ = k/ε.

represent the conditional variance, all gradients of G̃′′2 must vanish. Therefore, the convective and

diffusive terms in Eq. (12.47) disappear entirely.

For modeling purposes we will use a turbulent Schmidt number Sct = νt/Dt = 0.7 and the

empirical relations given in Tab. 13.1 of Lecture 13 below. They follow from Eqs. (10.29) and

(10.38) and relate k̃, ε̃ and Dt to v′, ℓ and τ . Non-dimensionalizing the time in Eq. (12.47) by

the integralime scale τ = k̃/ε̃, the variance equation becomes an equation for the turbulent flame

brush thickness
∂ℓ2F,t

∂(t/τ)
= 2 a3a4 ℓ

2 − csℓ
2
F,t (12.49)

which has the solution

ℓ2F,t = b22 ℓ
2 [1− exp(−cst/τ)] + ℓ2F exp(−cst/τ) (12.50)

where b2 = (2a3a4/cs)
1/2 = 1.78 for cs = 2.0. Here ℓF was used as initial value. In the limit

ℓF /ℓ→ 0 one obtains

ℓF,t = b2 ℓ[1− exp(−cst/τ)]1/2. (12.51)
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The unsteady development of the flame brush thickness in this limit is shown in Fig. 12.5. For

large times it becomes proportional to the integral length scale ℓ.
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Lecture 13

The Turbulent Burning Velocity

13.1 The Turbulent Burning Velocity

One of the most important unresolved problems in premixed turbulent combustion is that of the

turbulent burning velocity. This statement implies that the turbulent burning velocity is a well-

defined quantity that only depends on local mean quantities. The mean turbulent flame front is

expected to propagate with that burning velocity relative to the flow field. Gas expansion effects

induced at the mean front will change the surrounding flow field and may generate instabilities in

a similar way as flame instabilities of the Darrieus-Landau type are generated by a laminar flame

front (cf. Clavin (1985) [1]).

Damköhler (1940) [2] was the first to present theoretical expressions for the turbulent burning

velocity. He identified two different regimes of premixed turbulent combustion which he called large

scale and small scale turbulence. We will identify these two regimes with the corrugated flamelets

regime and the thin reaction zones regime, respectively.

Damköhler equated the mass flux ṁ through the instantaneous turbulent flame surface area

AT with the mass flux through the cross sectional area A, using the laminar burning velocity sL for

the mass flux through the instantaneous surface and the turbulent burning velocity sT for the mass

flux through the cross-sectional area A as

ṁ = ρusLAT = ρ̄usTA. (13.1)

This is schematically shown in Fig. 13.1. In Eq. (13.1) the burning velocities sL and sT are defined
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with respect to the conditions in the unburnt mixture and the density ρu is assumed constant. From

that equation it follows that the burning velocity ratio sT /sL is equal to the flame surface area ratio

AT /A
sT
sL

=
AT

A
. (13.2)

Since only continuity is involved, averaging of the flame surface area can be performed at any

length scale ∆ within the inertial range. If ∆ is interpreted as a filter width one obtains a filtered

flame surface area ÂT . Eq. (13.1) then implies that the product of the filtered burning velocity ŝT

and a filtered area Â is also equal to sLAT and to sTA

sLAT = ŝT ÂT = sTA. (13.3)

This shows that the product ŝT Â is inertial range invariant, similar to dissipation in the inertial range

of turbulence. As a consequence, by analogy to the large Reynolds number limit used in turbulent

modeling, the additional limit of the ratio of the turbulent to the laminar burning velocity for large

values of v′/sL is the backbone of premixed turbulent combustion modeling.

For large scale turbulence, Damköhler (1940) [2] assumed that the interaction between a wrin-

kled flame front and the turbulent flow field is purely kinematic. Using the geometrical analogy with

a Bunsen flame, he related the area increase of the wrinkled flame surface area to the velocity

fluctuation divided by the laminar burning velocity

AT

A
∼ v′

sL
. (13.4)

Combining Eqs. (13.2) and (13.4) leads to

sT ∼ v′ (13.5)

in the limit of large v′/sL, which is a kinematic scaling. We now want to show that this is consistent

with the modeling assumption for the G-equation in the corrugated flamelets regime.

For small scale turbulence, which we will identify with the thin reaction zones regime, Damköhler

(1940) [2] argued that turbulence only modifies the transport between the reaction zone and the

unburnt gas. In analogy to the scaling relation for the laminar burning velocity

sL ∼
(
D

tc

)1/2

, (13.6)
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Figure 13.1: An idealized steady premixed flame in a duct.

where tc is the chemical time scale and D the molecular diffusivity, he proposes that the turbulent

burning velocity can simply be obtained by replacing the laminar diffusivity D by the turbulent

diffusivity Dt

sT ∼
(
Dt

tc

)1/2

, (13.7)

while the chemical time scale remains the same. Thereby it is implicitly assumed that the chemical

time scale is not affected by turbulence.1 Combining Eqs. (13.6) and (13.7) the ratio of the turbulent

to the laminar burning velocity becomes

sT
sL

∼
(
Dt

D

)1/2

. (13.8)

Since the turbulent diffusivity Dt is proportional to the product v′ℓ, and the laminar diffusivity is

proportional to the product of the laminar burning velocity and the flame thickness ℓF one may

write Eq. (13.8) as
sT
sL

∼
(
v′

sL

ℓ

ℓF

)1/2

(13.9)

showing that for small scale turbulence the burning velocity ratio not only depends on the velocity

ratio v′/sL but also on the length scale ratio ℓ/ℓF .

There were many attempts to modify Damköhler’s analysis and to derive expressions that would

reproduce the large amount of experimental data on turbulent burning velocities. By introducing

1This assumption breaks down when Kolmogorov eddies penetrate into the thin reaction zone. This implies that there
is an upper limit for the thin reaction zones regime which was identified as the condition Kaδ = 1 in Fig. 11.1.
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Figure 13.2: Comparison of the burning velocity ratio calculated from Eq. (13.31) (solid line), using
Re = 625 with data from Abdel-Gayed and Bradley (1981) for Reynolds number raging between
500 and 750. The origin of the individual data points may be found in that reference.

an adjustable exponent n, where 0.5 < n < 1.0, Eqs. (13.5) and (13.9) may be combined to obtain

expressions of the form
sT
sL

= 1 + C

(
v′

sL

)n

. (13.10)

This includes the limit v′ → 0 for laminar flame propagation where sT = sL. The constant C is

expected to depend on the length scale ratio ℓ/ℓF . By comparison with experiments the exponent

n is often found to be in the vicinity of 0.7 (cf. Williams (1985a) [3]), p. 429ff). Attempts to justify

a single exponent on the basis of dimensional analysis, however, fall short even of Damköhler’s

pioneering work who had recognized the existence of two different regimes in premixed turbulent

combustion.

There is a large amount of data on turbulent burning velocities in the literature. Correlations of

this material, mostly presented in terms of the burning velocity ratio sT /sL plotted as a function of

v′/sL, called the burning velocity diagram, date back to the fifties and sixties. An example taken

from Peters (1999) [4] is shown in Fig. 13.2. When experimental data from different authors are
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collected in such a diagram, they usually differ considerably. In the review articles by Bray (1990)

[5] and Bradley (1992) [6] the many physical parameters that affect the turbulent burning velocity

are discussed.

In a very careful review Abdel-Gayed and Bradley (1981) [7] collected and interpreted all the

material that was available at that time. More recent correlations are due to Abdel-Gayed et al.

(1987) [8], Gülder (1990b) [9], Bradley et al. (1992) [6] and Zimont and Lipatnikov (1995) [10].

The apparently fractal geometry of the flame surface and the fractal dimension that can be

extracted from it, also has led to predictions of the turbulent burning velocity. Gouldin (1987) [11]

has derived a relationship between the flame surface area ratio AT /A and the ratio of the outer

and inner cut-off of the fractal range

AT

A
=

(
ε0
εi

)Df−2

. (13.11)

Here Df is the fractal dimension. While there is general agreement that the outer cut-off scale ε0

should be the integral length scale, there are different suggestions by different authors concerning

the inner cut-off scale εi. While Peters (1986) [12] and Kerstein (1988a [13]) propose, based on

theoretical grounds that εi should be the Gibson scale, most experimental studies reviewed by

Gülder (1990a [14]) and Gülder et al. (1999) [15] favour the Kolmogorov scale η or a multiple

thereof.

As far as the fractal dimension Df is concerned, the reported values in the literature also vary

considerably. Kerstein (1988a) [13] has suggested the value Df = 7/3, which, in combination

with the Gibson scale as the inner cut-off, is in agreement with Damköhler’s result sT ∼ v′ in the

corrugated flamelets regime. This is easily seen by inserting Eq. (13.11) into Eq. (13.2) using

Eq. (11.10). On the other hand, if the Kolmogorov scale is used as inner cut-off, one obtains

sT /sL ∼ Re1/4 as Gouldin (1987) [11] has pointed out. This power law dependence seems to

have been observed by Kobayashi et al. (1998) [16] in high pressure flames. Gülder (1999) [15]

shows in his recent review that most of the measured values for the fractal dimension are smaller

than Df = 7/3. He concludes that the available fractal parameters are not capable of correctly

predicting the turbulent burning velocity.
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13.2 A Model Equation for the Flame Surface Area Ratio

At the end of Section 12.4 it was stated that the mean gradient σ̄ represents the flame surface

area ratio. In the two-dimensional illustration in Fig. 13.3 the instantaneous flame surface area

AT is identified with the length of the line G = G0. The blow-up Fig. 13.3 shows that a differential

section dS of that line and the corresponding differential section dy of the cross sectional area A

are related to each other by
dS

dy
=

1

| cosβ| . (13.12)

On the other hand, in two dimensions the gradient σ is given by

σ =

(
1 +

(
∂F

∂y

)2
)1/2

. (13.13)

It can be seen from Fig. 12.2 that ∂F/∂y = tanβ which relates σ to the angle β as

σ =
1

| cosβ| (13.14)

and therefore, combining this with Eq. (13.12), the differential flame surface area ratio is equal to

the gradient σ
dS

dy
= σ. (13.15)

We therefore expect to be able to calculate the mean flame surface area ratio from a model

equation for the mean gradient σ̄. There remains, however, the question whether this is also valid

for multiple crossings of the flame surface with respect to the x-axis. To resolve this conceptual

difficulty one may define a filtered flame surface by eliminating large wave-number contributions

in a Fourier representation of the original surface, so that in a projection of the original surface

on the filtered surface no multiple crossings occur. This is also shown in Fig. 13.3. The normal

co-ordinate xn on the filtered surface then corresponds to x in Fig. 12.2, showing that the ansatz

assuming a single valued function of x is again applicable. A successive filtering procedure can

then be applied, so that the flame surface area ratio is related to the gradient σ at each level of

filtering. Within a given section dy Eq. (13.15) is then replaced by

dSν

dSν+1
=

σν

σν+1
, (13.16)
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Figure 13.3: Illustration of the filtering of flame front corrugations showing that (13.15) remains
valid even if multiple crossings occur.

where ν is an iteration index of successive filtering. The quantities dS0 and σ0 correspond to the

instantaneous differential flame surface area dS and the respective gradient σ, and dS1 and σ1

to those of the first filtering level. At the next iteration one has dS1/dS2 = σ1/σ2 and so on. At

the last filtering level for ν → ∞ the flame surface becomes parallel to the y-co-ordinate, so that

dS∞ = dy and σ∞ = 1. Canceling all intermediate iterations we obtain again Eq. (13.15).

This analysis assumes that the original flame surface is unique and continuous. There may be

situations where pockets are formed, as shown in the 2D-simulation by Chen and Im (1998) [17].

In a subsequent paper Kollmann and Chen (1998) [18] have shown, however, that singularities in

the source terms of the σ-equation, to be presented next, cancel out exactly even during pocket

formation.

We now want to derive a modeled equation for the flame surface area ratio σ̄ in order to de-

termine the turbulent burning velocity. An earlier attempt in this direction is due to Rutland et

al. (1990) [19]. An equation for σ can be derived from Eq. (12.33). For illustration purpose we

assume constant density and constant values of s0L and D. Applying the ∇-operator to both sides
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of the resulting equation and multiplying this with −n = ∇G/σ one obtains

∂σ

∂t
+ v ·∇σ = −n·∇v ·nσ + s0L(κσ +∇

2G) +Dn·∇(κσ). (13.17)

The terms on the l.h.s. of this equation describe the unsteady change and convection of σ. The

first term on the r.h.s accounts for straining by the flow field which amounts to a production of

flame surface area. The next term containing the laminar burning velocity has a similar effect as

kinematic restoration has in the variance equation. The last term is proportional to D and its effect

is similar to that of scalar dissipation in the variance equation.

In order to derive a model equation for the mean value σ̄ we could, in principle, take the ap-

propriate averages of Eq. (13.17). There is, however, no standard two-point closure procedure

of such an equation, as there is none for deriving the ε-equation from an equation for the viscous

dissipation. Therefore another approach was adopted in Peters (1999) [4]: The scaling relations

between σ̄, k̃, ε̃, and G̃′′2 were used separately in both regimes to derive equations for σ̄ from a

combination of the k̃-, ε̃- and G̃′′2-equations. The resulting equations contain the local change and

convection of σ̄, a production term by mean gradients and another due to turbulence. However,

each of them contains a different sink term: In the corrugated flamelets regime the sink term is

proportional to s0Lσ̄
2 and in the thin reaction zones it is proportional to Dσ̄3. Finally, in order to ob-

tain a common equation for σ̄ valid in both regimes, the two sink terms are assumed to be additive

as are the two terms in Eq. (13.17) which also are proportional to s0L and D.

Since proportionality between the turbulent burning velocity and σ̄ is valid only in the limit of

large values of v′/sL, it accounts only for the increase of the flame surface area ratio due to

turbulence, beyond the laminar value σ̄ = |∇G̃| for v′ → 0. We will therefore simply add the

laminar contribution and write σ̄ as

σ̄ = |∇G̃|+ σ̄t, (13.18)

where σ̄t now is the turbulent contribution to the flame surface area ratio σ̄.

The resulting model equation for the unconditional quantity σ̄t from Peters (1999) [4], that
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covers both regimes, is written as

ρ̄
∂σ̄t
∂t

+ ρ̄ṽ ·∇σ̄t = ∇|| ·(ρ̄Dt∇|| σ̄t) (13.19)

+ c0ρ̄
(−ṽ′′v′′) : ∇ṽ

k̃
σ̄t + c1ρ̄

Dt(∇G̃)2

G̃′′2
σ̄t

− c2ρ̄
s0Lσ̄

2
t

(G̃′′2)1/2
− c3ρ̄

Dσ̄3
t

G̃′′2
.

The terms on the r.h.s. represent the local change and convection. Turbulent transport is modeled

here by gradient transport in tangential direction only, since similar arguments as in the variance

equation Eq. (12.47) apply with respect to the necessity of avoiding turbulent diffusion in direction

normal to the turbulent flame surface. This is the first term on the r.h.s. of Eq. (13.20). The

second term models production of the flame surface area ratio due to mean velocity gradients.

The constant c0 = cε1 − 1 = 0.44 originates from the ε̃-equation Eq. (10.31). The last three terms

in Eq. (13.20) represent turbulent production, kinematic restoration and scalar dissipation of the

flame surface area ratio, respectively, and correspond to the three terms on the r.h.s of Eq. (13.17).

We now want to determine values for the modeling constants c1, c2, c3, and c4 in Eq. (13.20).

The average of the production term in Eq. (13.17) is equal to −Sσ. Wenzel (2000) [20] has

performed DNS of the constant densityG-equation in an isotropic homogeneous field of turbulence

(cf. also Wenzel (1998) [21]), which show that the strain rate at the flame surface is statistically

independent of σ and that the mean strain on the flame surface is always negative. The latter

reflects the alignment of scalar gradients with the most compressive (negative) strain rate, as

shown by Ashurst et al. (1987) [22] in analyzing DNS data of isotropic and homogeneous shear

turbulence. When −Sσ, divided by s0Lσ̄ is plotted over v′/s0L one obtains a linear dependence.

This leads to the closure model

−S σ ∼ v′

ℓ
σ̄. (13.20)

By comparing the production terms in Eqs. (13.17) and (13.20) the modeling constant c1 in Eq.

(13.20) was determined by Wenzel (2000) [20] as c1 = 4.63.

In order to determine the remaining constants c2 and c3 we consider again the steady planar

flame. In the planar case the convective term on the l.h.s. and the turbulent transport term on the

r.h.s. of Eq. (13.20) vanish and since the flame is steady, so does the unsteady term. The produc-

tion term due to velocity gradients, being in general much smaller than production by turbulence,

may also be neglected. In terms of conditional quantities defined at the mean flame front, using
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the definition Eq. (12.48) for the flame brush thickness ℓF,t, the balance of turbulent production,

kinematic restoration and scalar dissipation in Eq. (13.20) leads to the algebraic equation

c1
Dt

ℓ2F,t

− c2
s0L
ℓF,t

σ̄t

|∇G̃|
− c3

D

ℓ2F,t

σ̄2
t

|∇G̃|2
= 0. (13.21)

In the limit of a steady state planar flame the flame brush thickness ℓF,t is proportional to the

integral length scale ℓ. We may therefore use ℓF,t = b2ℓ obtained from Eq. (12.51) in that limit and

write Eq. (13.21) as

c1
Dt

ℓ2
− c2b2

s0L
ℓ

σ̄t

|∇G̃|
− c3

D

ℓ2
σ̄2
t

|∇G̃|2
= 0. (13.22)

This equation covers two limits: In the corrugated flamelets regime the first two terms balance,

while in the thin reaction zones regime there is a balance of the first and the last term. Using

Dt = a4v
′ℓ from Tab. 13.1 below it follows for the corrugated flamelets regime

c2b2s
0
Lσ̄t = a4c1v

′|∇G̃|. (13.23)

Experimental data (cf. Abdel-Gayed and Bradley (1981) [7]) for fully developed turbulent flames

in that regime show that for Re → ∞ and v′/sL → ∞ the turbulent burning velocity is s0T = b1v
′

where b1 = 2.0. In Peters (2000) [23] it is shown that the turbulent burning velocity sT is related to

the mean flame surface area ratio as

(ρs0T ) | ∇G̃ |= (ρs0L) σ̄t. (13.24)

If the burning velocities s0T and s0L are evaluated at a constant density it follows in that limit that

s0Lσ̄t = b1v
′|∇G̃| and therefore one obtains by comparison with Eq. (13.23)

b1b2c2 = a4 c1 (13.25)

which leads to c2 = 1.01 using the constants from Tab. 13.1.

Similarly, for the thin reaction zones regime we obtain from Eq. (13.21) the balance

c3Dσ̄
2
t = c1Dt|∇G̃|2. (13.26)
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This must be compared with Eq. (13.8) written as

s0T
s0L

= b3

(
Dt

D

)1/2

. (13.27)

Damköhler (1940) [2] believed that the constant of proportionality b3 should be unity. Wenzel

(1997) [21] has performed DNS simulations similar to those of Kerstein et al. (1988) [13] based on

Eq. (12.33) in order to calculate σ̄ in the thin reaction zones regime. He finds b3 = 1.07 which is

very close to Damköhler’s suggestion. Therefore we will use b3 = 1.0 which leads with b23 = c1/c3

to

c3 = c1. (13.28)

For consistency the diffusivity D is defined as (λ/cp)0/ρu. Then, with ℓF = D/s0L and the relations

in Tab. 13.1, Eq. (13.21) leads to the quadratic equation

σ̄2
t

|∇G̃|2
+
a4b

2
3

b1

ℓ

ℓF

σ̄t

|∇G̃|
− a4b

2
3

v′ℓ

s0LℓF
= 0. (13.29)

Using Eqs. (13.18) and (13.24) evaluated at a constant density, the difference ∆s between the

turbulent and the laminar burning velocity is

∆s = s0T − s0L = s0L
σ̄t

|∇G̃|
. (13.30)

Taking only the positive root in the solution of Eq. (13.29) this leads to an algebraic expression for

∆s

∆s

s0L
= −a4b

2
3

2 b1

ℓ

ℓF
+

[(
a4b

2
3

2 b1

ℓ

ℓF

)2

+ a4b
2
3

v′ℓ

s0LℓF

]1/2
. (13.31)

This expression corresponds in the limit ℓ/ℓF → ∞ to the corrugated flamelets regime and in the

limit ℓ/ℓF → 0 to the thin reaction zones regime.

The modeling constants used in the final equations for G̃, G̃′′2 and σ̄t are summarized in Tab.

13.1. Note that b1 is the only constant that has been adjusted using experimental data from

turbulent burning velocity while the constant b3 was suggested by Damköhler (1940) [2]. The

constant c1 was obtained from DNS and all other constants are related to constants in standard

turbulence models.

If Eq. (13.31) is compared with experimental data as in the burning velocity diagram in Fig.

13.2, the turbulent Reynolds number Ret = v′ℓ/s0LℓF appears as a parameter. From the view-
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constant equation suggested value origin
a1 ε̃ = a1v

′3/ℓ 0.37 Bray (1990)
a2 k̃ = a2v

′2 1.5 definition
a3 τ = a3ℓ/v

′ 4.05 τ = k̃/ε̃
a4 Dt = a4v

′ℓ 0.78 Dt = νt/0.7
b1 sT = b1v

′ 2.0 experimental data
b2 ℓF,t = b2ℓ 1.78 (2a3a4/cs)

1/2

b3 s0T /s
0
L = b3(Dt/D)1/2 1.0 Damköhler (1940)

c0 c0 = cε1 − 1 0.44 standard value
c1 Eq. (13.18) 4.63 DNS
c2 Eq. (13.18) 1.01 a4c1/(b1b2)
c3 Eq. (13.18) 4.63 c1 = c3
cs Eq. (12.47) 2.0 spectral closure

Table 13.1: Constants used in the modeling of premixed and partially premixed turbulent combus-
tion.

point of turbulence modeling this seems disturbing, since in free shear flows any turbulent quantity

should be independent of the Reynolds number in the large Reynolds number limit. The appar-

ent Reynolds number dependence of Eq. (13.31) turns out to be an artifact, resulting from the

normalization of ∆s by s0L, which is a molecular quantity whose influence should disappear in the

limit of large Reynolds numbers and large values of v′/sL. If the burning velocity difference ∆s is

normalized by v′ rather than by s0L, Eq. (13.31) may be expressed as a function of the turbulent

Damköhler number Dat = s0Lℓ/v
′ℓF instead, and one obtains the form

∆s

v′
= −a4b

2
3

2 b1
Dat +

[(
a4b

2
3

2 b1
Dat

)2

+ a4b
2
3Dat

]1/2
. (13.32)

This is Reynolds number independent and only a function of a single parameter, the turbulent

Damköhler number. In the limit of large scale turbulence (ℓ/ℓF → ∞, or Dat → ∞) it becomes

Damköhler number independent. In the small scale turbulence limit (ℓ/ℓF → 0 or Dat → 0), it is

proportional to the square root of the Damköhler number.

A Damköhler number scaling has also been suggested by Gülder (1990b) who has proposed

∆s

v′
= 0.62Da

1/4
t (13.33)

as an empirical fit to a large number of burning velocity data. A similar correlation with the same

Damköhler number dependence, but a constant of 0.51 instead of 0.62 was proposed by Zimont
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and Lipatnikov (1995) [10].

Bradley et al. (1992) [6], pointing at flame stretch as a determinant of the turbulent burning

velocity, propose to use the product of the Karlovitz stretch factor K and the Lewis number as the

appropriate scaling parameter
s0T
v′

= 0.88(K Le)−0.3, (13.34)

where the Karlovitz stretch factor is related to the Damköhler number by

K = 0.157
v′

s0L
Da

−1/2
t . (13.35)

This leads to the expression

∆s

v′
= 1.53

(
s0L
v′

)0.3

Da0.15Le−0.3 − s0L
v′
. (13.36)

The correlations Eqs. (13.32), (13.33) and (13.36) are compared in Fig. 13.4 among each

233



other and with data from the experimental data collection used by Bradley et al. (1992) [6], which

was kindly provided to us by M. Lawes. The data points show a large scatter, which is due to

the fact that the experimental conditions were not always well defined. Since unsteady effects

have been neglected in deriving Eq. (13.31), only data based on steady state experiments were

retained from this collection. These 598 data points and their averages within fixed ranges of the

turbulent Damköhler number are shown in Fig. 13.4 as small and large dots, respectively. In order

to make such a comparison possible, the Lewis number was assumed equal to unity in Eq. (13.36)

and two values of v′/s0L were chosen. As a common feature of all three correlations one may note

that ∆s/v′ strongly increases in the range of turbulent Damköhler numbers up to ten, but levels off

for larger turbulent Damköhler numbers. The correlation Eq. (13.32) is the only one that predicts

Damköhler number independence in the large Damköhler number limit.

The model for the turbulent burning velocity derived here is based on Eq. (12.33) in which

the mass diffusivity D (rather than the Markstein diffusivity) appears. As a consequence, flame

stretch and thereby the Lewis number effects do not enter into the model. Lewis number effects

are often found to influence the turbulent burning velocity (cf. Abdel-Gayed et al. (1984) [24]). This

is supported by two-dimensional numerical simulations by Ashurst et al. (1987) [22] and Haworth

and Poinsot (1992) [25], and by three-dimensional simulations by Rutland and Trouvé (1993) [26],

all being based on simplified chemistry. There are additional experimental data on Lewis number

effects in turbulent flames at moderate intensities by Lee et al. (1993) [27] and Lee et al. (1995)

[28].
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Lecture 14

Non-Premixed Turbulent

Combustion: The Flamelet Concept

Models in nonpremixed turbulent combustion are often based on the presumed shape pdf ap-

proach. This requires the knowledge of the Favre mean mixture fraction Z̃ and its variance Z̃ ′′2

at position x and time t. As shown in Section 10.7 of Lecture 10 averaging of the mixture fraction

equation Eq. (3.58) and using the gradient transport assumption Eq. (10.59) leads to the equation

for the Favre mean mixture fraction Z̃ Eq. (10.61)

ρ̄
∂Z̃

∂t
+ ρ̄ ṽ ·∇Z̃ = ∇ · (ρ̄Dt∇Z̃). (14.1)

The molecular diffusivity D in Eq. (3.58) is much smaller than the turbulent diffusivity Dt, and has

therefore been neglected in Eq. (14.1). In addition to the mean mixture fraction in Section 10.7 of

Lecture 10 we have derived an equation for the Favre variance Z̃ ′′2 Eq. (10.63)

ρ̄
∂Z̃ ′′2

∂t
+ ρ̄ ṽ ·∇Z̃ ′′2 = −∇ ·

(
ρ̄ṽ′′Z ′′2

)
+ 2ρ̄Dt(∇Z̃)2 − ρ̄χ̃, (14.2)

where for −ṽ′′Z ′′ the gradient transport assumption Eq. (10.59) has again been used in the third

term on the r.h.s., the production term. For the turbulent flux of the mixture fraction variance the

gradient transport assumption

−ṽ′′Z ′′2 = Dt∇Z̃ ′′2 (14.3)
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can also be used in Eq. (14.2). In Eq. (14.2) the mean scalar dissipation rate appears, which will

be modeled (10.66) as

χ̃ = cχ
ε̃

k̃
Z̃ ′′2 (14.4)

where the time scale ratio cχ is assumed to be a constant. Jones (1994) [1] suggests a value of

cχ = 1.0, while Janicka and Peters (1982) [2] found that a value of cχ = 2.0 would predict the

decay of scalar variance in an inert jet of methane very well. Overholt and Pope (1996) [3] and

Juneja and Pope (1996) [4] performing DNS studies of one and two passive scalar mixing find an

increase of cχ with Reynolds number and steady state values around 2.0 and 3.0, respectively.

In the numerical simulations of Diesel engine combustion, to be presented in Lecture 15, Section

15.2, a value of cχ = 2.0 has been used.

In many cases, as in turbulent jet diffusion flames in air, zero gradient boundary conditions,

except at the inlet, can be imposed. If the simplifying assumptions mentioned in Section 3.9 of

Lecture 3 can be introduced the enthalpy h can be related to the mixture fraction by the linear

coupling relation

h = h2 + Z(h1 − h2) (14.5)

which also holds for the mean values

h̃ = h2 + Z̃(h1 − h2) (14.6)

and no additional equation for the enthalpy is required. In Eqs. (14.5) and (14.6) h2 is the enthalpy

of the air and h1 that of the fuel.

A more general formulation is needed, if different boundary conditions have to be applied for Z̃

and h̃ or if heat loss due to radiation or unsteady pressure changes must be accounted for. Then

an equation for the Favre mean enthalpy h̃ as an additional variable must be solved. An equation

for h̃ can be obtained from Eq. (3.43) by averaging

ρ
∂h̃

∂t
+ ρ̄ṽ ·∇h̃ =

∂p

∂t
+∇ ·

(
ρ̄Dt∇h̃

)
+ q̇R . (14.7)

Again a gradient transport equation for −ṽ′′h′′ has been introduced. The terms containing the

mean spatial pressure gradient have been neglected in this equation by applying the limit of zero

Mach number, where fast acoustic waves are rapidly homogenizing the pressure field. The term

describing temporal mean pressure changes ∂p̄/∂t has been retained, because it is important
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for the modeling of combustion in internal combustion engines operating under nonpremixed con-

ditions, such as the Diesel engine. The mean volumetric heat exchange term q̇R must also be

retained in many applications where radiative heat exchange has an influence on the local en-

thalpy balance. Marracino and Lentini (1997) [5] have used the Stretched Laminar Flamelet Model

to calculate the radiative heat flux from buoyant turbulent methane-air diffusion flames. Temper-

ature changes due to radiation within the flamelet structure also have a strong influence on the

prediction of NOx formation (cf. Pitsch et al. (1998) [6]). Changes of the mean enthalpy also occur

due to convective heat transfer at the boundaries or due to the evaporation of a liquid fuel. As in

Eqs. (14.1) and (14.2) the transport term containing the molecular diffusivity has been neglected

in Eq. (14.7) as being small compared to the turbulent transport term. Effects due to non-unity

Lewis numbers have also been neglected.

No equation for enthalpy fluctuations is presented here, because in nonpremixed turbulent

combustion, it is often assumed that fluctuations of the enthalpy are mainly due to mixture fraction

fluctuations and are described by those.

14.1 The Presumed Shape Pdf Approach

Eqs. (14.1)-(14.3) can be used to calculate the mean mixture fraction and the mixture fraction

variance at each point of the turbulent flow field, provided that the density field is known. In

addition, of course, equations for the turbulent flow field, the Reynolds stress equations (or the

equation for the turbulent kinetic energy k̃) and the equation for the dissipation ε̃ must be solved.

If the assumption of fast chemistry is introduced and the coupling between the mixture fraction

and the enthalpy Eq. (14.5) can be used, the Burke-Schumann solution or the equilibrium solution

relates all reactive scalars to the local mixture fraction. Using these relations the easiest way to

obtain mean values of the reactive scalars is to use the presumed shape pdf approach. This

is called the Conserved Scalar Equilibrium Model. In this approach a suitable two-parameter

probability density function is “presumed” in advance, thereby fixing the functional form of the pdf

by relating the two parameters in terms of the known values of Z̃ and Z̃ ′′2 at each point of the flow

field.

Since in a two-feed system the mixture fraction Z varies between Z = 0 and Z = 1, the beta

function pdf is widely used for the Favre pdf in nonpremixed turbulent combustion. The beta-
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Figure 14.1: Shapes of the beta-function pdf for different parameters Z̃ and γ.

function pdf has the form

P̃ (Z;x, t) =
Zα−1(1− Z)β−1 Γ(α+ β)

Γ(α)Γ(β)
(14.8)

Here Γ is the gamma function. The two parameters α and β are related to the Favre mean Z̃(x, t)

and variance Z̃ ′′2(x, t) by

α = Z̃γ , β = (1 − Z̃)γ, (14.9)

where

γ =
Z̃(1− Z̃)

Z̃ ′′2
− 1 ≥ 0. (14.10)

The beta-function is plotted for different combinations of the parameters Z̃ and γ in Fig. 14.1. It

can be shown that in the limit of very small Z̃ ′′2 (large γ) it approaches a Gaussian distribution.

For α < 1 it develops a singularity at Z = 0 and for β < 1 a singularity at Z = 1. Despite of its

surprising flexibility, it is unable to describe distributions with a singularity at Z = 0 or Z = 1 and

an additional intermediate maximum in the range 0 < Z < 1. For such shapes, which have been

found in jets and shear layers, a composite model has been developed by Effelsberg and Peters

(1983) [7]. It identifies three different contributions to the pdf: a fully turbulent part, an outer flow
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part and a part which was related to the viscous superlayer between the outer flow and the fully

turbulent flow region. The model shows that the intermediate maximum is due to the contribution

from the fully turbulent part of the scalar field.

By the presumed shape pdf approach means of any quantity that depends only on the mixture

fraction can be calculated. For instance, the mean value of ψi can be obtained from

ψ̃i(x, t) =

∫ 1

0

ψi(Z)P̃ (Z;x, t) dZ. (14.11)

A further quantity of interest is the mean density ρ̄. Since Favre averages are considered, one

must take the Favre average of ρ−1, which leads to

ρ̃−1 =
1

ρ̄
=

∫ 1

0

ρ−1(Z)P̃ (Z) dZ. (14.12)

With Eqs. (14.8)-(14.12) and the Burke-Schumann solution or the equilibrium solution the Con-

served Scalar Equilibrium Model for nonpremixed combustion is formulated. It is based on a

closed set of equations which do not require any further chemical input other than the assumption

of infinitely fast chemistry. It may therefore be used as an initial guess in a calculation where the

Burke-Schumann solution or the equilibrium solution later on is replaced by the solution of the

flamelet equations to account for non-equilibrium effects.

14.2 The Round Turbulent Jet Diffusion Flame

In many applications fuel enters into the combustion chamber as a turbulent jet, with or without

swirl. To provide an understanding of the basic properties of jet diffusion flames, we will consider

here the easiest case, the axisymmetric jet flame without buoyancy, for which we can obtain ap-

proximate analytical solutions. This will enable us to determine, for instance, the flame length. The

flame length is defined as the distance from the nozzle to the point on the centerline of the flame

where the mean mixture fraction is equal to Zst. The flow configuration and the flame contour of a

vertical jet diffusion flame have already been shown schematically in Fig. 9.5 but for a laminar jet

flame.

Using Favre averaging and the the boundary layer assumption we obtain a system of two-

dimensional axisymmetric equations, similar to Eqs. (9.22-9.24) but for Favre averages. These will

be in terms of the axial co-ordinate x and the radial co-ordinate r, for
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Figure 14.2: Schematic representation of a vertical jet flame into quiescent air.

continuity
∂

∂x
(ρ̄ũr) +

∂

∂r
(ρ̄ṽr) = 0, (14.13)

momentum in x-direction

ρ̄ũr
∂ũ

∂x
+ ρ̄ṽr

∂ũ

∂r
=

∂

∂r

(
ρ̄νtr

∂ũ

∂r

)
, (14.14)

mean mixture fraction

ρ̄ũr
∂Z̃

∂x
+ ρ̄ṽr

∂Z̃

∂r
=

∂

∂r

(
ρ̄νtr

Sct

∂Z̃

∂r

)
. (14.15)

We have neglected molecular as compared to turbulent transport terms. Turbulent transport was

modeled by the gradient flux approximation. For the scalar flux we have replaced Dt by introducing
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the turbulent Schmidt number Sct = νt/Dt.

For simplicity, we will not consider equations for k̃ and ε̃ or the mixture fraction variance but

seek an approximate solution by introducing a model for the turbulent viscosity νt. Details may be

found in Peters and Donnerhack (1981) [8]. As in Section 9.2 for the laminar round diffusion flame

the dimensionality of the problem will again be reduced by introducing the similarity transformation

η =
r̄

ξ
, r̄2 = 2

∫ r

0

ρ̄

ρ∞
r dr , ξ = x+ x0, (14.16)

which contains a density transformation defining the density weighted radial co-ordinate r̄. The

new axial co-ordinate ξ starts from the virtual origin of the jet located at x = −x0. Introducing a

stream function ψ by

ρ̄ũr = ∂ψ/∂r , ρ̄ṽr = −∂ψ/∂x (14.17)

the continuity equation Eq. (14.13) is satisfied. In terms of the non-dimensional stream function

F (η) defined by

F (η) =
ψ

ρ∞νtr ξ
(14.18)

the axial and radial velocity components may now be expressed as

ũ =

dF

dη

η

νtr
ξ
, ρ̄ṽr = −ρ∞νtr(F − dF

dη
η). (14.19)

Here νtr is the eddy viscosity of a constant density jet, used as a reference value. Differently from

the laminar flame, where ν is a molecular property, νtr has been fitted (cf. Peters and Donnerhack

(1981) [8] to experimental data as

νtr =
u0d

70
. (14.20)

For the mixture fraction the ansatz

Z̃ = Z̃CL (ξ) ω̃(η) (14.21)

is introduced, where Z̃CL stands for the Favre mean mixture fraction on the centerline.

The system of equation for the turbulent round jet has the same similarity solution as the one

derived in Section 9.2 of Lecture 9. Here we approximate the Chapman-Rubesin parameter, how-

ever, as:

C =
ρ̄2νtr

2

ρ2∞νtr r̄
2
. (14.22)
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In order to derive an analytical solution it must be assumed that C is a constant in the entire jet.

With a constant value of C one obtains the system of differential equations as Eqs. (9.34) and its

solution Eq. (9.35), if only the Schmidt number is replaced by a turbulent Schmidt number Sct. The

solution reads

ũ =
2Cγ2νtr

ξ

(
1

1 + (γη/2)2

)2

, ω̃ =

(
1

1 + (γη/2)2

)2Sct

, (14.23)

where the jet spreading parameter is again

γ2 =
3 · 702
64

ρ0
ρ∞C2

(14.24)

obtained from the requirement of integral momentum conservation along the axial direction. Sim-

ilarly, conservation of the mixture fraction integral across the jet yields the mixture fraction on the

centerline

Z̃CL =
70(1 + 2 Sct)

32

ρ0
ρ∞C

d

ξ
(14.25)

such that the mixture fraction profile is given by

Z̃ =
2.19 (1 + 2 Sct) d

x+ x0

ρ0
ρ∞C

(
1 +

1

1 + (γη/2)2

)2 Sct

. (14.26)

From this equation the flame length L can be calculated by setting Z̃ = Zst at x = L, r = 0

L+ x0
d

=
2.19(1 + 2 Sct)

Zst

ρ0
ρ∞C

. (14.27)

Experimental data by Hawthorne et al. (1949) [9] suggest that the flame length L should scale as

L+ x0
d

=
5.3

Zst

(
ρ0
ρst

)1/2

. (14.28)

This fixes the turbulent Schmidt number as Sct = 0.71 and the Chapman-Rubesin parameter as

C =
(ρ0ρst)

1/2

ρ∞
. (14.29)

When this is introduced into Eqs. (14.23) and (14.24) one obtains the centerline velocity as

ũCL

u0
=

6.56 d

x+ x0

(
ρ0
ρst

)1/2

. (14.30)
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The distance of the virtual origin from x = 0 may be estimated by setting ũCL = u0 at x = 0 in Eq.

(14.30) so that

x0 = 6.56 d

(
ρ0
ρst

)1/2

. (14.31)

As an example for the flame length, we set the molecular weight at stoichiometric mixture equal to

that of nitrogen, thereby estimating the density ratio ρ0/ρst from

ρ0
ρst

=
W0

WN2

Tst
T0
. (14.32)

The flame length may then be calculated from Eq. (14.28) with Zst = 0.055 as L ∼ 200 d.

In large turbulent diffusion flames buoyancy influences the turbulent flow field and thereby the

flame length. In order to derive a scaling law for that case, Peters and Göttgens (1991) [10] have

integrated the boundary layer equations for momentum and mixture fraction for a vertical jet flame

over the radial direction in order to obtain first order differential equations in terms of the axial co-

ordinate for cross-sectional averages of the axial velocity and the mixture fraction. Since turbulent

transport disappears entirely due to averaging, an empirical model for the entrainment coefficient

β is needed, which relates the half-width b of the jet to the axial co-ordinate as

b(x) = βx. (14.33)

By comparison with the similarity solution for a non-buoyant jet β was determined as

β = 0.23

(
ρst
ρ0

)1/2

. (14.34)

For the buoyant jet flame a closed form solution for the flame length could be derived which

reads (
3

4
β Fr∗ − 1

8

)(
β L

deff

)2

+

(
β L

deff

)5

=
3β α2

1

16Z2
st

Fr∗. (14.35)

Here Fr∗ is the modified Froude number

Fr∗ = Fr

(
ρ0
ρ∞

)1/2
ρ∞

α2(ρ∞ − ρst)
, Fr =

u20
gd

(14.36)

and

deff = d

(
ρ0
ρ∞

)1/2

(14.37)
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Figure 14.3: Dimensionless flame length, L/d, versus Froude number for propane-air flames.
Comparison is made with experimental data of Sønju and Hustad (1984) [11].

is the effective nozzle diameter. The constants in Eqs. (14.35) and (14.36) are determined as

α1 = 1+ 2 Sct and α2 = 1.0. Details of the derivation may be found in Peters and Göttgens (1991)

[10].

The flame length of propane flames calculated from Eq. (14.35) is compared with measure-

ments from Sønju and Hustad (1984) [11] in Fig. 14.3. For Froude numbers smaller than 105 the

data show a Froude number scaling as Fr1/5, which corresponds to a balance of the second term

on the l.h.s. with the term on the r.h.s. in Eq. (14.35). For Froude numbers larger than 106 the

flame length becomes Froude number independent equal to the value calculated from Eq. (14.27).

14.3 Experimental Data from Turbulent Jet Diffusion Flames

While the flame length may be calculated on the basis of the fast chemistry assumption using the

solution for mean mixture fraction field alone, more details on scalars are needed if one wants

to determine chemical effects and pollutant formation in turbulent jet flames. For that purpose
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Figure 14.4: Ensemble of Raman scattering measurements of major species concentrations and
temperatures at x/d = 30, r/D = 2. The solid curves show equilibrium conditions. (From Barlow
et al. (1990) [12].

we want to discuss data taken locally within turbulent jet flames by non-intrusive laser-diagnostic

techniques. There is a large body of experimental data on single point measurements using Laser

Rayleigh and Raman scattering techniques combined with Laser-Induced Fluorescence (LIF).

Since a comprehensive review on the subject by Masri et al. (1996) [13] is available, it suffices

to present as an example the results by Barlow et al. (1990) [12] obtained by the combined

Raman-Rayleigh-LIF technique. This paper has set a landmark not only due to the diagnostics

that were used but also because of the interpretation of the chemical structure in terms of laminar

flamelet profiles. The fuel stream of the two flames that were investigated consisted of a mixture

of 78mole% H2 and 22mole% argon, the nozzle inner diameter d was 5.2mm and the co-flow air

velocity was 9.2m/s. The resulting flame length was approximately L = 60 d. Two cases of exit

velocities were analyzed, but only the case B with u0 = 150m/s will be considered here. The

stable species H2, O2, N2, and H2O were measured using Raman-scattering at a single point with

light from a flash-lamp pumped dye laser. In addition, quantitative OH radical concentrations from

LIF measurements were obtained by using the instantaneous one-point Raman data to calculate

quenching corrections for each laser shot. The correction factor was close to unity for stoichio-
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Figure 14.5: Temperature profiles from flamelet calculations at different strain rates. (From Barlow
et al. (1990)[12].

metric and moderately lean conditions but increased rapidly for very lean and moderately rich

mixtures. The temperature was calculated for each laser shot by adding number densities of the

major species and using the perfect gas law. The mixture fraction was calculated from the stable

species concentrations using Eq. (1.47).

An ensemble of one-point, one-time Raman-scattering measurements of major species and

temperature plotted over mixture fraction are shown in Fig. 14.4. They were taken at x/d = 30,

r/d = 2 in the case B flame. Also shown are calculations based on the assumption of chemical

equilibrium.

The overall agreement between the experimental data and the equilibrium solution is quite

good. This is often observed for hydrogen flames where chemistry is typically very fast. On the

contrary, hydrocarbon flames at high exit velocities and small nozzle diameters are likely to exhibit

local extinction and non-equilibrium effects. A discussion on localized extinction observed in tur-

bulent jet flames may be found in Masri et al. (1996) [13]. Fig. 14.5 shows temperature profiles

versus mixture fraction calculated for counterflow diffusion flames at different strain rates. These

steady state flamelet profiles display the characteristic decrease of the maximum temperature with

increasing strain rates (which corresponds to decreasing Damköhler numbers) as shown schemat-
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ically by the upper branch of the S-shaped curve in Fig. 10.1. The strain rates vary here between

a = 100/s which is close to chemical equilibrium and a = 10000/s.

Data of OH-concentrations are shown in Fig. 14.6. They are to be compared to flamelet

calculations in Fig. 14.7 for the different strain rates mentioned before. It is evident from Fig. 14.6

that the local OH-concentrations exceed those of the equilibrium profile by a factor up to 3. The

flamelet calculations in Fig. 14.7 show an increase of the maximum values by a factor of 3 already

at the low strain rates a = 100/s and a = 1000/s. The maximum value of a = 10000/s shown in

Fig. 14.7 is close to extinction and does not represent conditions in the turbulent hydrogen flame

considered here.

In summary, it may be concluded that one-point, one-time experimental data in turbulent flames,

when plotted as a function of mixture fraction, show qualitatively similar tendencies as laminar

flamelet profiles in counterflow diffusion flames. Non-equilibrium effects are evident in both cases

and lead to an increase of radical concentrations and a decrease of temperatures. This has an

important influence on NOx formation in turbulent diffusion flames.
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14.4 Laminar Flamelet Equations for Nonpremixed Combus-

tion

Based on the laminar flamelet concept introduced in Lecture 8 the flame surface is defined as the

surface of stoichiometric mixture which is obtained by setting

Z(x, t) = Zst (14.38)

as shown in Fig. 8.2. In the vicinity of that surface the reactive-diffusive structure can be described

by the flamelet equations Eqs. 8.7, here written

ρ
∂ψi

∂t
=

ρ

Lei

χ

2

∂2ψi

∂Z2 + ωi (14.39)

In these equations the instantaneous scalar dissipation rate has been introduced. At the flame

surface, it takes the value χst. If χ is assumed to be a function of Z, this functional dependence

can be parameterized by χst. It acts as an external parameter that is imposed on the flamelet

structure by the mixture fraction field. The scalar dissipation rate χ has the dimension of an inverse
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time and therefore represents the inverse of a diffusion time scale. It also can be thought of as a

diffusivity in mixture fraction space.

Eq. (14.39) shows that ψi depends on the mixture fraction Z, on the scalar dissipation rate

χ, and on time t. This implies that the reactive scalars are constant along iso-mixture fraction

surfaces at a given time and a prescribed functional form of the scalar dissipation rate. Thereby

the fields of the reactive scalars are aligned to that of the mixture fraction and are transported

together with it by the flow field.

In principle, both the mixture fraction Z and the scalar dissipation rate χ are fluctuating quan-

tities and their statistical distribution needs to be considered, if one wants to calculate statistical

moments of the reactive scalars (cf. Peters (1984) [14]).

If the joint pdf P̃ (Z, χst) surface, is known, and the steady state flamelet equations are solved

to obtain ψi as a function of Z and χst, point x and the time t. The Favre mean ψ̃i can be obtained

from

ψ̃i(x, t) =

∫ 1

0

∞∫

0

ψi(Z, χst)P (Z, χst;x, t)dχst dZ. (14.40)

For further reading see Peters (1984) [14].

If the unsteady term in the flamelet equation must be retained, joint statistics of Z and χst

become impractical. Then, in order to reduce the dimension of the statistics, it is useful to introduce

multiple flamelets, each representing a different range of the χ-distribution. Such multiple flamelets

are used in the Eulerian Particle Flamelet Model (EPFM) by Barths et al. (1998) [15].

Then the scalar dissipation rate can be formulated as a function of the mixture fraction. Such a

formulation can be used in modeling the conditional Favre mean scalar dissipation rate χ̃Z defined

by

χ̃Z =
〈ρχ|Z〉
〈ρ|Z〉 . (14.41)

Then the flamelet equations in a turbulent flow field take the form

ρ
∂ψi

∂t
=

ρ

Lei

χ̃Z

2

∂2ψi

∂Z2 + ωi. (14.42)

A mean scalar dissipation rate, however, is unable to account for those ignition and extinction

events that are triggered by small and large values of χ, respectively. This is where LES, as

discussed in Lecture 10, must be used.

With ψi(Z, χ̃Z , t) obtained from solving Eq. (14.42), Favre mean values ψ̃i can be obtained at
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any point x and time t in the flow field by

ψ̃i(x, t) =

∫ 1

0

ψi(Z, χ̃Z , t)P̃ (Z;x, t)dZ. (14.43)

Here the presumed shape of the pdf P̃ (Z;x, t) can be calculated from the mean and the variance

of the turbulent mixture fraction field, as discussed in Section 14.1.

Then there remains the problem on how to model the conditional scalar dissipation rate χ̃Z .

One way to solve that problem is to use the procedure by Janicka and Peters (1982) [2], where

χ̃Z is determined from the pdf transport equation for the mixture fraction. Another possibility is to

construct χ̃Z from a model. One then relates the conditional scalar dissipation rate χ̃Z to that at a

fixed value, say Zst, by

χ̃Z = χ̃st
f(Z)

f(Zst)
, (14.44)

where f(Z) is a function as in Eq. (8.24) and χ̃st is the conditional mean scalar dissipation rate

at Z = Zst. Then, with the presumed pdf P̃ (Z) being known, the unconditional average can be

written as

χ̃ =

∫ 1

0

χ̃ZP̃ (Z) dZ = χ̃st

∫ 1

0

f(Z)

f(Zst)
P̃ (Z) dZ. (14.45)

Therefore, using the model Eq. (14.4) for χ̃, the conditional mean scalar dissipation rate χ̃st can

be expressed as

χ̃st =
χ̃f(Zst)∫ 1

0

f(Z)P̃ (Z) dZ

(14.46)

which is to be used in Eq. (14.44) to calculate χ̃Z .

Flamelet equations can also be used to describe ignition in a nonpremixed system. If fuel and

oxidizer are initially at the unburnt temperature Tu(Z), as was shown in Fig. 2.1, but the scalar

dissipation rate is still large enough, so that heat loss out of the reaction zone exceeds the heat

release by chemical reactions, a thermal runaway is not possible. This corresponds to the steady

state lower branch in Fig. 10.1. As the scalar dissipation rate decreases, as for instance in a Diesel

engine after injection, heat release by chemical reactions will exceed heat loss out of the reaction

zone, leading to auto-ignition. The scalar dissipation rate at auto-ignition is denoted by

χi = χst,ign. (14.47)

For ignition under Diesel engine conditions this has been investigated by Pitsch and Peters (1998b)
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Figure 14.8: Auto-ignition of a n-heptane-air mixture calculated in mixture fraction space by solving
the flamelet equations (cf. Paczko et al. (1999) [16]).

[17]. An example of auto-ignition of a n-heptane-air mixture calculated with the Representative In-

teractive Flamelets code (RIF, cf. Paczko et al. (1999) [16] is shown in Fig. 14.8. The initial air

temperature is 1100K and the initial fuel temperature is 400K. Mixing of fuel and air leads to a

straight line for the enthalpy in mixture fraction space, but not for the temperature Tu(Z) in Fig.

14.8, since the heat capacity cp depends on temperature. A linear decrease of the scalar dissi-

pation rate from χst = 30 1/s to χst = 10 1/s within a time interval of 0.3ms was prescribed. It is

seen that auto-ignition starts after 0.203ms, when the temperature profile shows already a small

increase over a broad region around Z = 0.2. At t = 0.218ms there has been a fast thermal

runaway in that region, with a peak at the adiabatic flame temperature. From thereon, the temper-

ature profile broadens, which may be interpreted as a propagation of two fronts in mixture fraction

space, one towards the lean and the other towards the rich mixture. Although the transport term

in Eq. (14.39) contributes to this propagation, it should be kept in mind that the mixture is close to

auto-ignition everywhere. The propagation of an ignition front in mixture fraction space therefore

differs considerably from premixed flame propagation. At t = 0.3ms most of the mixture, except

for a region beyond Z = 0.4 in mixture fraction space, has reached the equilibrium temperature. A

maximum value of T = 2750K is found close to stoichiometric mixture.

The ignition of n-heptane mixtures under Diesel engine condition has been discussed in detail
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by Pitsch and Peters (1998b) [17]. There it is shown that auto-ignition under nonpremixed condi-

tions occurs predominantly at locations in a turbulent flow field where the scalar dissipation rate is

low. Turbulent combustion models have also been used to predict NOx formation in turbulent diffu-

sion flames. This is a problem of great practical importance, but due to the many physical aspects

involved, it is also a very demanding test for any combustion model. A very knowledgeable review

on the various aspects of the problem has been given by Turns (1995) [18].

A global scaling law for NO production in turbulent jet flames has been derived by Peters and

Donnerhack (1981) [8] assuming equilibrium combustion chemistry and thin NO reaction zone

around the maximum temperature in mixture fraction space. An asymptotic solution for the mean

turbulent NO production rate can be obtained by realizing that in the expression

ωNO = ρ̄S̃NO = ρ̄

∫ 1

0

SNO(Z)P̃ (Z) dZ (14.48)

the function SNO(Z) has a very strong peak in the vicinity of the maximum temperature, but de-

creases very rapidly to both sides. This is shown in Fig. 14.9 for the case of a hydrogen flame.

The NO reaction rate acts nearly like a δ-function underneath the integral in Eq. (14.48). It has

been shown by Peters (1978) [19] and Janicka and Peters (1982) [2] that an asymptotic expansion

of the reaction rate around the maximum temperature leads to

ωNO = ρ̄P̃ (Zb)εSNO(Zb), (14.49)

where Zb is the mixture fraction at the maximum temperature Tb and SNO(Zb) is the maximum

reaction rate. The quantity ε represents the reaction zone thickness of NO production in mixture

fraction space. That quantity was derived from the asymptotic theory as

ε =

( −2RT 2
b

Z2
bENO(d2T/dZ2)Tb

)1/2

. (14.50)

Here ENO is the activation energy of the NO production rate. Finally, Peters and Donnerhack

(1981) [8] predicted the NO emission index EINO, which represents the total mass flow rate of NO

produced per mass flow rate of fuel, as being proportional to

EINO ∼ SNO(Zb)ε

(
L

d

)3
d

u0
. (14.51)

Here L is the flame length, d the nozzle diameter and u0 the jet exit velocity. The normalized
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Figure 14.9: NO-reaction rate and pdf for a hydrogen-air mixture. From Peters and Donnerhack
(1981) [8].

flame length L/d is constant for momentum dominated jets but scales with the Froude number

Fr = u20/(gd) as L/d ∼ Fr1/5 for buoyancy dominated jets as shown in Fig. 14.3. This explains, for

instance, the Fr3/5 dependence of the emission index found in the buoyancy dominated propane

jet diffusion flames of Røkke et al. (1992) [20]. These data are reproduced in Fig. 14.10 together

with the prediction of the NOx emission index (expressed here in terms of NO2)

EINOx

d/u0
= 22Fr3/5

[
gNO2

kg fuel s

]
. (14.52)

It is interesting to note that by taking the values SNO(Zb) = 10.8×10−3/s and ε = 0.109 for propane

from Peters and Donnerhack (1981) [8] and using Eq. (14.35) in the buoyancy dominated limit

one calculates a factor of 27.2 rather than 22 in Eq. (14.52). Since Peters and Donnerhack (1981)

[8] had assumed equilibrium combustion chemistry, the second derivative of the temperature in

Eq. (14.50) was calculated from an equilibrium temperature profile as the one shown in Fig. 14.4.
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Figure 14.10: Emission index versus Froude number for buoyant jet diffusion flames of propane in
air. Experimental data and prediction from Røkke et al.(1992) [20].

Therefore ε was tabulated as a constant for each fuel. If the quantity SNO(Zb)d/u0 is interpreted

as a Damköhler number the rescaled emission index from Eq. (14.51) is

EINO

(L/d)3
∼ εDa (14.53)

proportional to that Damköhler number.

An interesting set of experimental data are those by Chen and Driscoll (1990) [21] and Driscoll

et al. (1992) [22] for diluted hydrogen flames. These data show a square root dependence of the

rescaled emission index on the Damköhler number. This Da1/2 dependence had been reproduced

by Chen and Kollmann (1992) [23] using the transported pdf approach and by Smith et al. (1992)

[24] with the CMC method. An explanation for this scaling may be found by using the steady state

flamelet equation for the second derivative of temperature in Eq. (14.50) rather than the equilibrium

profile. This may be written as
d2T

dZ2
∼ ωT

χ
. (14.54)

Here the term on the r.h.s., evaluated at and divided by the maximum temperature, may also be

interpreted as a Damköhler number. This becomes evident, if one realizes that in a turbulent

jet diffusion flame χ scales with u0/d. Inserting this into Eq. (14.50) the quantity ε becomes
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proportional to Da−1/2. This finally leads with Eq. (14.53) to

EINO

(L/d)3
∼ Da1/2. (14.55)

This scaling law indicates that the experimentally observed (d/u0)
1/2 dependence of the rescaled

NO emission index is a residence time effect, modified by the temperature sensitivity of the NO

reaction rate, on which the asymptotic theory by Peters and Donnerhack (1981) [8] was built. It

also shows that unsteady effects of the flame structure and super-equilibrium O-concentrations

may be of less importance than is generally assumed.

Sanders et al. (1997) [25] have reexamined steady state flamelet modeling using the two

variable presumed shape pdf model for the mixture fractions and, either the scalar dissipation rate

or the strain rate as second variable. Their study revealed that only the formulation using the scalar

dissipation rate as the second variable was able to predict the Da1/2 dependence of the data of

Driscoll et al. (1992) [22]. This is in agreement with results of Ferreira (1996) [26]. In addition

Sanders et al. (1997) [25] examined whether there is a difference between using a lognormal

pdf of χst with a variance of unity and a delta function pdf and found that both assumptions gave

similar results. Their predictions improved with increasing Damköhler number and their results

also suggest that Lei = 1 is the best choice for these hydrogen flames.

For a turbulent jet flame with a fuel mixture of 31% methane and 69% hydrogen Chen and

Chang (1996) [27] performed a detailed comparison between steady state flamelet and pdf model-

ing. They found that radiative heat loss becomes increasingly important for NO predictions further

downstream in the flame. This is in agreement with the comparison of time scales by Pitsch et al.

(1998) [28] who found that radiation is too slow to be effective as far as the combustion reactions

are concerned, but that it effects NO levels considerably.
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Lecture 15

Applications in Internal Combustion

Engines

15.1 Spray-Guided Spark-Ignition Combustion

engine swirl 

generation

left valve 

deactivation

(a)                                                                               (b)

Figure 15.1: (a) Visualization of the mixture preparation process. A detailed 3D numerical sim-
ulation of the intake process with a deactivated left intake valve for enhanced swirl generation is
performed. The direct fuel spray injection is modeled using a Lagrangian spray model. The spark
plug is included in the engine mesh. (b) Unstructured computational grid (∼ 222, 000 grid cells)
of the engine including the model for the intake runner and the siamese port. (Reprinted with
permission by R. Dahms.)

An important application of the G-equation flamelet theory is given by the simulation of turbu-

lent combustion in spray-guided spark-ignition direct-injection (SG-SIDI) gasoline engines. These
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Cases

I II III
Intake air temperature ◦C 91 95 103
Engine speed rpm 1000 2000 3000
Ignition timing ◦ CAATDC -29 -34 -40
Start of injection ◦ CAATDC -32.3 -43 -59.5
End of injection ◦ CAATDC -29 -35 -39.9
Injected fuel mass mg 5.6 9.3 12.93
Mean air/fuel ratio [–] 43 27 22
Mean EGR % 49.8 44 36.2
Dilution mass fraction [–] 0.183 0.268 0.273

Table 15.1: Specifications of the investigated engine operating points. The dilution mass fraction
is defined as Ydil = Yinert,EGR − Yair,EGR .

engines offer substantially improved fuel economy and pollutant emission reductions compared to

stratified charge wall-guided and homogeneous charge spark-ignition systems. The closeness of

the fuel spray and the spark electrodes, shown in Fig. 15.1(a), can cause, however, unfavorable

conditions for ignition and combustion.

A novel development of flamelet models to obtain a more comprehensive understanding of

these SG-SIDI ignition processes is presented by the SparkCIMM model, recently developed by

Dahms, Fansler, Drake, Kuo, Lippert, and Peters (2009) [1]. The setup and the experimental data

of the investigated SG-SIDI gasoline engine were provided by the R&D department of the General

Motors Company in Warren, MI, U.S.A. The specifications of the investigated engine operating

points are summarized in Tab. 15.1. They differ in engine speed and load, applied level of exhaust

gas recirculation, and in the timings of fuel injection and spark-ignition. The engine is equipped

with a siamese port, a four-valve pent-roof head, and a contoured combustion bowl in the piston.

The preparation of the combustible mixture at spark-timing is calculated with a three-dimensional

CFD simulation of the gas exchange process, using a standard k−ε turbulence model. The intake

runner, the siamese port, and the spark plug are included in the engine model to capture the inter-

actions of the fuel spray with the spark electrodes, shown in Fig. 15.1(b). The computational grids

for the gas exchange and the spray-guided spark-ignition combustion process comprise ∼ 222, 000

and ∼ 97, 000 grid cells, respectively. An enhanced swirl field is generated by the deactivation of

the left intake valve as presented in Fig. 15.1(a). The direct spray-injection is modeled with 25, 000

stochastic Lagrangian spray parcels coupled to the gas phase via source terms. An initial droplet

size distribution (SMD = 15µm) is assumed instead of modeling the primary breakup. More details
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Figure 15.2: Comparison of simulated (lines) and measured (symbols) pressure traces (left) and
heat release rates (right) for the investigated cases. For exemplification, the timings of the start/end
of injection (SOI/EOI) and the start of energizing (SOE) are highlighted. (Reprinted with permission
by R. Dahms.)

can be found in Dahms et al. (2009) [1].

The pressure traces and heat release rates, processed from the numerical simulation, are

compared to experimental data and presented in Fig. 15.2. The flame-development angle ∆θ

(0 − 10% burnt fuel mass fraction, Heywood (1988) [2]) of the spark advance and the phase of

main combustion are well predicted by the SparkCIMM/G-equation combustion model.

The complicated patterns of turbulent flame front propagation, induced by the high flow velocity

and the stratified charge mixture preparation process from direct fuel-injection are presented in

Fig. 15.3. It shows the three-dimensional visualization of the spray injection and the development

of the early non-spherical turbulent flame front. Fig. 15.3 illustrates the substantial differences in

the progression of turbulent combustion among the investigated engine operating points.
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Figure 15.3: 3D visualization of the fuel spray injection (top row) and the turbulent flame front prop-
agation for all investigated cases of the spray-guided gasoline engine. (Reprinted with permission
by R. Dahms.)
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The applied engine load and mixture dilution result in significant variations of the turbulent

burning velocity. The temporal distribution of its flame front-averaged value is presented in Fig.

15.4. Local flame front values show a substantial deviation from these averaged quantities due to

distinctive mixture stratification induced in this engine operating mode.

Figure 15.4: Turbulent burning velocity distribution for all investigated cases. Quantities are aver-
aged over the mean turbulent flame front. (Reprinted with permission by R. Dahms.)

In Fig. 15.5, the partially-premixed combustion process of the investigated spray-guided gaso-

line engine is classified, using the regime diagram for premixed turbulent combustion by Peters

(2000) [3], depicted for Case III. Although substantial temporal variations of turbulence and flame

front velocity and length scales are observed, Fig. 15.5 shows that the operating conditions are

located within the thin reaction zone regime throughout the whole combustion process. There,

the increase of the turbulent burning velocity with the turbulence intensity approaches the square

root dependence according to Damköhler (1940) [4]. In this regime, the Kolmogorov eddies do not

perturb the inner layer reaction zone of the flame front so that the chemical time scales remain

unaffected by turbulence. This confirms the underlying flamelet assumption of scale separation

between the chemical kinetics and the turbulence, and demonstrates the validity of the G-equation

flamelet model to predict turbulent partially-premixed combustion in spray-guided spark-ignition

direct-injection engines.

In the following, a more detailed analysis, performed for Case II, is presented. At first, the

velocity field close to the spark plug and at spark timing is investigated in Fig. 15.6. The flow
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Figure 15.5: Location of turbulent combustion of the investigated spray-guided spark-ignition
direct-injection gasoline engine, depicted for Case III, within the regime diagram. The timings
of spark advance, top dead center (TDC), and burn-out are highlighted. Quantities are averaged
over the mean turbulent flame front surface. (Reprinted with permission by R. Dahms.)

field results from the direct fuel injection and the gas exchange process, which generates an

intensive swirl by the deactivation of the left intake valve. Local flow velocity magnitudes approach

||~̃u|| = 50m/s. Also steep gradients in the local velocities are shown in Fig. 15.6, indicating high

turbulence intensities.

In Fig. 15.7, high-speed (24, 000 frames/s) broadband visible luminosity images of the spark

channel for two different individual engine cycles are presented. They show the formation and the

turbulent corrugation of the spark channel due to the local high-velocity flow, compare Fig. 15.6.

Also, localized ignition spots along the spark channel are observed, which subsequently lead to

flame kernel formations and flame front propagations. Characteristic length scales are identified

as the spark channel thickness (∼ 0.05mm) and the flame kernel length scale (∼ 0.5mm). The

spark can stretch up to ∼ 10mm from the spark plug before a restrike occurs. The gas voltage has

reached the breakdown voltage, which typically resets the spark channel to its original position

between the spark electrodes. Such a restrike is tracked between the third and fourth image of

cycle 41 in Fig. 15.7. However, such a restrike has no apparent influence on combustion, which
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Figure 15.6: Velocity field around the spark gap at ignition timing induced by the intake swirl flow
and the direct fuel spray-injection (top right). Local flow velocity magnitudes approach ||~̃u|| = 50
m/s. (Reprinted with permission by R. Dahms.)

proceeds due to the local conditions.

Fig. 15.8 present the distinctive scalar dissipation rates, conditioned on stoichiometric mixture

fraction, along this stretched and wrinkled spark channel at ignition timing. It is seen that the initial

high values of the scalar dissipation rate decay shortly after the start of energizing, but remain

on substantial values during the spark duration. The distribution also shows discontinuities at

simulated spark channel restrike events. If such an event is detected, the spark channel is set to

a different location. Then, fresh mixture, characterized by different scalar dissipation rates, gets

excited from that time on.

Fig. 15.9 presents a three-dimensional visualization of the distribution of the equivalence ratio,

turbulence intensity, and velocity magnitude along the spark channel at three different times after

the start of energizing. These auto-ignition and flame front propagation related quantities are used

to detect the location and time of successful flame kernel formation. Such a successful local flame

kernel propagation is predicted within the presented time-frame at t ≈ 470µs, using a combined

extended flamelet and Karlovitz-number criterion as discussed in Dahms (2010) [5].

The SparkCIMM analysis has shown that advecting and merging flame kernels, launched dur-

ing multiple ignition events along the restriking spark channel, result in non-spherical early turbu-
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Figure 15.7: High-speed (24, 000 frames/s) broadband visible (rich combustion) luminosity images
of the spark-channel for two different individual engine cycles, Dahms et al. (2009) [1].
Top (Cycle 1): Formation, advection, and turbulent corrugation of the spark-channel due to the
local flow field.
Bottom (Cycle 41): Localized ignition and flame kernel formation along the spark-channel. The
restrike, tracked between the third and fourth image, has no apparent influence on the propagating
flame kernel, Dahms et al. (2009) [1].

lent flame fronts. This characteristic feature of spray-guided spark-ignition systems is presented in

Fig. 15.10, showing a side-view comparison of probabilities of finding an instantaneous flame front,

processed from a classical single flame kernel model, high-speed laser-sheet Mie-scattering imag-

ing data, averaged over 200 consecutive engine cycles, and the SparkCIMM model. Apparently,

without the physical complexity of a detailed spark channel model, the characteristic non-spherical

early flame shape cannot be reproduced, which leads to subsequent deficiencies in numerical

simulation results.

The turbulent Damköhler number, averaged over the early non-spherical mean turbulent flame

front after spark advance, is analyzed and highlighted in Fig. 15.11. The initial small Damköhler

numbers result from rich and small scale turbulent mixtures, induced by the direct spray injection

process, leading to low laminar burning velocities and thick laminar flame thicknesses. In this

regime, highlighted in Fig. 15.11, the contribution of the turbulence intensity to the turbulent burn-

ing velocity is significantly reduced, which in turn largely depends on molecular fuel properties.
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Figure 15.8: Scalar dissipation rate χst, conditioned on stoichiometric mixture fraction along
the spark-channel as defined in Eq. (14.46) after the start of energizing (SOE). The distribution
shows discontinuities at simulated spark-channel restrike events. (Reprinted with permission by
R. Dahms.)

Figure 15.9: 3D visualization of (left) equivalence ratio φ, (middle) turbulence intensity v′, and
(right) velocity magnitude ||~̃u|| along the spark channel at different timings after the start of ener-
gizing (SOE), computed by the SparkCIMM model [a: t = 220 µs, b: t = 330 µs, and c: t = 550 µs].
Localized ignition and subsequent successful flame kernel formation is detected within the pre-
sented time-frame at t ∼ 470 µs, using extended flamelet and Karlovitz-number criterions. Then,
a small (∼ 0.5 mm, Maly (1978) [6]) spherical flame kernel (yellow sphere) is initialized at the
corresponding position Dahms et al. (2009) [1].
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Figure 15.10: Side-view comparison of probabilities of finding an instantaneous flame front pro-
cessed from results of (left) a single flame kernel model, (middle) experiments, and (right) the
SparkCIMM model at three times after spark breakdown, Dahms et al. (2009) [1]. A Gaussian dis-
tribution of the flame location is used to calculate the flame-location probability for the G-equation
simulations.
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Figure 15.11: Regime of low turbulent Damköhler numbers during early non-spherical flame kernel
propagation in spray-guided spark-ignition direct-injection (SG-PICT/PICT/Lecture15/SIDI) gaso-
line engines. In this regime, the effect of the turbulence intensity on the turbulent burning velocity
is reduced and molecular fuel properties have a substantial meaning on flame front propagation.
After a characteristic mixing time τχ, the Damköhler number increases distinctively.
The small dots denote experimental data by Bradley (1992) [7] and the large dots their localized
average. The line results according to Eq. (13.32), assuming a fully developed and a in the mean
planar turbulent flame front. (Reprinted with permission by R. Dahms.)
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15.2 Injection-Rate Shaping in Diesel Engine Combustion

The concept of flamelet equations and Representative Interactive Flamelets (RIF) prove valuable

in the simulation of turbulent combustion in diesel engines. In this example, the concept is applied

to study the effect of top-hat and boot-shaped injection-rate shapes on ignition, combustion, and

pollutant formation as an advanced technology to achieve the stringent emission standards in the

near future.

It is considered that boot-shaped rate comprises two different stages of injection as exemplarily

shown in Fig. 15.12. The dashed-line on the figure marks the separation between the two stages.

In the first stage, fuel injection starts and the injection rate increases to its first peak and remains

nearly constant until the beginning of the second stage. In this second stage, the injection rate

further increases from the first peak to the second peak, and then decreases till the end of injection

time. The peak injection-rate (referred to as height) in both stages of the boot injection-rate shape

is the parameter of variation in this study. Owing to a constant total injected mass and spray mo-

mentum (and nearly constant overall injection duration), three different boot-shaped rates, defined

in Fig. 15.13, were analyzed.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-5  0  5  10  15  20  25

In
je

ct
io

n 
R

at
e 

[m
g/

de
g.

]

Crank Angle [deg. ATDC]

stage-1 stage-2

Figure 15.12: An example of a boot injection-rate shape; both stages of the rate shape are also
shown in Luckhchoura (2010) [8].
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Fig. 15.13 shows the injection rate (in mg per degree CA) of the investigated boot-shaped

rates over crank angle. The increase in the injection rates of the first stage meant the decrease in

the injection rates of the second stage of a rate shape. The rate shapes are named as BH1, BH2,

and BH3 according to their peak injection-rate (height) in the first stage. Test case BH1 has the

lowest peak injection-rate in the first stage and the highest peak injection-rate in the second stage

among all the rate shapes. Whereas, BH3 has the highest peak injection-rate in the first stage and

the lowest peak injection-rate in the second stage, respectively. Test case BH2 is in the middle of

BH1 and BH3.
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Figure 15.13: Injection profiles showing variation in the height of the first stage and the second
stage of the boot-shaped rates , Luckhchoura (2010) [8].

Simulations were performed using the multiple-flamelet (M-RIF) model, shown in Fig. 15.14,

for all the rate shapes. In the case of multiple-flamelets, several flamelets could be found at the

same location due to the turbulent mixing process. Therefore, the contribution of each flamelet in

the same computational cell, Ĩn, is calculated from the ratio of its mean mixture fraction and the

total value of mixture fraction in the cell. Turbulent mean values of these scalars are then obtained

by using the pre-assumed shape PDF in each cell:

Ĩn =
Z̃n(xα, t)

Z̃(xα, t)
n = 1, 2 (15.1)
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Ỹi(xn, t) =
∑

Ĩn




1∫

Z=0

P̃ (Z;xα, t)Yi,n(Z, t)dZ


 , n = 1, 2 (15.2)

Here, Yi represents the species mass fraction. For this work, the multiple-flamelet concept has

been coupled to a multi-dimensional CFD solver as shown in Fig. 15.14. The surrogate fuel

(IDEA) of diesel used in this work is a mixture of 70% n-decane and 30% α-methylnaphtalene

(liquid volume).

Figure 15.14: Interaction between the CFD code and the Flamelet code, using the multiple Repre-
sentative Interactive Flamelets (M-RIF) model, Luckhchoura (2010) [8].

The specifications of the investigated single-cylinder engine, along with the applied computa-

tional grid at top dead center are shown in Fig. 15.15. For the CFD simulation, a sector mesh

representing 1/7th of the combustion was used by taking advantage of the circumferential sym-

metry of the centrally located injector equipped with a 7-hole nozzle. During the piston stroke,

seven different computational meshes were used. A remap of solutions was done before switching

between different meshes. The different wall temperatures, color-coded in Fig. 15.15, were set

based on the experimental experience and held constant during the simulation.

Details of the flow and mixing field are shown on a vertical center plane cut through the engine.
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Figure 15.15: Engine specifications and computational grid of the 1/7th sector mesh of a single-
cylinder diesel engine at top dead center.

Fig. 15.16 shows the instantaneous gaseous velocity field. The entrainment vortices generated

by the spray plume can be clearly observed from the velocity field at 8◦ CAATDC for both rate-

shapes. The piston is traveling down and a strong squish flow is directed into the squish volume

(reverse squish) from the piston bowl in both cases of top-hat and boot-shape injection profiles,

respectively. At this crank angle, about 39% of the total fuel has been injected in the top-hat

compared to about 32% of the total fuel in the boot case. The corresponding cumulative spray

momentum is about 38.5% of the total spray momentum in the case of the boot shape. As a result,

the top-hat case has a higher spray center-line velocity. The entrainment vortices induce mixing

of the relatively cold fuel vapor with the surrounding hot gases, leading to the molecular mixing

necessary for chemical reactions.

Corresponding spatial distributions of the mean mixture fraction are shown in Fig. 15.17. It is

noticed that the spray has already impinged on the piston wall and has split between the squish

volume and the bowl volume for the top-hat shape, whereas the boot case shows lower penetration

due to lower injection rates. Thus, at this crank angle higher spray momentum and penetration in

the top-hat case would enhance the mixing compared to the boot case. In the top-hat, the initial

mixing was superior due to the higher velocities (and spray momentum) and hence the vortex has

moved deeper inside the bowl and the leading edges of the spray plume are better mixed and

leaner compared to the boot case at this crank angle. At the end of injection, both shapes ended
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Figure 15.16: Velocity fields for top-hat shape (left) and boot shape (BH1, right) at three specific
crank angles.

up with almost the same fuel mass and the injected spray momentum. Thus, in the beginning,

the fuel has entered the cylinder with much higher injection velocities in the top-hat, and for the

boot shape it happened in the latter crank angles. A higher transport of fuel for a lower increment

in the squish volume results in the richer fuel mixtures in the squish region for the boot case. At

22◦CAATDC, a comparison of the mixing field for both shapes shows that the fuel distribution is

better for the boot shape allowing the higher mixing with the surrounding air.

The discussed injection, mixing, and evaporation characteristics are also reflected in the tem-

perature fields for top-hat and boot shape injection profiles as shown in Figs. 15.18 and 15.19,

respectively. The latter shows the computed heat release rates for both injection-rate shapes. The

effect of evaporation is evident in the heat release for both shapes. Earlier start of evaporation

in the boot shape shows also early rise in the heat release rates. The top-hat shape shows the

highest premixed peak in heat release rate due to higher evaporation rates during that period.

Higher evaporation rates after 10◦CAATDC in the boot shape results in the highest peak during
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Figure 15.17: Mixing fields for top-hat shape (left) and boot shape (BH1, right) at three specific
crank angles.

diffusion-controlled combustion.

Fig. 15.20 shows the comparison of the simulated and experimentally measured pressures

for both shapes over crank angle. The measured and computed pressure evolutions show the

same trends and good agreement. The model predicts an earlier ignition in the boot case as

also seen in the experiments. This trend could be associated with the early start of injection and

fuel evaporation leading to early molecular level mixing for the boot case. The pressure rise due

to combustion is faster in the top-hat case. In addition, the peak pressure is also higher in the

top-hat case. This is a result of the higher evaporation rate for the top-hat shape between 2◦ and

10◦CAATDC.

Fig. 15.21 shows a qualitative comparison of the simulated and measured soot (top) and CO

(below) emissions at exhaust valve opening (EVO). The indicated concentrations are scaled to one

in the top-hat case. Similar to the experiments, the model predicts a significant reduction in both

soot and CO emissions at EVO for the boot shape.
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Figure 15.18: Temperature fields for top-hat shape (left) and boot shape (BH1, right) at three
specific crank angles. The iso-line denotes the location of stoichiometric mixture fraction.

Fig. 15.22 compares the normalized soot values (scaled to 1.0) at exhaust valve opening in

the experiments and simulations. In the experiments, lowering the injection rates in the first stage

(i.e. increasing the rates in the second stage) total in-cylinder soot decreased at exhaust valve

opening. This trend is satisfactorily captured in the simulations, though the level of reduction, with

increasing injection rates in the first stage, is lower. With increasing the injection rates in the first

stage (BH1 to BH3), the contribution from the first flamelet increases, and at the same time due

to lower injection rates in the second stage, the second flamelet contributed more. Overall, the

model-predicted results are in good agreement with the measurements.

Fig. 15.23 (left) shows the history of soot formation for the mass belonging to the first stage

over crank angle in all the test cases. The figure provides the temporal distribution of the soot

formation in each test case. In the figure, BH3 has the lowest, and BH1 has the highest peak soot

formation. One can conclude that the higher injection rates in the first stage results in a lower peak

in soot formation. However, at exhaust valve opening BH3 predicted higher soot emissions among
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Figure 15.19: Computed heat release rates for the top-hat and boot (BH1) injection profiles, Luck-
hchoura (2010) [9].

all test cases. In the second stage, shown in Fig. 15.23 (right), the soot formation started earlier for

BH3 due to the early start of ignition. The peak in soot formation shows a rather weak dependence

on the injection rates compared to the first stage. Compared to the first stage, higher soot was

formed in the second stage. Owing to the better mixing, the oxidation of the soot formed was also

efficient. Overall, rate shape corresponding to BH1 shows the improved soot oxidation among the

rate shapes. The soot formation in the cylinder is mainly a result of two factors: the first is the

soot chemistry and the second is the state of the mixture. Therefore, it is important to quantify the

effect of both factors in the soot formation for both stages as performed in Fig. 15.24. The mass

weighted PDF of the mixture fraction describes the state of the mixture, and the first soot moment

relates to the soot chemistry. The region of overlap between the profiles of the PDF and the soot

moment contributes to the soot concentration in the cylinder. Fig. 15.24 corresponds to the crank

angle where soot formation reaches its peak in all the cases for the stage-1 and stage-2. In Fig.

15.24 (left), in the region of overlap soot concentration in the cases is nearly the same but the

profile of PDF is different in each case. This indicates the different levels of mixing in each case. In

the case of BH3, the region of overlap is smaller compared to the other cases, which results in the

lowest peak in soot formation. In Fig. 15.24 (right), profiles of PDF and soot moment are quite the

same in all the cases. This explains the nearly same peak of soot formation in the second stage

for all the cases. Therefore, one can conclude that in the first stage mixing plays a significant role

in determining the soot formation, whereas in the second stage mixing as well as soot chemistry
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Figure 15.20: Comparison between the measured and the simulated pressure traces.

are controlling mechanisms for the soot formation.
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Figure 15.22: Model-predicted and measured soot emissions at exhaust valve opening in all the
cases (scaled to 1.0), Luckhchoura (2010) [8].
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stage-1                                                                                                       stage-2

Figure 15.23: Soot formation history for both stages in all the test cases, Luckhchoura (2010) [8].
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Figure 15.24: Mass weighted PDF of the mixture fraction in the cylinder with the profile of the first
soot moment; crank angles correspond to their peak in the soot formation, Luckhchoura (2010) [8].
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[4] G. Damköhler. Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen.

Zeitschr. f. Elektrochemie, 46:601–626, 1940.

[5] R. N. U. Dahms. Modeling of Combustion in Spray-Guided Spark-Ignition Engines. Disserta-

tion, RWTH Aachen University, Germany, 2010.

[6] R. Maly and M. Vogel. Initiation and Propagation of Flame Fronts in Lean CH4-Air Mixtures by

the Three Modes of the Ignition Spark. Proc. Combust. Inst., 17:821–831, 1978.

[7] D. Bradley, A.K.C. Lau, and M. Lawes. Flame stretch as a determinant of turbulent burning

velocity. Phil. Trans. Roy. Soc. Lond., 338:359–387, 1992.

[8] V. Luckhchoura. Modeling of Injection-Rate Shaping in Diesel Engine Combustion. Disserta-

tion, RWTH Aachen University, Germany, 2010.

[9] V. Luckhchoura, F.-X. Robert, N. Peters, M. Rottmann, and S. Pischinger. Experimental and

Numerical Investigation of Injection Rate Shaping in a Small-Bore Direct-Injection Diesel En-

gine. Seventh Intl. Symp. Towards Clean Diesel Engines, 2009.

284




