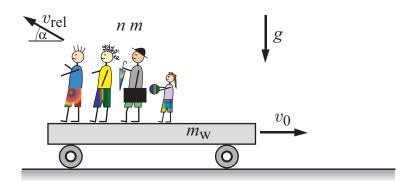
Dynamik

Aufgabe 5b

Themenschwerpunkte: Massenpunkt, Impulssatz, Impulserhaltungssatz


Auf einem sich mit der Geschwindigkeit \vec{v}_0 horizontal im Schwerefeld der Erde bewegenden Wagen der Masse $m_{\rm W}$ befinden sich n erwachsene Personen der Masse m. Diese springen bezogen auf die durch den Absprung geänderte Fahrzeuggeschwindigkeit alle zusammen oder einzeln unter dem Winkel α mit der Relativgeschwindigkeit $\vec{v}_{\rm rel}$ entgegen der Fahrtrichtung ab.

Annahmen: Die Räder des Wagens seien masselos. Die Masse des Kindes kann vernachlässigt werden.

Geg.:
$$m_{\rm w}/m$$
, n , \vec{v}_0 , $\vec{v}_{\rm rel}$, α , \vec{g}

Richtungen und Richtungssinn der Vektoren nach Skizze.

Zahlenwerte:
$$m_{\rm w}/m=10\,,\ n=3\,\,,\ \alpha=\frac{\pi}{6}$$

Ges.:

- A) Die Geschwindigkeitszunahme des Wagens als Funktion der Relativgeschwindigkeit und des Winkels α ,
 - a) wenn n Personen auf einmal abspringen,
 - b) wenn n Personen nacheinander abspringen, wobei angenommen werden soll, dass der Wagen reibungsfrei rolle!
- B) Zusatzfragen:
 - c) Mit welcher Geschwindigkeit bewegt sich der Schwerpunkt des Systems aus Wagen und Personen nach dem Absprung in horizontaler Richtung? Nachweis!
 - d) Diskutieren Sie ihr Ergebnis unter a) anhand der Spezialfälle $m_{\rm w} >> nm$ und $nm >> m_{\rm w}!$
 - e) Eine Gleichung für die spezifische Arbeit $\frac{W_{\rm P}}{nm}$, die die Personen durch den Absprung leisten, wenn sie wie unter a) gemeinsam abspringen!