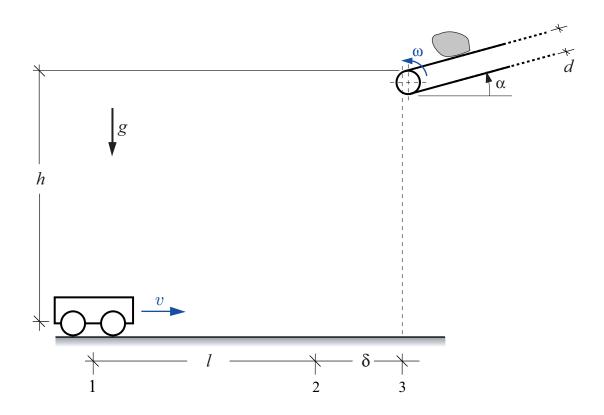
Dynamik

Aufgabe 1b


Themenschwerpunkte: Kinematik, beschleunigte Bewegung, Freier Fall

Auf einer horizontalen Ebene fährt ein Waggon mit konstanter Geschwindigkeit \vec{v} . Im Moment, als die Mitte des Waggons den Ort 1 passiert, fällt ein Stein am Ort 3 in der Höhe h von einem um den Winkel α geneigten Förderband. Das Förderband wird über eine Rolle vom Durchmesser d, die mit der Winkelgeschwindigkeit $\vec{\omega}$ rotiert, angetrieben.

Geg.:
$$\vec{v}$$
, l , d , α , $\vec{\omega}$, \vec{g} ,

Richtungen und Richtungssinn der Vektoren nach Skizze.

Zahlenwerte:
$$v=36\,\mathrm{km/h}\,,\ l=20\,\mathrm{m}\,,\ d=40\,\mathrm{cm}\,,\ \alpha=-30^\circ\,,$$

$$\omega=5/\mathrm{s}\,,\ g=9,81\,\mathrm{m/s^2}$$

Ges.: Wie groß müssen Versatz δ , die Höhe h gewählt werden, damit der Stein in der Mitte des Waggons auftrifft, wenn er den Ort 2 erreicht?