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Introduction

This text is a revised version of the material prepared for a lecture series at the
ERCOFTAC-summer school at Aachen 1992. It was intended as an introduction to the
fundamentals of combustion science with the aim to supply the basic notions and equations
for more detailed numerical exercises in calculating combustion phenomena. With modern
computational tools and facilities numerical calculations with large codes aiming to predict
the performance of combustion devices such as furnaces, reciprocative engines and gas tur-
bines are feasable and start to compete with practical experimentation. Whether they will
partly or fully replace experimental investigations will largely depend on the efficiency of
the numerical methods and on the reliability of the turbulence and the combustion models.
While there is a large scientific community concerned with Computational Fluid Dynamics
and the improvement of turbulence models, the know-how in combustion modeling seems
to be restricted to a small number of specialists. The reason for this is the complexity
of the subject which requires knowledge in thermodynamics, chemical kinetics and fluid
mechanics. At the interface of these disciplines combustion lately emerges as an exact
science which is able to predict rather than to merely describe experimentally observed
phenomena. This is due to the introduction of modern mathematical tools such as large
activation energy asymptotics and, more recently, rate-ratio asymptotics in combination
with numerical calculations of one-dimensional flame structures.

In order to classify combustion phenomena it has been useful to introduce two types of
flames: Premixed and Diffusion Flames. For laminar flames issuing from a tube burner
these two models of combustion are shown in Fig. A. If fuel and air are already mixed within
the tube, as in the case of a Bunsen burner, and the gas is ignited downstream a premixed
flame front will propagate towards the burner until it finds its steady state position in the
form of the well-known Bunsen cone. The fundamental quantity which describes this mode
of combustion is the laminar burning velocity. It is the velocity with which the flame front
propagates normal to itself into the unburned mixture. For the steady state Bunsen cone
it therefore must be equal to the flow velocity vn normal to the flame front. Behind the
flame front yet unburnt intermediates as CO and H2 will mix with the air entrained from
outside the burner and lead to post flame oxidation and radiation.

The other mode of combustion is that in a diffusion flame. Here no air is mixed with
the fuel within the tube of the burner. This may be achieved in a Bunsen burner shown in
Lecture 6 in Fig. 6.2 by closing the air inlet into the mixing chamber. Then only fuel issues
from the tube as shown in the second picture in Fig. A. It mixes with the surrounding
air by convection and diffusion while combustion occurs already. Optimal conditions for
combustion, however, are restricted to the vicinity of the surface of stoichiometric mixture.
This is the surface where fuel and air exist locally at a proportion that allows both to
be entirely consumed. This will lead to the highest flame temperature and due to the
temperature sensitivity of the chemical reactions to the fastest reaction rates. In most
cases combustion is much faster than diffusion and diffusion is the rate limiting step that
controls the entire process. This is the reason why those flames, where the reactants are
non-premixed, are called diffusion flames.

Premixed flames appear with a blue to bluish-green color, while diffusion flames ra-
diate in a bright yellow. The blue color of premixed flames is due to chemiluminescence
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Fig. A: Different modes of laminar combustion

of some exited species (C2 and CH radicals), while the yellow color of diffusion flames is
caused by radiating soot particles which dominate over the chemiluminescence that is also
present in non-pemixed combustion. Highly stretched diffusion flames, in fact, also appear
blue since the local residence time is too short for soot particles to be formed. This leads
to the conclusion that the color of a flame is characteristic for the available residence time
rather than the mode of mixing.

Premixed Flames are used whenever intense combustion within a small volume is
required. This is the case in household appliances and spark ignition engines. Another
example for non-premixed combustion are Diesel engines, where a liquid fuel spray is
injected into the compressed hot air within the cylinder. Large combustion devices such
as furnaces, on the contrary, operate under non-premixed conditions with diffusion flames
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since the premixing of large volumes of fuel and air represents a serious safety problem.
Sometimes combustion is partially premixed in order to have a better control over flame
stability and pollutant emissions, as it is the case in jet engine combustion chambers, in
gas-boilers or in stratified-charge spark ignition engines.

The classification of combustion phenomena into premixed and non-premixed com-
bustion is used throughout this text. After an introduction into the basic thermodynamics
in Lecture 1, chemical kinetics in Lecture 2 and 3, ignition and extinction phenomena
in Lecture 4 and the balance equations of fluid dynamics in Lecture 5 laminar premixed
flames are treated in Lecture 6–8 and laminar diffusion flames in Lectures 9 and 10. Then
an introduction into turbulent combustion is given in Lecture 11. Non-premixed turbu-
lent combustion is presented in Lectures 12 and 13 while premixed turbulent combustion
is treated in Lecture 14. Finally, a Lecture on partially premixed turbulent combustion
closes the text.

In preparing these lectures and the revised text I have enjoyed the support from many
of my students and friends. I am particular endebted to Peter Terhoeven for cross-reading
the manuscript and for the preparation of many of the figures. I could also rely on the
efficiency of ??? in preparing the manuscript.
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Lecture 1: Mass and Energy Balance in Combustion Systems

Combustion is a mass and energy conversion process during which chemical bond energy
is transformed to thermal energy. The fuel reacts with the oxygen of the air to form
products such as carbon dioxide and water which have a lower chemical bond energy than
the reactants. The details of the reaction mechanism that leads from the reactants to the
products will be presented in Lecture 2. Here we will only consider the initial and the final
state of a homogeneous system and use the classical balance laws of thermodynamics. This
global view is much simpler and leads to some useful results such as the adiabatic flame
temperature, but it contains less physics than the dynamic description of combustion
processes, governed by differential equations, that will be considered in the subsequent
lectures. We will first present definitions of concentrations and other thermodynamic
variables and present the mass and energy balance for multicomponent systems.

1.1 Mole Fractions and Mass Fractions

When chemical species react with each other to form other species, their basic constituents,
the chemical elements are conserved. The particular atom defining the element, a C-atom
within a CH4 molecule, for example, will be found within the CO2 molecule after com-
bustion is completed. In order to describe the chemical transformation between species
quantitatively, we need to introduce definitions for concentrations. Since different descrip-
tions are being used in the combustion literature, it is useful to present these first and to
relate them to each other.

The Mole Fraction

We consider a multi-component system with n different chemical species that contains a
large number of molecules. Then 6.0236 · 1023 molecules are defined as one mole. The
number of moles of species i denoted by ni and its sum is the total number of moles ns

ns =
n∑
i=1

ni . (1.1)

The mole fraction of species i is now defined

Xi =
ni
ns
, i = 1, 2, . . . , n . (1.2)
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The Mass Fraction

The mass mi of all molecules of species i is related to its number of moles by

mi = Wini (1.3)

where Wi is the molecular weight of species i. For some important species in combustions
Wi is given in Table 1.1. The total mass of all molecules in the mixture is

m =
n∑
i=1

mi . (1.4)

The mass fraction of species i is now defined

Yi =
mi

m
, i = 1, 2, . . . , n . (1.5)

Defining the mean molecular weight W by

m = Wns (1.6)

one obtains the relation between mole fractions and mass fractions as

Yi =
Wi

W
Xi . (1.7)

The mean molecular weight may be calculated if either the mole fractions or the mass
fractions are known

W =

n∑
i=1

WiXi =

[
n∑
i=1

Yi
Wi

]−1

. (1.8)

The Mass Fraction of Elements

In addition, the mass fraction of elements is very useful in combustion. While the mass of
the species changes due to chemical reactions, the mass of the elements is conserved. We
denote by mj the mass of all atoms of element j contained in all molecules of the system.
If aij is the number of atoms of element j in a molecule of species i and Wj is the molecular
weight of that atom, the mass of all atoms j in the system is

mj =
n∑
i=1

aijWj

Wi
mi . (1.9)

The mass fraction of element j is then

Zj =
mj

m
=

n∑
i=1

aijWj

Wi
Yi =

Wj

W

n∑
i=1

aijXi, j = 1, 2, . . . , ne (1.10)
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No. Species Wi Hi,ref Si,ref πA,i πB,i
[kg/kmol] [kJ/mol] [kJ/kmolK]

1 H 1.008 217.986 114.470 -1.2261 1.9977

2 HNO 31.016 99.579 220.438 -1.0110 4.3160

3 OH 17.008 39.463 183.367 3.3965 2.9596

4 HO2 33.008 20.920 227.358 - .1510 4.3160

5 H2 2.016 0.000 130.423 -2.4889 2.8856

6 H2O 18.016 -241.826 188.493 -1.6437 3.8228

7 H2O2 34.016 -136.105 233.178 -8.4782 5.7218

8 N 14.008 472.645 153.054 5.8661 1.9977

9 NO 30.008 90.290 210.442 5.3476 3.1569

10 NO2 46.008 33.095 239.785 -1.1988 4.7106

11 N2 28.016 0.000 191.300 3.6670 3.0582

12 N2O 44.016 82.048 219.777 -5.3523 4.9819

13 O 16.000 249.194 160.728 6.8561 1.9977

14 O2 32.000 0.000 204.848 4.1730 3.2309

15 O3 48.000 142.674 238.216 -3.3620 5.0313

16 NH 15.016 331.372 180.949 3.0865 2.9596

17 NH2 16.024 168.615 188.522 -1.9835 3.8721

18 NH3 17.032 -46.191 192.137 -8.2828 4.8833

19 N2H2 30.032 212.965 218.362 -8.9795 5.4752

20 N2H3 31.040 153.971 228.513 -17.5062 6.9796

21 N2H4 32.048 95.186 236.651 -25.3185 8.3608

22 C 12.011 715.003 157.853 6.4461 1.9977

23 CH 13.019 594.128 182.723 2.4421 3.0829

24 HCN 27.027 130.540 201.631 -5.3642 4.6367

25 HCNO 43.027 -116.733 238.048 -10.1563 6.0671

26 HCO 29.019 -12.133 224.421 -. 2313 4.2667

27 CH2 14.027 385.220 180.882 -5.6013 4.2667

28 CH2O 30.027 -115.896 218.496 -8.5350 5.4012

29 CH3 15.035 145.686 193.899 -10.7155 5.3026

30 CH2OH 31.035 -58.576 227.426 -15.3630 6.6590

31 CH4 16.043 -74.873 185.987 -17.6257 6.1658

32 CH3OH 32.043 -200.581 240.212 -18.7088 7.3989

33 CO 28.011 -110.529 197.343 4.0573 3.1075

34 CO2 44.011 -393.522 213.317 -5.2380 4.8586

35 CN 26.019 456.056 202.334 4.6673 3.1075

36 C2 24.022 832.616 198.978 1.9146 3.5268

37 C2H 25.030 476.976 207.238 -4.6242 4.6367

38 C2H2 26.038 226.731 200.849 -15.3457 6.1658

39 C2H3 27.046 279.910 227.861 -17.0316 6.9056

40 CH3CO 43.046 -25.104 259.165 -24.2225 8.5334

41 C2H4 28.054 52.283 219.468 -26.1999 8.1141

42 CH3COH 44.054 -165.979 264.061 -30.7962 9.6679

43 C2H5 29.062 110.299 228.183 -32.8633 9.2980

44 C2H6 30.070 -84.667 228.781 -40.4718 10.4571

45 C3H8 44.097 -103.847 269.529 -63.8077 14.7978

46 C4H2 50.060 465.679 250.437 -34.0792 10.0379

47 C4H3 51.068 455.847 273.424 -36.6848 10.8271

48 C4H8 56.108 16.903 295.298 -72.9970 16.7215

49 C4H10 58.124 -134.516 304.850 -86.8641 19.0399

50 C5H10 70.135 -35.941 325.281 -96.9383 20.9882

51 C5H12 72.151 -160.247 332.858 -110.2702 23.3312

52 C6H12 84.152 -59.622 350.087 -123.2381 25.5016

53 C6H14 86.178 -185.560 380.497 -137.3228 28.2638

54 C7H14 98.189 -72.132 389.217 -147.4583 29.6956

55 C7H16 100.205 -197.652 404.773 -162.6188 32.6045

56 C8H16 112.216 -135.821 418.705 -173.7077 34.5776

57 C8H18 114.232 -223.676 430.826 -191.8158 37.6111

58 C2H40 44.054 -51.003 243.044 -34.3705 9.7912

59 HNO3 63.016 -134.306 266.425 -19.5553 9.7912

60 HE 4.003 0.000 125.800

61 A 39.944 0.000 154.599

62 Csolid 12.011 0.000 0.000 -9.975 1.719

Table 1.1: Molecular constants for some important species in combustion at Tref = 298.16K
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where ne is the total number of elements in the system. Notice that no meaningful defini-
tion for the mole fraction of elements can be given because only the mass of the elements
is conserved. From the definitions above it follows that

n∑
i=1

Xi = 1,

n∑
i=1

Yi = 1,

ne∑
j=1

Zj = 1 . (1.11)

The Partial Molar Density

An additional variable defining a concentration, that is frequently used in chemical kinetics,
is the number of moles per unit volume or partial molar density

[Xi] =
ni
V

(1.12)

where V is the volume of the system. The molar density of the system is then

ns
V

=
n∑
i=1

[Xi] . (1.13)

The Partial Density

The density and the partial density are defined

ρ =
m

V
, ρi =

mi

V
= ρYi . (1.14)

The partial molar density is related to the partial density and the mass fraction by

[Xi] =
ρi
Wi

=
ρYi
Wi

. (1.15)

The Thermal Equation of State

In most combustion systems of technical interest the law of ideal gases is valid. Even
for high pressure combustion this is a sufficiently accurate approximation because the
temperatures are typically also very high. In a mixture of ideal gases the molecules of
species i exert on the surrounding walls of the vessel the partial pressure pi

pi =
niR T

V
= [Xi]R T =

ρYi
Wi

R T . (1.16)

Here R is the universal gas constant equal to 8.3143 J/mol K or 82.05 atm cm3 / mol
K. Dalton’s law states that for an ideal gas the total pressure is equal to the sum of the
partial pressures. This leads to the thermal equation of state for a mixture of ideal gases

p =
n∑
i=1

pi = ns
R T

V
=
ρR T

W
(1.17)
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where (1.6) and (1.14) have been used. From (1.16), (1.17), and (1.2) it follows that the
partial pressure is equal to the total pressure times the mole fraction

pi = pXi . (1.18)

Furthermore, defining the partial volume by

Vi =
niR T

p
(1.19)

it follows that an equivalent relation exists for the partial volume

Vi = V Xi . (1.20)

1.2 Stoichiometry

Equations describing chemical reactions such as

H2 +
1

2
O2 = H2O

or

H + O2

kf
⇀↽
kb

OH + O

are based on the principle of element conservation during reaction and define the stoichio-
metric coefficients ν′i of the reactant i on the left hand side and ν′′i of the product i on the
right hand side. The first example above corresponds to a global reaction while the second
one, where the equal sign is replaced by arrows, denotes an elementary reaction that takes
place with a finite reaction rate (conf. Lecture 2). Formally a reaction equation may be
cast into the form

n∑
i=1

ν′i Mi =
n∑
i=1

ν′′i Mi (1.21)

whereMi stands for the chemical symbol of species i. The net stoichiometric coefficient

νi = ν′′i − ν′i (1.22)

is positive for products and negative for reactants. A system of r elementary reactions
may formally then be written

n∑
i=1

νik Mi = 0, k = 1, 2, . . . , r (1.23)

where νik is the net stoichiometric coefficient of species i in reaction k.
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The stoichiometry defined by the reaction equation relates the molar production or
consumption of species to each other. The change of the number of moles of species i to
that of species 1 is

dni
νi

=
dn1

ν1
. (1.24)

With (1.3) the relation between the partial masses is

dmi

νiWi
=

dm1

ν1W1
. (1.25)

Since the total mass in the system is independent of the chemical reaction (while the total
number of moles is not), the relation between mass fractions is

dYi
νiWi

=
dY1

ν1W1
. (1.26)

A fuel-air mixture is called stoichiometric, if the fuel-to-oxygen ratio is such that both
are entirely consumed when combustion to CO2 and H2O is completed. For example, the
global reaction describing the combustion of a single component hydrocarbon fuel CmHn

(subscript F ) is
ν′F Cm Hn + ν′O2

O2 = ν′′CO2
CO2 + ν′′H2O H2O

the stoichiometric coefficients are

ν′F = 1, ν′O2
= m+

n

4
, ν′′CO2

= m, ν′′H2O =
n

2
(1.27)

where ν′F may be chosen arbitrarily to unity. Stoichiometric mixture requires that the
ratio of the number of moles of fuel and oxidizer in the unburnt mixture is equal to the
ratio of the stoichiometric coefficients

nO2,u

nF,u


st

=
ν′O2

ν′F
(1.28)

or in terms of mass fractions

YO2,u

YF,u


st

=
ν′O2

WO2

ν′F WF
= ν (1.29)

where ν is called the stoichiometric mass ratio. Then fuel and oxidizer are both consumed
when combustion is completed. Integrating (1.26) with i = O2, 1 = F between the initial
unburnt state (subscript u) and any later state leads to

YO2 − YO2,u

ν′O2
WO2

=
YF − YF,u
ν′F WF

. (1.30)

This may be written as
ν YF − YO2 = ν YF,u − YO2,u (1.31)

For a stoichiometric mixture fuel and oxygen are completely consumed at the end of
combustion, YF = YO2 = 0. Introducing this into (1.31), (1.29) is recovered.
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1.3 The Mixture Fraction

The mixture fraction is an extremely useful variable in combustion, in particular for diffu-
sion flames (Lectures 9, 10, 12, and 13). Here we present it first for a homogeneous system.
In a two-feed system, where a fuel stream (subscript 1) with mass flux ṁ1 is mixed with
an oxidizer stream (subscript 2) with mass flux ṁ2, the mixture fraction represents the
mass fraction of the fuel stream in the mixture

Z =
ṁ1

ṁ1 + ṁ2
. (1.32)

Both fuel and oxidizer streams may contain inerts such as nitrogen. The mass fraction
YF,u of the fuel in the mixture is proportional to the mass fraction in the original fuel
stream, so

YF,u = YF,1Z , (1.33)

where YF,1 denotes the mass fraction of fuel in the fuel stream. Similarly, since 1 − Z
represents the mass fraction of the oxidizer stream in the mixture, one obtains for the
mass fraction of oxygen in the mixture

YO2,u = YO2,2(1− Z) , (1.34)

where YO2,2 represents the mass fraction of oxygen in the oxidizer stream (YO2,2 = 0.232
for air). Introducing (1.33) and (1.34) into (1.31) one obtains the mixture fraction as a
variable that couples the mass fractions of the fuel and the oxygen

Z =
νYF − YO2 + YO2,2

νYF,1 + YO2,2
. (1.35)

For a stoichiometric mixture one obtains with νYF = YO2 the stoichiometric mixture
fraction

Zst =

[
1 +

νYF,1
YO2,2

]−1

. (1.36)

If Z < Zst fuel is deficient and the mixture is called fuel lean. Then, combustion terminates
when all the fuel is consumed, YF,b = 0 in the burnt gas (subscript b). The remaining
oxygen mass fraction in the burnt gas is calculated from (1.35) as

YO2,b = YO2,2

(
1− Z

Zst

)
, Z ≤ Zst (1.37)

where (1.36) was used. Similarly, if Z > Zst oxygen is deficient and the mixture is called
fuel rich. Combustion then terminates when all the oxygen is consumed, YO2,b = 0, leading
to

YF,b = YF,1
Z − Zst

1− Zst
, Z ≥ Zst . (1.38)

For the hydrocarbon fuel considered above the element mass fractions in the unburnt
mixture are

ZC = m
WC

WF
YF,u , ZH = n

WH

WF
YF,u , ZO = YO2,u (1.39)
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Because elements are conserved during combustion, the element mass fractions calculates
from (1.10) do not change. For the burnt gas they are

ZC = m
WC

WF
YF,b +

WC

WCO2

YCO2,b

ZH = n
WH

WF
YF,b + 2

WH

WH2O
YH2O,b

ZO = 2
WO

WO2

YO2,b + 2
WO

WCO2

YCO2,b +
WO

WH2O
YH2O,b .

(1.40)

This leads with (1.33) and YF,b = 0 for Z ≤ Zst and (1.38) for Z ≥ Zst to piecewise linear
relations of the product mass fractions in terms of Z

Z ≤ Zst : YCO2,b = YCO2,st
Z

Zst

YH2O,b = YH2O,st
Z

Zst

Z ≥ Zst : YCO2,b = YCO2,st
1− Z
1− Zst

YH2O,b = YH2O,st
1− Z
1− Zst

.

(1.41)

where

YCO2,st = YF,1 Zst
m WCO2

WF

YH2O,st = YF,1 Zst
n WH2O

2 WF
.

(1.42)

Profiles of YF and YO2 in the unburnt and in the burnt gas and product profiles are shown
in Fig. 1.1.

The fuel-air equivalence ratio is the ratio of fuel-air ratio in the unburnt to that of a
stoichiometric mixture

φ =
YF,u / YO2,u

(YF,u / YO2,u)st
=
ν YF,u
YO2,u

. (1.43)

Introducing (1.33) and (1.34) into (1.43) leads with (1.36) to a unique relation between
the equivalence ratio and the mixture fraction

φ =
Z

1− Z
(1− Zst)

Zst
. (1.44)

This relation is also valid for multicomponent fuels (conf. Exercise 1.1). It illustrates that
the mixture fraction is simply another expression for the local equivalence ratio. It may
also be interpreted as a combination of element mass fractions. For example, the fuel mass
fraction YF,u of a hydrocarbon fuel CmHn is equal to

YF,u = WF

(
n
ZC

WC
+m

ZH

WH

)
(1.45)
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YF,1
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YO2,b
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Fig. 1.1: Profiles of YF , YO2 , YCO2 , and YH2O in the unburnt and the burnt gas
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Equation (1.33) then shows that Z is related to a linear combination of ZC and ZH.

1.4 Energy Conservation During Combustion

The first law of thermodynamics describes the balance between different forms of energy
and thereby defines the internal energy.

du+ pdv = dh− vdp = dq + dwR . (1.46)

Here dq is the heat transfer from the surroundings, dwR is the frictional work, du is the
change of internal energy and pdv is the work due to volumetric changes. The specific
enthalpy h is related to the specific inner energy u by

h = u+ pv = u+
R T

W
(1.47)

where v = 1/ρ is the specific volume.
In a multicomponent system, the specific internal energy and specific enthalpy are the

mass weighted sums of the specific quantities of all species

u =

n∑
i=1

Yi ui, h =
n∑
i=1

Yi hi . (1.48)

For an ideal gas the partial specific enthalpy is related to the partial specific internal energy
by

hi = ui +
R T

Wi
(1.49)

and both depend only on temperature. The temperature dependence of the partial specific
enthalpy is given by

hi = hi,ref +

T∫
Tref

cpi dT . (1.50)

Here cpi is the specific heat capacity at constant pressure and hi,ref is the reference enthalpy
at the reference temperature Tref . This temperature may be arbitrarily chosen, most
frequently Tref = 0 K or Tref = 298.16 K are being used. The partial molar enthalpy is

Hi = Wi hi (1.51)

and its temperature dependence is

Hi = Hi,ref +

T∫
Tref

Cpi dT (1.52)

where the molar heat capacity at constant pressure is

Cpi = Wi cpi . (1.53)
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In a multicomponent system, the specific heat capacity at constant pressure of the mixture
is

cp =
n∑
i=1

Yicpi . (1.54)

In Table 1.1 the molar reference enthalpies at Tref = 298.16 K of a number of species are
listed. It should be noted that the reference enthalpies of H2, O2, N2, and solid carbon
were chosen as zero, because they represent the chemical elements. Reference enthalpies
of combustion products such as CO2 and H2O are typically negative. The temperature
dependence of Cpi and Hi may be calculated from the NASA polynomials documented in
a paper by A. Burcat [1].

1.5 The Adiabatic Flame Temperature

Let us consider the first law for an adiabatic system (dq = 0) at constant pressure (dp = 0)
and neglect the work done by friction (dwR = 0). From (1.46) we then have dh = 0 which
may be integrated from the unburnt to the burnt state as

hu = hb (1.55)

or
n∑
i=1

Yi,uhi,u =
n∑
i=1

Yi,bhi,b . (1.56)

With the temperature dependence of the specific enthalpy (1.50) this may be written as

n∑
i=1

(Yi,u − Yi,b)hi,ref =

Tb∫
Tref

cp,bdT −
Tu∫

Tref

cp,udT . (1.57)

Here the specific heat capacities are those of the mixture, to be calculated with the mass
fractions of the burnt and unburnt gases, respectively

cp,b =
n∑
i=1

Yi,bcpi(T ), cp,u =
n∑
i=1

Yi,ucpi(T ) . (1.58)

For a one-step global reaction the left hand side of (1.57) may be calculated by integrating
(1.26) as

Yi,u − Yi,b = (YF,u − YF,b)
νiWi

νFWF
(1.59)

such that
n∑
i=1

(Yi,u − Yi,b)hi,ref =
(YF,u − YF,b)

νFWF

n∑
i=1

νiWihi,ref . (1.60)

Here it is convenient to define the heat of combustion as

Q = −
n∑
i=1

νiWihi = −
n∑
i=1

νiHi . (1.61)
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This quantity changes very little with temperature and is often set equal to

Qref = −
n∑
i=1

νiHi,ref (1.62)

For simplicity, let us set Tu = Tref and assume cp,b to be approximately constant. For
combustion in air, the contribution of nitrogen is dominant in calculating cp,b. At tem-
peratures around 2000 K its specific heat is approximately 1.30 kJ/kg K. The value of cpi
is somewhat larger for CO2 and somewhat smaller for O2 while that for H2O is twice as
large. A first aproximation for the specific heat of the burnt gas for lean and stoichiometric
mixtures is then cp = 1.40 kJ/kg K. Assuming cp constant and Q = Qref , the adiabatic
flame temperature for a lean mixture (YF,b = 0) is calculated from (1.57) and (1.60) with
νF = −ν′F as

Tb − Tu =
QrefYF,u
cpν′FWF

. (1.63)

For a rich mixture (1.59) must be replaced by

Yi,u − Yi,b = (YO2,u − YO2,b)
νiWi

νO2WO2

(1.64)

and one obtains similarly for complete consumption of the oxygen (YO2,b = 0)

Tb − Tu =
QrefYO2,u

cpν′O2
WO2

. (1.65)

Equations (1.63) and (1.65) may be expressed in terms of the mixture fraction by intro-
ducing (1.33) and (1.34) and by specifying the temperature of the unburnt mixture by

Tu(Z) = T2 − Z(T2 − T1) (1.66)

where T2 is the temperature of the oxidizer stream and T1 that of the fuel stream. Equation
(1.66) describes mixing of the two streams with cp assumed to be constant. Equations
(1.63) and (1.65) then take the form

Tb(Z) = Tu(Z) +
QrefYF,1
cpν′FWF

Z,

Tb(Z) = Tu(Z) +
QrefYO2,2

cpν′O2
WO2

(1− Z)

Z ≤ Zst

Z ≥ Zst .

(1.67)

The adiabatic temperature is plotted over mixture fraction in Fig. 1.2. The maximum
temperature at Z = Zst is calculated from either one of (1.67) as

Tst = Tu(Zst) +
YF,1ZstQref

ν′FWF cp

= Tu(Zst) +
YO2,2(1− Zst)Qref

ν′O2
WO2cp

.

(1.68)
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Tu

T1

Zst

Fig. 1.2: The adiabatic temperature over mixture fraction

Fuel Zst Tst [K]
CH4 0.05496 2263.3
C2H6 0.05864 2288.8
C2H4 0.06349 2438.5
C2H2 0.07021 2686.7
C3H8 0.06010 2289.7

Table 1.2: Stoichiometric mixture fractions and stoichiometric flame temperatures for some
hydrocarbon-air mixtures

For the combustion of a pure fuel (YF,1 = 1) in air (YO2,2 = 0.232) with Tu,st = 300K
values for Tst are given in Table 1.2 using cp = 1.40 kJ/kg K.

1.6 Chemical Equilibrium

From the standpoint of thermodynamics, the assumption of complete combustion is incor-
rect because it disregards the possibility of dissociation of combustion products. A more
general formulation is the assumption of chemical equilibrium. In that context complete
combustion represents the limit of an infinite equilibrium constant as will be shown be-
low. Both approximations, chemical equilibrium and complete combustion, are valid in
the limit of infinitely fast reaction rates only, a condition which will seldomly be valid in
combustion systems. We will consider finite rate chemical kinetics in lecture 2. Only for
hydrogen diffusion flames complete chemical equilibrium is a good approximation, while
for hydrocarbon diffusion flames finite kinetic rates are needed. In the latter the fast chem-
istry assumption overpredicts the formation of intermediates such as CO and H2 due to the
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dissociation of fuel on the rich side by large amounts. Nevertheless, since the equilibrium
assumption represents an exact thermodynamic limit, it shall be considered here.

The Chemical Potential and the Law of Mass Action

Differently from the enthalpy, the partial molar entropy of a chemical species in a mixture
of ideal gases depends on the partial pressure

Si = S0
i − R ln

pi
p0

(1.69)

where p0 = 1 atm and

S0
i = S0

i,ref +

T∫
Tref

Cpi
T

dT (1.70)

depends only on temperature. Values for the reference entropy Si,ref are also listed in
Table 1.1. The partial molar entropy may now be used to define the chemical potential

µi = Hi − TSi = µ0
i + RT ln

pi
p0

(1.71)

where

µ0
i = Hi,ref − TS0

i,ref +

T∫
Tref

CpidT − T
T∫

Tref

Cpi
T

dT (1.72)

is the chemical potential at 1 atm. As it is shown in standard textbooks of thermodynamics
the condition for chemical equilibrium for the k-th reaction is given by

n∑
i=1

νikµi = 0, k = 1, 2, · · · , r (1.73)

Using (1.71) in (1.73) leads to

−
n∑
i=1

νikµ
0
i = RT ln

n∏
i=1

(
pi
p0

)νik
. (1.74)

Defining the equilibrium constant Kpk by

RT lnKpk = −
n∑
i=1

νikµ
0
i (1.75)

one obtains the law of mass action

n∏
i=1

(
pi
p0

)νik
= Kpk(T ) . (1.76)
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An approximation of equilibrium constants may be derived by introducing the quantity

πi =
Hi,ref − µ0

i

RT
=
S0
i,ref

R
+

T∫
Tref

Cpi
RT

dT − 1

RT

T∫
Tref

CpidT . (1.77)

For constant Cpi the second term in this expression would yield a logarithm of the tem-
perature, while the last term does not vary much if T À Tref . Therefore πi(T ) may be
approximated by

πi(T ) = πiA + πiB lnT . (1.78)

Introducing this into (1.75) one obtains

Kpk = BpkT
npk exp

(
Qk,ref
RT

)
(1.79)

where (1.62) was used and

Bpk = exp

(
n∑
i=1

νikπiA

)
, npk =

n∑
i=1

νikπiB . (1.80)

Values for πiA and πiB are also listed in Table 1.1.

An example: Equilibrium Calculation of the H2-air system

Using the law of mass action one obtains for the reaction

(1) 2H2 + O2 = 2H2O (1.81)

the relation between partial pressures

p2
H2
pO2 = p2

H2OKp1 · pO (1.82)

where
Kp1 = 0.0835T−1.3565 exp(58171/T ) (1.83)

was approximated using (1.79) and the values from Table 1.1. Introducing the definition

Γi =
Yi
Wi

(1.84)

the partial pressure is written with (1.18) as

pi = pXi = pΓiW (1.85)

where the mean molecular weight is

W = (ΓH2 + ΓO2 + ΓH2O + ΓN2)
−1

. (1.86)
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Furthermore, we need to consider the element mass balance. The element mass fractions
of the unburnt mixture are

ZH = YF,1Z, ZO = YO2,2(1− Z), ZN = YN2
= YN2,2(1− Z) . (1.87)

These are equal to those in the equilibrium gas where

ZH

WH
= 2ΓH2,b + 2ΓH2O,b

ZO

WO
= 2ΓO2,b + ΓH2O,b

(1.88)

while ZN remains unchanged. Combining (1.82)–(1.88) leads to the following nonlinear
equation for ΓH2O,b

f (ΓH2O,b) ≡
(

ΓH2O,b −
ZH

2WH

)2(
ZO

WO
− ΓH2O,b

)
−

Γ2
H2O,b

K2
p1p

(
ZH

WH
+
ZO

WO
+ 2ΓN2 − ΓH2O,b

)
= 0 .

(1.89)

This equation has one root between ΓH2O,b = 0 and the maximum values ΓH2O,b =
ZH/2WH and ΓH2O,b = ZO/WO which correspond to complete combustion for lean and
rich conditions in the limit Kp1 → ∞, respectively. The solution, which is a function of
the temperature, may be found by successively bracketing the solution within this range.
The temperature is then calculated by employing a Newton iteration on (1.55) leading to
the equation

fT (T ) = hu −
n∑
i=1

Yi,bhi,ref −
T∫

Tref

CpbdT . (1.90)

The iteration converges readily following

T = T ν +
fT (T ν)

Cpb(T
ν)

(1.91)

where ν is the iteration index. The solution is shown in Fig. 1.3 for a hydrogen-air flame
as a function of the mixture fraction for Tu = 300 K.

Another Example: Equilibrium Calculation for

Lean Hydrocarbon-Air Mixtures

The procedure is similar to that for hydrogen air mixtures, except that we must include
CO and CO2 as additional species. The additional equilibrium reaction

(2) CO + H2O = CO2 + H2 (1.92)
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Fig. 1.3: Equilibrium flame temperature for a hydrogen-air mixture

leads to an additional relation between partial pressures

pCO2pH2 = Kp2pCOpH2O (1.93)

where

Kp2 = 3.9449 · 10−5T 0.8139 exp(4951/T ) . (1.94)

For a hydrocarbon fuel CmHn the element mass fractions in the unburnt mixture are

ZC =
mMC

MF
YF,1Z

ZH =
nMH

MF
YF,1Z

(1.95)

while those of ZO and ZN are the same as in (1.87). In the equilibrium gas we have the
relations

ZH

MH
= 2ΓH2,b + 2ΓH2O,b

ZO

MO
= 2ΓO2,b + ΓH2O,b + ΓCO,b + 2ΓCO2,b

ZC

MC
= ΓCO,b + ΓCO2,b .

(1.96)
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Eliminating ΓH2,b and ΓCO,b and using (1.93) leads to an expression for ΓCO2 , b as a
function of ΓH2O, b and Kp2

ΓCO2,b =
2Kp2ΓH2O,bZC/WC

ZH/WH − 2(1−Kp2)ΓH2O,b
. (1.97)

This must be introduced into the nonlinear equation for ΓH2O,b derived from (1.82)

f (ΓH2O,b) ≡
(

ΓH2O,b −
ZH

2WH

)2(
ZO

WO
− ZC

WC
− ΓH2O,b − ΓCO2,b

)
−

Γ2
H2O,b

K2
p1p

(
ZH

WH
+
ZO

WO
+
ZC

WC
+ 2ΓN2,b − ΓH2O,b − ΓCO2,b

)
= 0 .

(1.98)

This equation may be solved in the same way as (1.89). The Newton iteration for the
flame temperature follows the procedure given by (1.90) and (1.91).

Temperature profiles for lean methane, acetylene and propane flames as a function of
the equivalence ratio for Tu = 300K are shown in Fig. 1.4.

Fig. 1.4: Adiabatic flame temperatures for lean methane, acetylene and propane flames as
a function of the equivalence ratio for Tu = 300K
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Exercise 1.1

The element mass fractions ZH,F , ZC,F , ZO,F , ZN,F of a fuel are assumed to be known.
Determine the stoichiometric mixture fraction.

Exercise 1.2

Calculate the equilibrium mole fraction of NO in air at T = 1000K and T = 1500K
by assuming that the mole fractions of O2 (XO2

= 0.21) and N2 (XN2
= 0.79) remain

unchanged.

Solution:
The equilibrium constant of the reaction

N2 + O2 = 2 NO

is with the values in table 1.1

Kp(T ) = 17.38T 0.0247 exp(−21719/T )

of NO is the partial pressure

pNO = (pN2pO2Kp)
1/2 .

Neglecting the consumption of N2 and O2 as a first approximation, their partial pressures
may be approximated with (1.18) as pN2 = 0.79 p, pO2 = 0.21 p in air. The equilibrium
mole fraction of NO is then

XNO = 1.7T 0.01235 exp(−10856/T ) .

At T = 1000 K one obtains 38 ppv (parts per volume = Xi · 10−6) and at T = 1500 K
230 ppv. This indicates that at high temperatures equilibrium NO-levels exceed by far
those that are accepted by modern emission standards which are around 100 ppv or lower.
Equilibrium considerations therefore suggest that in low temperature exhaust gases NO is
above the equilibrium value and can be removed by catalysts.
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Lecture 2: Chemical Kinetics of Gas Phase Combustion Reactions

Chemical equilibrium considerations consider the initial and the final state only, thereby
leaving an important question unanswered: How much time is needed for the conversion
from reactants to products? In real combustion systems, the rate of reaction must to be
compared with that of other processes, such convection and diffusion. Furthermore, the
overall rate is the sum of a sequence of single reaction steps since combustion typically
proceeds in reaction chains. The estimate of a global reaction time is further complicated
by the fact that many of the individual reaction steps depend strongly on temperature:
At low temperatures those steps that are able to initiate a reaction chain are very slow.
Therefore our environment, in which air and fuel (such as wood) coexist, can remain in
an unstable, the so-called chemically “frozen” state. Only when the temperature exceeds
a critical value of the order of 1000K, the transition to the stable equilibrium state is
possible.

2.1 The Chemical Reaction Rate

The quantity to describe the advancement of a reaction with time is the reaction rate.
In lecture 1 we have already noted that reaction equations describe the stoichiometry of
either global or elementary reactions. Elementary reactions occur due to collisions between
specific molecules in the gas phase, while global reactions may be viewed as a result of
many of these elementary processes. From a rigorous point of view, a reaction rate may
only be attributed to elementary reactions. The assumption of a single rate for a one-step
global reaction, which is very often used to describe the structure of ignition and flame
phenomena (conf. lectures 4 and 6, for example), can therefore not be justified on the basis
of chemical kinetics. It nevertheless represents a useful ad-hoc approximation in order to
simplify the mathematical analysis.

When a molecule A reacts with a molecule B to form the molecules C and D

A + B
kf→ C + D ,

species A is consumed at the same rate as B, while C and D are formed at that rate. The
elementary collision process is schematically illustrated in Fig. 2.1, where (AB)∗ represents
an intermediate excited state or activated complex. The rate of consumption of species
A in proportional to the molar densities of A and of B. Since A is consumed the time
derivative of its molar density is negative. Introducing the reaction rate coefficient kf as
a constant of proportionality, it may be written as(

d[A]

dt

)
f

= −kf [A][B] . (2.1)
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(AB)*

A C

B D

Fig. 2.1: Schematic presentation of a bimolecular reaction between molecules A and B
passing through an intermediate unstable molecule (AB)∗ which decomposes to C and D.

Here the subscript f denotes the forward reaction and kf is the reaction rate coefficient of
the forward reaction. If two molecules A combine to A2

A + A
kf→ A2

the rate of consumption of A is

d[A]

dt
= −2kf [A]2 . (2.2)

The factor 2 appears here because two molecules are consumed and the square follows from
(2.1) if both reactants are identical. This reasoning may be extended to the generalized
reaction equation

ν′AA + ν′BB
kf→ ν′′CC + ν′′DD .

The time derivative of the molar density of A is then(
d[A]

dt

)
f

= −ν′Akf [A]ν
′
A [B]ν

′
B = νAwf (2.3)

where the second equation defines the reaction rate wf of the forward reaction since νA =
−ν′A. For an elementary reaction containing an arbitrary number of reactants n we write
the reaction rate wf as

wf = kf

n∏
j=1

[Xj ]
ν′j . (2.4)
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The time rate of change due to the forward reaction of any species participating in the
reaction is then with νi = ν′′i − ν′i

1

νi

(
d[Xi]

dt

)
f

=
1

νj

(
d[Xj ]

dt

)
f

= wf . (2.5)

For every elementary reaction there is, in principle, the possibility that it proceeds in the
backward direction as well. When C and D react to form A and B, this may be written as

ν′AA + ν′BB←
kb
ν′′CC + ν′′DD

where the previous stoichiometric coefficients were maintained. The time rate of formation
of A by the backward reaction is here(

d[A]

dt

)
b

= ν′Akb[C]ν
′′
C [D]ν

′′
D = −νAwb (2.6)

The subscript b denotes the backward reaction and kb is its rate coefficient. The net rate
of change of the molar density of A is the sum of the forward and the backward step

d[A]

dt
=

(
d[A]

dt

)
f

+

(
d[A]

dt

)
b

= νA(wf − wb) = νAw (2.7)

The net reaction rate for a reaction with arbitrary numbers of reactants and products is
finally

w = kf

n∏
j=1

[Xj ]
ν′j − kb

n∏
j=1

[Xj ]
ν′′j . (2.8)

Rate coefficients of some of the most important reactions necessary to calculate hydrocar-
bon flames up to propane are listed in Table 2.1.

2.2 Classification of Elementary Reactions

Elementary reactions exchange atoms or atomic groups between the molecules that are
involved. For example, the elementary reaction

38f CH4 + H→ CH3 + H2

which appears in table 2.1 as reaction 38f describes the collision of a CH4 molecule with an
H radical, in which a C-H bond of the methane molecule is broken and the free H radical
from the methane molecule forms with the original H radical a stable H2 molecule. The
CH3 radical may react in a consecutive step with an O radical

35 CH3 + O→ CH2O + H

to form a stable formaldehyd molecule CH2O and an H radical. Reactions 38f and 35 are
bimolecular since two reactants are present. Most elementary combustion reactions are
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bimolecular reactions. The constant B in the rate coefficient of a bimolecular reaction in
table 2.1 has the dimension cm3/(mole sec) K−n. Other possibilities are unimolecular or
trimolecular reactions. Reactions between more then 3 molecules are so unlikely that they
do not play any role in gas phase reactions.

Unimolecular reactions occur when the large molecules decompose spontaneously into
smaller radicals. An example for a unimolecular reaction is the dissociation of the n-
propyl-radical

73 n-C3H7 → C2H4 + CH3 .

Here the energy stored within vibrational modes is used to break the bond between the
second and the third C-atom in the linear structure of the n-C3H7-radical. The breaking of
the second bond in such radicals is called the β-fission. The constant B of a unimolecular
reaction has the dimension sec−1 K−n. Examples for trimolecular reactions are the steps

H + H + M→ H2 + M15

H + O2 + M→ HO2 + M5f

CH3 + H + M→ CH4 + M . (limit for p→ 0.)34

In the first two of these the inert third body M is needed to remove the bond energy that
is liberated during recombination. If it was not present, the products H2 and HO2 would
immediately dissociate again. In the third example the low pressure limit of reaction 34
is considered. Since CH4 is more likely than H or O2 to store energy as vibrational and
rotational energy the bimolecular reaction

34 CH3 + H→ CH4 , (limit for p→∞ .)

valid in the high pressure limit, competes with the trimolecular reaction CH3 + H + M→
CH4 + M. This will be discussed below when the pressure dependence of reactions is
addressed. The constant B in the rate coefficient of a trimolecular reaction in Table 2.1
has the dimension cm6/(mole2 sec) K−n.

The third body in a trimolecular reaction may be any other molecule within the
system that remains chemically inert during that reaction. Different molecules promote
the reaction, however, at a different rate. This is accounted for by so-called catalytic
efficiencies for different molecules as compared to a specific one, say H2, in a reaction. The
reaction rate of the reaction

A + B + M→←
kf

kb
AB + M

is then
w = kf [A][B][M]− kb[AB][M] (2.9)

where the molecular density of the third body is the sum of molar densities of all species,
weighted with their catalytic efficiency zi

[M]′ =
n∑
i=1

zi[Xi] . (2.10)
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For the reactions 5 and 24 the catalytic efficiencies are given by Warnatz [2.1] as

zH2 = 1.0 , zCH4 = 6.5 , zH2O = 6.5 , zCO = 0.75
zO2

= 0.4 , zN2
= 0.4 , zAr = 0.35 .

(2.11)

Since no data exist for the catalytic efficiencies of many other species, zi is set equal to
unity for these species. If all zi’s were set equal to unity, one obtains for the third body

[M] =
n∑
i1

[Xi] =
p

RT . (2.11)

If [Xi] is used in units of moles/cm3 and the pressure in units of atmospheres, R takes the
value R = 82.05 atm cm3/mol K.

2.3 Temperature Dependence of Reaction Rate Coefficients

The forward rate coefficient kf defined in (2.1) and the backward rate coefficient kb defined
in (2.6) are, in principle, only functions of temperature. These coefficients describe the
frequency at molecular collisions between molecules and the probability that a collision will
lead a chemical reaction. A reaction will take place if the kinetic energy of the colliding
molecules is larger than a threshold energy which is specific for the reaction considered.
This energy is called the activation energy Ef of the forward reaction or Eb of the backward
reaction. In Fig. 2.2 the chemical energy Echem contained in the different species is plotted
schematically over time during the reaction progress.

Eb

(-∆H)

Ef

Echem

t

A + B

(A B)*

C + D

Fig. 2.2: Schematic representation of the chemical energy contained in the reactants, the
intermediate activated complex and the products of the reaction shown in Fig. 2.1.

24



  

According to Fig. 2.2, reactants A and B form an activated complex (AB)∗ at an
energy level which is by the amount Ef larger than the chemical energy contained in the
reactants. Here it is assumed that the reaction is exothermic. Then the energy of the
products is by the amount (−∆H) lower than that of the reactants. The activation energy
of the backward reaction, needed to reach the energy level of the activated complex, is
then

Eb = Ef + (−∆H) . (2.12)

On the basis of statistical thermodynamics [2.2] it can be shown that the temperature
dependence of the rate coefficients follows an modified Arhenius law

kf (T ) = BfT
nf exp(− EfRT )

kb(T ) = BbT
nb exp(− Eb

RT ) .

(2.13)

Here Bf and Bb are the frequency factors (containing additional information about spatial
configurations of the molecules during the reaction). The exponential terms exp(−Ef/RT )
and exp(−Eb/RT ) are in general the dominant terms describing the temperature depen-
dence of the reaction rate coefficients. The algebraic power dependencies Tnf and Tnb

only modify the exponential temperature dependence. They are referred to as the pre-
exponential temperature dependence. For radical-radical recombination reactions such as
reactions 15–17 in Table 2.1 the activation energy Ef is zero, since no activation energy
is needed to reach the activated complex. Then the preexponential term is dominant in
describing the temperature dependence.

By inserting (2.13) into (2.7) and (2.8) and considering the limiting case of chemical
equilibrium on may derive a relation between the rate coefficients kf (T ) and kb(T ).

d[A]

dt
= νAkf (T )

n∏
j=0

[Xj ]
ν′j

1− kb(T )

kf (T )

n∏
j=1

[Xj ]
νj

 (2.14)

In an isolated homogeneous system equilibrium is reached for large times. Then all [Xj ]
are equal to the equilibrium value [Xj ]eq and the l.h.s as well as the curly brackets on
the r.h.s. vanish. This leads by comparison with (1.76) using (1.16) to the requirement at
equilibrium

kf (T )

kb(T )
=

Kp(T )

(RT )νs
, νs =

n∑
j=1

νj (2.15)

This relation is generally used also far from chemical equilibrium. For a scheme of
k = 1, 2, . . . r chemical reactions the following relations between rate coefficients are valid

Bbk = BfkRνks/Bpk , νks =
n∑
j=1

νjk

nbk = nfk − npk + νks , Ebk = Efk + (−∆Hk,ref ) .

(2.16)
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Fig. 2.3: Arrhenius plot of temperature dependence of the reaction rate coefficient kf for
the case nf = 0. Measurements exist often for room temperature or, from shock tube data,
at high temperatures around 2000 K and above.

Here the coefficients from (1.80) have been used.

It may be noted here in non-homogeneous systems local chemical equilibrium is ap-
proached by assuming that the term in front of the curly brackets in (2.14) tends to infinity
while the l.h.s., generalized to contain convective and diffusive terms, remains finite. Then
the curly brackets vanish but the reaction rate remains finite. Mathematically it is the
limit of the product of two terms, one approaching infinity and the other one zero.
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2.4 Pressure Dependence of Reaction Rate Coefficients

As the example of the two reaction paths 34

CH3 + H + M→←CH4 + M

CH3 + H→←CH4

has shown, the same reactants may react simultaneously in bimolecular and trimolecular
reactions and yield the same products. Similarly, considering the backward reactions of
this example, monomolecular and bimolecular reactions may occur simultaneously. Which
one of these two competing paths will be favored depends on the pressure. This may be
illustrated by considering the formation of the activated complex and the collision of this
complex with the third body as two consecutive steps

A + B −→←−
kf1

kb1
(AB)∗1

(AB)∗ + M −→←−
kf2

kb2
AB + M2

If the pressure is low the concentration of the third body M is low according to (2.11)
and therefore the second reaction as the slower one in the sequence of reactions 1 and 2
becomes rate determining. Therefore the concentration of the third body is important and
the overall reaction tends to a three-body reaction in the limit of low pressure. On the other
hand, if the pressure is high, the second one in the sequence occurs almost immediately
after the activated complex (AB)∗ has been formed. Therefore the overall reaction does
not depend on the concentration of M and behaves as a bimolecular reaction in the limit
of high pressures.

A simplified approach to calculate the transition from one limit to the other goes back
to Lindemann (conf. [2.3]). The balance equations for A, (AB)∗, and AB are written

d[A]

dt
= −kf1[A][B] + kb1[(AB)∗]

d[(AB)∗]

dt
= kf1[A][B]− kb1[(AB)∗]− kf2[(AB)∗][M] + kb2[AB][M]

d[AB]

dt
= kf2[(AB)∗][M]− kb2[AB][M] .

(2.17)

One may now assume that the reactions 1b and 2f by which the activated complex is
consumed, are much faster than reaction 1f by which it is formed. Then the concentration
of (AB)∗ remains always very low and the time derivative in the second equation of (2.17)
may be neglected. (This is the so called “steady state approximation” that will be used
extensively in lecture 3 to derive reduced mechanisms). The concentration at (AB)∗ is
then

[(AB)∗] =
kf1[A][B] + kb2[AB][M]

kb1 + kf2[M]
. (2.18)
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Introducing this into the first and third equation of (2.17) leads after some algebra to

−d[A]

dt
=

d[AB]

dt
= kf1[A][B]F (T, p)

(
1− kb1kb2

kf1kf2

[AB]

[A][B]

)
. (2.19)

Here

F (T, p) =
kf2(T )p

RTkb1(T ) + kf2(T )p
(2.20)

describes the pressure dependence of the step

A + B + (M)→ AB + (M)

where (2.11) has been used. In the limit of large pressures F (T, p) tends to unity and kf
corresponds to kf∞ in Table 2.1, while for low pressures the forward rate becomes

lim
p→0

kf1F (T, p) =
kf1kf2

kb1
[M] = kf0[M] (2.21)

where kf0 is that of a three body reaction A + B + M → AB + M. Finally the ratio
(kb1kb2)/(kf1kf2) in (2.19) may be interpreted as the inverse of the equilibrium constant
of the global reaction, A + B = AB.

Fig. 2.4: Pressure dependence of the reaction 34: CH3 + H + (M) = CH4 + (M)
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Fig. 2.5: Comparison of rate coefficients of the competing reactions between H and O2 at
one atmosphere.
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Table 2.1 Constants in the expression k = BTn exp(−E/RT ) in the rate coefficients
of some important elementary reactions

Nr. Reaction
B

n
E

mole, cm3, sec kJ/mole

1.1 H2/O2 Chain Reactions

1f O2+H→OH+O 2.000E+14 0.00 70.30

1b OH+O→O2+H 1.568E+13 0.00 3.52

2f H2+O→OH+H 5.060E+04 2.67 26.30

2b OH+H→H2+O 2.222E+04 2.67 18.29

3f H2+OH→H2O+H 1.000E+08 1.60 13.80

3b H2O+H→H2+OH 4.312E+08 1.60 76.46

4f OH+OH→H2O+O 1.500E+09 1.14 0.42

4b H2O+O→OH+OH 1.473E+10 1.14 71.09

1.2 HO2 Formation and Consumption

5f O2+H+M’→HO2+M’ 2.300E+18 -0.80 0.00

5b HO2+M’→O2+H+M’ 3.190E+18 -0.80 195.39

6 HO2+H→OH+OH 1.500E+14 0.00 4.20

7 HO2+H→H2+O2 2.500E+13 0.00 2.90

8 HO2+OH→H2O+O2 6.000E+13 0.00 0.00

9 HO2+H→H2O+O 3.000E+13 0.00 7.20

10 HO2+O→OH+O2 1.800E+13 0.00 -1.70

1.3 H2O2 Formation and Consumption

11 HO2+HO2→H2O2+O2 2.500E+11 0.00 -5.20

12f OH+OH+M’→H2O2+M’ 3.250E+22 -2.00 0.00

12b H2O2+M’→OH+OH+M’ 1.692E+24 -2.00 202.29

13 H2O2+H→H2O+OH 1.000E+13 0.00 15.00

14f H2O2+H→H2+HO2 1.700E+12 0.00 15.70

14b H2+HO2→H2O2+H 1.150E+12 0.00 80.88
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Table 2.1 continued

Nr. Reaction B n E
mole, cm3, sec kJ/mole

1.4 Recombination Reactions

15 H+H+M’→H2+M’ 1.800E+18 -1.00 0.00

16 OH+H+M’→H2O+M’ 2.200E+22 -2.00 0.00

17 O+O+M’→O2+M’ 2.900E+17 -1.00 0.00

2. CO/CO2 Mechanism

18f CO+OH→CO2+H 4.400E+06 1.50 -3.10

18b CO2+H→CO+OH 4.956E+08 1.50 89.76

3.1 CH Consumption

19 CH+O2→CHO+O 3.000E+13 0.00 0.00

20 CO2+CH→CHO+CO 3.400E+12 0.00 2.90

3.2 CHO Consumption

21 CHO+H→CO+H2 2.000E+14 0.00 0.00

22 CHO+OH→CO+H2O 1.000E+14 0.00 0.00

23 CHO+O2→CO+HO2 3.000E+12 0.00 0.00

24f CHO+M’→CO+H+M’ 7.100E+14 0.00 70.30

24b CO+H+M’→CHO+M’ 1.136E+15 0.00 9.97

3.3 CH2 Consumption

25f CH2+H→CH+H2 8.400E+09 1.50 1.40

25b CH+H2→CH2+H 5.830E+09 1.50 13.08

26 CH2+O→CO+H+H 8.000E+13 0.00 0.00

27 CH2+O2→CO+OH+H 6.500E+12 0.00 6.30

28 CH2+O2→CO2+H+H 6.500E+12 0.00 6.30
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Table 2.1 continued

Nr. Reaction B n E
mole, cm3, sec kJ/mole

3.4 CH2O Consumption

29 CH2O+H→CHO+H2 2.500E+13 0.00 16.70

30 CH2O+O→CHO+OH 3.500E+13 0.00 14.60

31 CH2O+OH→CHO+H2O 3.000E+13 0.00 5.00

32 CH2O+M’→CHO+H+M’ 1.400E+17 0.00 320.00

3.5 CH3 Consumption

33f CH3+H→CH2+H2 1.800E+14 0.00 63.00

33b CH2+H2→CH3+H 3.680E+13 0.00 44.30

34 CH3+H+(M)→CH4+(M) k∞ 2.108E+14 0.00 0.00

k0 6.257E+23 -1.80 0.00

35 CH3+O→CH2O+H 7.000E+13 0.00 0.00

36 CH3+CH3+(M)→C2H6+(M) k∞ 3.613E+13 0.00 0.00

k0 1.270E+41 -7.00 11.56

37 CH3+O2→CH2O+OH 3.400E+11 0.00 37.40

38f CH4+H→CH3+H2 2.200E+04 3.00 36.60

38b CH3+H2→CH4+H 8.391E+02 3.00 34.56

39 CH4+O→CH3+OH 1.200E+07 2.10 31.90

40f CH4+OH→CH3+H2O 1.600E+06 2.10 10.30

40b CH3+H2O→CH4+OH 2.631E+05 2.10 70.92

4.1 C2H Consumption

41f C2H+H2→C2H2+H 1.100E+13 0.00 12.00

41b C2H2+H→C2H+H2 5.270E+13 0.00 119.95

42 C2H+O2→CHCO+O 5.000E+13 0.00 6.30
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Table 2.1 continued

Nr. Reaction B n E
mole, cm3, sec kJ/mole

4.2 CHCO Consumption

43f CHCO+H→CH2+CO 3.000E+13 0.00 0.00

43b CH2+CO→CHCO+H 2.361E+12 0.00 -29.39

44 CHCO+O→CO+CO+H 1.000E+14 0.00 0.00

4.3 C2H2 Consumption

45 C2H2+O→CH2+CO 4.100E+08 1.50 7.10

46 C2H2+O→CHCO+H 4.300E+14 0.00 50.70

47f C2H2+OH→C2H+H2O 1.000E+13 0.00 29.30

47b C2H+H2O→C2H2+OH 9.000E+12 0.00 -15.98

48 C2H2+CH→C3H3 2.100E+14 0.00 -0.50

4.4 C2H3 Consumption

49 C2H3+H→C2H2+H2 3.000E+13 0.00 0.00

50 C2H3+O2→C2H2+HO2 5.400E+11 0.00 0.00

51f C2H3+(M)→C2H2+H+(M) k∞ 2.000E+14 0.00 166.29

k0 1.187E+42 -7.50 190.40

51b C2H2+H→C2H3 k∞ 1.053E+14 0.00 3.39

4.5 C2H4 Consumption

52f C2H4+H→C2H3+H2 1.500E+14 0.00 42.70

52b C2H3+H2→C2H4+H 9.605E+12 0.00 32.64

53 C2H4+O→CH3+CO+H 1.600E+09 1.20 3.10

54f C2H4+OH→C2H3+H2O 3.000E+13 0.00 12.60

54b C2H3+H2O→C2H4+OH 8.283E+12 0.00 65.20

55 C2H4+M’→C2H2+H2+M’ 2.500E+17 0.00 319.80
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Table 2.1 continued

Nr. Reaction B n E
mole, cm3, sec kJ/mole

4.6 C2H5 Consumption

56f C2H5+H→CH3+CH3 3.000E+13 0.00 0.00

56b CH3+CH3→C2H5+H 3.547E+12 0.00 49.68

57 C2H5+O2→C2H4+HO2 2.000E+12 0.00 20.90

58f C2H5+(M)→C2H4+H+(M) k∞ 2.000E+13 0.00 166.00

k0 1.000E+17 0.00 130.00

58b C2H4+H→C2H5 k∞ 3.189E+13 0.00 12.61

4.7 C2H6 Consumption

59 C2H6+H→C2H5+H2 5.400E+02 3.50 21.80

60 C2H6+O→C2H5+OH 3.000E+07 2.00 21.40

61 C2H6+OH→C2H5+H2O 6.300E+06 2.00 2.70

5.1 C3H3 Consumption

62 C3H3+O2→CHCO+CH2O 6.000E+12 0.00 0.00

63 C3H3+O→C2H3+CO 3.800E+13 0.00 0.00

64f C3H4→C3H3+H 5.000E+14 0.00 370.00

64b C3H3+H→C3H4 1.700E+13 0.00 19.88

5.2 C3H4 Consumption

65 C3H4+O→C2H2+CH2O 1.000E+12 0.00 0.00

66 C3H4+O→C2H3+CHO 1.000E+12 0.00 0.00

67 C3H4+OH→C2H3+CH2O 1.000E+12 0.00 0.00

68 C3H4+OH→C2H4+CHO 1.000E+12 0.00 0.00
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Table 2.1 continued

Nr. Reaction B n E
mole, cm3, sec kJ/mole

5.3 C3H5 Consumption

69f C3H5→C3H4+H 3.980E+13 0.00 293.10

69b C3H4+H→C3H5 1.267E+13 0.00 32.48

70 C3H5+H→C3H4+H2 1.000E+13 0.00 0.00

5.4 C3H6 Consumption

71f C3H6→C2H3+CH3 3.150E+15 0.00 359.30

71b C2H3+CH3→C3H6 2.511E+12 0.00 -34.69

72 C3H6+H→C3H5+H2 5.000E+12 0.00 6.30

5.5 C3H7 Consumption

73 n-C3H7→C2H4+CH3 9.600E+13 0.00 129.80

74f n-C3H7→C3H6+H 1.250E+14 0.00 154.90

74b C3H6+H→n-C3H7 4.609E+14 0.00 21.49

75 i-C3H7→C2H4+CH3 6.300E+13 0.00 154.50

76 i-C3H7+O2→C3H6+HO2 1.000E+12 0.00 20.90

5.6 C3H8 Consumption

77 C3H8+H→n-C3H7+H2 1.300E+14 0.00 40.60

78 C3H8+H→i-C3H7+H2 1.000E+14 0.00 34.90

79 C3H8+O→n-C3H7+OH 3.000E+13 0.00 24.10

80 C3H8+O→i-C3H7+OH 2.600E+13 0.00 18.70

81 C3H8+OH→n-C3H7+H2O 3.700E+12 0.00 6.90

82 C3H8+OH→i-C3H7+H2O 2.800E+12 0.00 3.60

[M’] = 6.5[CH4]+6.5[H2O]+1.5[CO2]+0.75[CO]+0.4[O2]+0.4[N2]+1.0[Other]
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Lecture 3: Systematic Reduction of Reaction Kinetics for
Hydrogen and Methane Flames

The general idea of reducing complex kinetic schemes by the introduction of steady state
assumptions has been known to chemists for a long time. However, it has become fruitful
for combustion applications only very recently [3.1]–[3.4]. Interestingly enough, it was the
application to hydrocarbon flames rather than to the much simpler hydrogen flames that
first showed the full potential of the methodology.

The key to the success in combustion applications lies in the fact that flame chemistry
for most of the hydrocarbon species proceeds in reaction chains, where each intermediate
species is produced and consumed by only a few major reactions. This allows to derive
algebraic expressions for these species from their steady state relations. If these expres-
sions involve other steady state species, a non-linear system of algebraic equations results.
Consequently, its solution is not unique and among all the possible roots of this system,
the right one must be singled out. Fortunately, this coupling occurs only rarely between
intermediate hydrocarbon species. A way to overcome the difficulties introduced by the
non-uniqueness of the system of algebraic equations is the truncation of some steady state
relations.
Reduced mechanisms are useful for at least two applications:

1. they reduce the computational effort in numerical calculations of flames by replacing
the differential equations for those intermediate species that are assumed as being in
steady state by algebraic relations;

2. they allow to study the flame structure by asymptotic methods and thereby help to
identify the relatively few kinetic parameters that mainly influence global properties
such as the burning velocity or extinction strain rates.

3.1 Steady state approximations as an asymptotic limit

Steady state approximations for intermediate species can be justified in many different
ways. They first were derived for zero dimensional homogeneous systems that depend only
on time, and the term “steady state” was introduced because the time derivative of these
species is set to zero

d[Ci]

dt
= 0 =

r∑
k=1

νikwk . (3.1)

Here, t denotes the time, and wk the reaction rate. The justification for this approxima-
tion is generally provided in physical terms by stating that the rate at which species i is
consumed is much faster than the rate by which it is produced. Therefore its concentration
always stays much smaller than those of the initial reactants and the final products. Since
the concentration always stays small, its time derivative also stays small compared to the
time derivatives of the other species, as (3.1) implies.
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As an example, one may look at the well-known Zeldovich mechanism for thermal
production of NO

O + N2 → N + NOA

N + O2 → O + NO .B

Here, we assume that the level of atomic oxygen O is given as a result of the oxidation
reactions in a combustion system. Now we assume that atomic nitrogen N is in steady
state because reaction B is faster than reaction A. One then can add both reactions, and
cancel N to obtain the global reaction

(I) N2 + O2 = 2NO .

In this case the O also cancels, but this is fortuitous. The rate of the overall reaction is
that of the first reaction which is slow and therefore rate-determining. Since two moles of
NO are formed according to reaction I, the time change of NO is

dCNO

dt
= 2kA(T )COCN2 . (3.2)

This shall now be derived in a more systematic way. The balance equations for NO and N
are

dCNO

dt
= kACOCN2 + kBCNCO2

dCN

dt
= kACOCN2 − kBCNCO2 .

(3.3)

These equations will be non-dimensionalized by introducing reference values for all con-
centrations and the temperature. We define

cNO = CNO/CNOref , cN = CN/CNref (3.4)

and a non-dimensional time as

τ = tkA(Tref)COrefCN2 ref/CNOref . (3.5)

For simplicity, we assume the temperature and the concentrations of O2,O and N2 to be
constant equal to their reference value. Then the reference value for N must be chosen as

CNref =
kA(Tref)COrefCN2 ref

kB(Tref)CO2 ref

(3.6)

in order to obtain the non-dimensional equations

dcNO

d τ
= 1 + cN

ε
dcN
d τ

= 1− cN .
(3.7)
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Fig. 3.1: Solution of (3.9) for the non-dimensional concentrations of N and NO as a function
of the non-dimensional time. The steady state solution for cNO, (3.10), is also shown
(dashed line).

Here, ε denotes a small parameter defined by

ε =
CNref

CNOref

=
kA(Tref)COrefCN2 ref

kB(Tref)CO2 refCNOref

. (3.8)

The two parts of this equation suggest that ε may be assumed small based on two different
kinds of reasoning:

1. the concentration of the intermediate species in (3.7) is small compared to the typical
concentration of the product, which is NO in this case,

or

2. the rate constant kA by which the intermediate N is formed is much smaller than
the rate kB at which it is consumed. This argument assumes that the ratio of the
reference concentrations is of order unity.

The solution of the system (3.7) is readily obtained as

cN = 1− exp(−τ/ε)
cNO = 2τ + ε(exp(−τ/ε)− 1)

(3.9)

showing that there are two time scales in this problem, namely τ and τ/ε. In the limit
ε→ 0 the solution simplifies to

cN = 1, cNO = 2τ . (3.10)

This is equivalent to setting CN equal to the reference solution, equation (3.6). Then CNO

is in dimensional terms
CNO = 2tkA(Tref)COrefCN2 ref , (3.11)

which is equivalent to the solution, which is obtained by integrating (3.2).
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It should be noted that (3.10) does not satisfy the initial conditions cN = 0 at τ = 0.
Therefore, the steady state solution breaks down in an initial layer of thickness ε, where
the short time scale τ/ε is of order unity.

For the case ε = 0.2 the solution (3.9) has been plotted in Fig. 3.1. It is seen that the
concentration of cN grows in the initial layer to the steady state value cN = 1, which then
is valid for large times. The concentration of cNO grows initially slower than the linear
time dependence of the steady state solution. There also is an order O(ε) difference that
remains in the solution for long times due to neglecting the second term in the solution
for cNO. This is again due to the initial boundary condition for cN, which is not satisfied
by the steady state solution.

This example illustrates that steady state assumption may be analyzed rigorously by
asymptotic methods and how the error that they introduce may be estimated. In a more
complicated chemical system, where many steady state assumptions apply, this method-
ology can become cumbersome, since many small parameters that relate rate constants to
each other, will appear. These parameters then must be ordered in a specific way to obtain
a reasonable and self-consistent result. Very often it is easier to analyze numerical results
from a complete solution and compare the magnitude of the concentrations of the interme-
diates to the concentrations of the initial reactants or the final products. This corresponds
to the reasoning associated with the first of equations (3.8). The error introduced by each
steady state assumption is then typically of the order of this concentration ratio. For many
engineering purposes it will be acceptable to assume those intermediate species in steady
state, whose concentration is significantly less than 10% of the initial fuel concentration.

3.2 Reduced Mechanisms for Hydrogen Flames

The steady state assumption for a species i leads to an algebraic equation between reaction
rates. Therefore each of these equations can be used to eliminate rates in the remaining
balance equations for the non-steady state species. The stoichiometry of the resulting
balance equations defines the global mechanism between the non-steady state species.
Therefore the global mechanism depends on the choice of the reaction rates that were
eliminated. The rule is that one should choose for each species the fastest rate by which it
is consumed. Although this choice may be arbitrary sometimes, it has no consequence as far
as the balance equations for the non-steady state species are concerned. We will illustrate
this for the case of a hydrogen-oxygen mechanism involving only the first 8 reactions in
Table 3.1. The balance equations are

L(CH) = −w1 + w2 + w3 − w5 − w6 − w7

0 = L(COH) = w1 + w2 − w3 − 2w4 + 2w6 − w8

0 = L(CO) = w1 − w2 + w4

L(CH2) = −w2 − w3 + w7

L(CO2) = −w1 − w5 + w7 + w8

L(CH2O) = w3 + w4 + w8

0 = L(CHO2) = w5 − w6 − w7 − w8 .

(3.12)

Here, L(Ci) denotes a linear differential operator which may contain not only the time
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derivative as the one on the l.h.s. of (3.3) but also, for a non-homogeneous system, convec-
tive and diffusive terms. The specific form for flames will be introduced below. The species
OH,O and HO2 are assumed in steady state in (3.12) and the corresponding L-operators
were set equal to zero that leads to three algebraic equations between the reaction rates
wk. After choosing to eliminate rate w2 for O, w3 for OH and w7 for HO2 as their respec-
tively fastest consumption rates, one can find linear combinations such that those rates
do no longer appear on the r.h.s. of the balance equations for H,H2,O2 and H2O. These
combinations read

L(CH) + {L(COH) + 2L(CO)− L(CHO2
)} = 2w1 − 2w5 + 2w6

L(CH2) + {−L(COH)− 2L(CO) + L(CHO2)} = −3w1 + w5 − 3w6

L(CO2) + {L(CHO2)} = −w1 − w6

L(CH2O) + {L(COH) + L(CO)} = 2w1 + 2w6 .

(3.13)

Here, the terms in braces are L-operators of steady state species and are to be neglected.
By arranging the r.h.s. such that those rates with equal stoichiometric coefficients are
added, one obtains

L(CH) = 2(w1 + w6)− 2w5

L(CH2) = −3(w1 + w6) + w5

L(CO2) = −(w1 + w6)

L(CH2O) = 2(w1 + w6) .

(3.14)

The stoichiometry of these balance equations corresponds to the global mechanism

(I) 3H2 + O2 = 2H + 2H2O
(II) 2H + M = H2 + M

(3.15)

with the rates
wI = w1 + w6

wII = w5 .
(3.16)

In the second of the global reactions the inert body M has been added as a reminder
of the third body that appears in reaction 5 of the original scheme in Table 3.1. This
shall illustrate the role of reaction II as a chain breaking global reaction where the only
remaining radical, namely H, is being consumed. The role of the first global reaction is
that of an overall chain branching step. It also could have been derived by adding reaction
2 and twice reaction 3 to reaction 1 and canceling the steady state species O and OH.
Similarly, the global step II could have been derived by adding reaction 7 to reaction 5
and eliminating HO2 (and fortuitously also O2).

Alternatively to choosing w7 to be eliminated by the steady state equation for HO2,
one could have chosen to eliminate w6, which is, in fact, about five times faster than w7

at typical flame temperatures. Employing the same procedure as before, this would result
in the alternate global steps

(I′) 3H2 + O2 = 2H + 2H2O
(II′) 2H2 + O2 = 2H2O

(3.17)
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Reaction A β E

1f H + O2 → O + OH 2.0 × 1014 0.0 16800

1b O + OH → O2 + H 1.575 × 1013 0.0 690

2f O + H2 → OH + H 1.8 × 1010 1.0 8826

2b OH + H → O + H2 8.0 × 109 1.0 6760

3f H2 + OH → H2O + H 1.17 × 109 1.3 3626

3b H2O + H → H2 + OH 5.09 × 109 1.3 18588

4f OH + OH → H2O + O 6.0 × 108 1.3 0

4b H2O + O → OH + OH 5.9 × 109 1.3 17029

5 H + O2 + Ma → HO2 + Ma 2.3 × 1018 −0.8 0

6 H + HO2 → OH + OH 1.5 × 1014 0.0 1004

7 H + HO2 → H2 + O2 2.5 × 1013 0.0 700

8 OH + HO2 → H2O + O2 2.0 × 1013 0.0 1000

9f CO + OH → CO2 + H 1.51 × 107 1.3 −758

9b CO2 + H → CO + OH 1.57 × 109 1.3 22337

10f CH4 (+ M)b → CH3 + H (+ M)b 6.3 × 1014 0.0 104000

10b CH3 + H (+ M)b → CH4 (+ M)b 5.20 × 1012 0.0 −1310

11f CH4 + H → CH3 + H2 2.2 × 104 3.0 8750

11b CH3 + H2 → CH4 + H 9.57 × 102 3.0 8750

12f CH4 + OH → CH3 + H2O 1.6 × 106 2.1 2460

12b CH3 + H2O → CH4 + OH 3.02 × 105 2.1 17422

13 CH3 + O → CH2O + H 6.8 × 1013 0.0 0

14 CH2O + H → HCO + H2 2.5 × 1013 0.0 3991

15 CH2O + OH → HCO + H2O 3.0 × 1013 0.0 1195

16 HCO + H → CO + H2 4.0 × 1013 0.0 0

17 HCO + M → CO + H + M 1.6 × 1014 0.0 14700

18 CH3 + O2 → CH3O + O 7.0 × 1012 0.0 25652

19 CH3O + H → CH2O + H2 2.0 × 1013 0.0 0

20 CH3O + M → CH2O + H + M 2.4 × 1013 0.0 28812

21 HO2 + HO2 → H2O2 + O2 2.0 × 1012 0.0 0

22f H2O2 + M → OH + OH + M 1.3 × 1017 0.0 45500

22b OH + OH + M → H2O2 + M 9.86 × 1014 0.0 −5070

23f H2O2 + OH → H2O + HO2 1.0 × 1013 0.0 1800

23b H2O + HO2 → H2O2 + OH 2.86 × 1013 0.0 32790

24 OH + H + Ma → H2O + Ma 2.2 × 1022 −2.0 0

25 H + H + Ma → H2 + Ma 1.8 × 1018 −1.0 0

a Third body efficiencies: CH4 = 6.5, H2O = 6.5, CO2 = 1.5, H2 = 1.0, CO = 0.75,
O2 = 0.4, N2 = 0.4 . All other species = 1.0 .

b Lindemann form, k = k∞/(1 + kf all/[M]) where kf all = 0.0063 exp(−18000/RT ) .

Table 3.1: Methane-Air reaction mechanism:
rate coefficients in the form kj = AT β exp(−E/RT ).
Units are moles, cubic centimeters, seconds, Kelvins, and calories/mole.
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with the rates
w′I = w1 − w7 − w8

w′II = w5 .
(3.18)

After writing the balance equations for this scheme

L(CH) = 2(w1 − w7 − w8)

L(CH2) = −3(w1 − w7 − w8)− 2w5

L(CO2) = −(w1 − w7 − w8)− w5

L(CH2O) = 2(w1 − w7 − w8) + 2w5

(3.19)

and using the steady state relation for HO2

w5 − w6 − w7 − w8 = 0 (3.20)

one finds that the balance equations are identical with those in (3.14). The balance equa-
tions therefore remain independent of the choice of the rates that were eliminated. Different
global mechanisms therefore lead to the same solution for a given problem.

The reason that reaction 7 has been chosen in the reduced 4-step mechanism for
methane flames, which will be derived below, is essentially tutorial. Since in the methane
mechanism many chain breaking steps besides reactions 5 and 7 will play an important
role in reducing the H-atom concentration, a chain breaking step was retained to illustrate
the general behavior of the global mechanism.

Sometimes, for instance for the asymptotic analysis of the flame structure, one may
choose to disregard some rates in the remaining global reaction scheme. In a first asymp-
totic analysis of methane flames, which is presented in lecture 7, only reaction rates w1

and w5 were retained in (3.16) as principal rates of the global reactions IV and III cor-
responding to I and II in (3.15), respectively. The same choice in (3.18) would then lead
to different balance equations. Therefore the form of the global mechanism may become
important, if not all rates are retained in the final formulation.

3.3 A Reduced Mechanism for Methane Flames

The first step in deriving a reduced mechanism is to define a suitable starting mecha-
nism. This may be viewed as an already reduced form of a much larger “full” mechanism
available in the literature. For the specific problem considered, a numerical solution must
be obtained using the full mechanism and a sensitivity analysis must be carried out to
identify the influence of each individual reaction on the solution. The starting mechanism
should contain only those elementary reactions that are necessary to reproduce a charac-
teristic quantity, such as the burning velocity, within about less than five percent accuracy.
This simplifies the algebra of the following steps considerately. In addition, the sensitivity
analysis helps to choose the fast reactions that are to be eliminated later.

For hydrocarbon flames typically about fifty elementary reactions are necessary to re-
produce the burning velocity over the whole range of equivalence ratios and pressures up to
50 atm with reasonable accuracy. For lean-to-stoichiometric methane flames the “skeletal”
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mechanism of 25 elementary reactions in Table 3.1, was identified as a sufficiently good
representation of the elementary kinetics. This mechanism only contains hydrocarbons of
the C1-chain and is therefore expected to be insufficient for rich methane flames. Here, we
will use this mechanism as a starting mechanism for the reduction procedure.

The second step in this procedure is to identify steady state species. Following the first
of the two alternate reasonings described following (3.8), we have analyzed the outcome of a
numerical calculation for premixed methane flames (3.8) based on the starting mechanism
and determined the relative order of magnitude of the intermediate species concentrations.

The choice of retaining H rather than OH or O as a non-steady-state species is justified
because H appears as a reactant in the first reaction H + O2 → O + OH which is the most
important one for flame calculations. It competes with H+O2+M→ HO2+M as the most
important chain breaking reaction. Therefore it is crucial to calculate the H concentration
more accurately than those of O and OH.

It is now possible to use the eight steady-state conditions to eliminate eight reaction
rates from the system. We want to eliminate the fastest reactions that consume each
steady-state species and by that construct what will be called the main chain. From a
sensitivity analysis it is found that for the oxidation of CH4 via CH3,CH2O and CHO to
CO, this main chain is

11 CH4 + H → CH3 + H2

13 CH3 + O → CH2O + H
14 CH2O + H → HCO + H2

17 HCO + M → CO + H + M .

(3.21)

We will therefore use the steady-state relations for CH3,CH2O and HCO to eliminate the
rates w13, w14, and w17 from the balance equations. In addition, we will use the steady-
state relations for O,OH, and H2O to eliminate the rates w2, w3, and w7 and by that define
the main chain for the chain branching reactions

1 H + O2 → OH + O
2 O + H2 → H + OH
3 OH + H2 → H + H2O

(3.22)

as well as for the chain breaking reactions

5 H + O2 + M → HO2 + M
7 H + HO2 → H2 + O2 .

(3.23)

Finally, the main chain for the conversion of CO to CO2 consists of the two reactions

9 CO + OH → CO2 + H
3 OH + H2 → H2O + H .

(3.24)

By adding the reactions in (3.21)–(3.24) and canceling the steady state species where
reaction 3 is used twice in (3.22) one obtains the global four step mechanism for methane
flames

I CH4 + 2H + H2O ⇀↽ CO + 4H2

II CO + H2O ⇀↽ CO2 + H2

III H + H + M ⇀↽ H2 + M
IV O2 + 3H2 ⇀↽ 2H + 2H2O .

(3.25)
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Differently from the more systematic procedure used above for the H2-O2 system the
consideration of the main chain by itself does not provide the rates of the global reactions
as in (3.16). It only provides as principal rates the rate determining steps, which are the
first ones in each of the sequences (3.21)–(3.25), namely w11 for I, w9 for II, w5 for III
and w1 for IV. These are also the only ones that were not eliminated by the steady state
relations. The next step is to add to these appropriate additional reaction rates. To gain
some more insight into the properties of the remaining reactions and to avoid linear algebra
one may consider each of them as part of an alternate chain that is to be compared to the
respective main chain. We will call the remaining reactions side reactions. Beginning with
reaction 4 one realizes that it is linearly dependent on reactions 2 and 3 since the addition
of reactions 2 and 4 leads to reaction 3. Since reactions 2 and 3 were eliminated the rate
w4 will also not appear in the rates of the global reactions. This was already found in
(3.16).

The effect of side reaction 6 is determined by comparing it to reaction 7. Subtracting
reaction 7 from reaction 6 and adding reaction 3 twice leads to the global step IV

H + HO2 → OH + OH6

−(H + HO2 → H2 + O2)7

+2 (H2 + OH→ H2O + H)3

O2 + 3H2 = 2H + 2H2O .

Therefore the rate w6 should be added in wIV as it was already found in (3.16). The effect
of reaction 8 is found by subtracting reaction 3

OH + HO2 → H2O + O28

−(H2 + OH→ H2O + H)3

H + HO2 = H2 + O2 ,7

which leads to reaction 7. Therefore reaction 8 has the same chain breaking effect as
reaction 7 and w8 disappears as w7 from the global rates.

In a similar way the side reactions of the C1-hydrocarbon chain may be analyzed.
For reactions 10 and 12 the main chain reaction that they should be compared with is
reaction 11. Reaction 10 may be obtained by subtracting the global reaction III from
reaction 11.

CH4 + H→ CH3 + H211

−(H + H + M→ H2 + M)III

CH4 + M = CH3 + H + M10
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while subtracting reaction 3 from reaction 12 leads to reaction 11

CH4 + OH→ CH3 + H2O12

−(H2 + OH→ H2O + H)3

CH4 + H = CH3 + H2 .II

This indicates that reaction 10 acts as reaction 11 but it has a chain branching effect that
is stoichiometrically the inverse of the global reaction III. It should therefore be added in
wI and be subtracted in wIII. On the other hand, reaction 12 has the similar effect as
reaction 11 and should only be added in wI .

The next side reaction in Table 3.1 is reaction 15. Subtracting reaction 3 from it
shows that it has the same effect as 14 and should therefore not appear. But reaction 16
may be obtained by adding the global reaction III to 17. Therefore it has, when compared
to reaction 17, a chain breaking effect and should be added in wIII.

Reaction 18 initiates a side chain leading from CH3 to CH2O. If one chooses reac-
tion 20 as the fastest intermediate step, which consumes CH3O in this side chain and adds
it to 18, one observes a chain branching effect since two radicals are formed

CH3 + O2 → CH3O + O18

CH3O + M→ CH2O + H + M20

CH3 + O2 = CH2O + O + H .II

Adding reactions 2 and 3 twice to this one obtains

CH3 + O2 → CH2O + O + H

2(O + H2 → OH + H)2

2(H2 + OH→ H2O + H)3

CH3 + O2 + 4H2 + O = CH2O + 5H + 2H2O .

This may be decomposed into the reaction 13 plus global reaction IV minus the global
reaction III. This suggests that w18 as the principal rate of this side chain should be added
to wIV and be subtracted from wIII. Then, within this side chain, reaction 19 must be
compared to reaction 20, which shows that it has a chain breaking effect corresponding to
the stoichiometry of the global step III. Its rate therefore must be added to wIII.

Another side chain is initiated by reaction 21. Considering reaction 22 as the fastest
step to consume H2O2 and adding this as well as twice reaction 3 and subtracting twice
reaction 7 one obtains

HO2 + HO2 → H2O2 + O221

H2O2 + M→ OH + OH + M22

2(H2 + OH→ H2O + H)3

−2(H + H2O→ H2 + O2)7
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4H2 + O2 = 4H + 2H2O ,

which corresponds to reaction IV from which reaction III is subtracted. Therefore w21

should be added in wIV and subtracted in wIII. When the effect of reaction 23 is compared
to 22 in this side chain, one obtains by adding reaction 23 plus reaction 7 minus 3 times
reaction 3

H2O2 + OH→ H2O + HO223

H + HO2 → H2 + O27

−3(H2 + OH→ H2O + H)3

H2O2 + 2H2O + 4H = 2OH + 4H2 + O2 .

This is an overall step that may be decomposed into reaction 22 plus the global step III
minus the global step IV. This implies that w23 should be added in wIII and be subtracted
in wIV.

Finally, reactions 24 and 25 are three body chain breaking reactions whose rates should
be added in wIII. This is immediately evident for reaction 25 and also by subtraction of
reaction 3 from reaction 25. We may therefore summarize the rates of the global reactions
as

wI = w10 + w11 + w12

wII = w9

wIII = w5 − w10 + w16 − w18 + w19

− w21 + w23 + w24 + w25

wIV = w1 + w6 + w18 + w21 − w23 .

(3.26)

3.4 Truncation of steady state relations

The reaction rates must be expressed in terms of the rate constants and the concentrations.
Some concentrations are those of steady state species. As shown in equation (3.12), these
may be calculated from their balance equations with the L operator set equal to zero,
which will be called steady state relations. Therefore a system of non-linear algebraic
equation complements the remaining balance equations for the non-steady state species.

The most important step in reducing mechanisms is a systematic truncation of some
steady state relations such that the system of non-linear algebraic equations becomes ex-
plicit. A numerical calculation for a premixed methane flame based on the starting mech-
anism (Table 3.1) was performed. In Fig. 3.2 we have plotted the forward and backward
rates of reactions 1–4 and in Fig. 3.3 those of reactions 9–13. The origin in these figures
is at the maximum of production of H. Downstream of the origin the rates 3f and 3b
are dominant in the steady state equation for OH. Therefore to leading order OH can be
calculated from the partial equilibrium of reaction 3

COH =
k3bCH2OCH

k3fCH2

. (3.27)
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Fig. 3.2: Reaction rates 1–4 in a stoichiometric methane-air flame at 1 atm as a function
of the non-dimensional coordinate x∗ = ρusL

∫ x
0

(λ/cp)
−1 dx.

A first order approximation would need to include reaction 1f since its rate is large close
to the inner layer. To satisfy the transition to equilibrium far downstream, the backward
reaction 1b also would have been considered, although its rate is small near the inner layer.
It may therefore be viewed as a second order term that is retained only for consistency
with the downstream equilibrium condition. Since the concentration of O appears in 1b,
an ad-hoc approximation for CO satisfying the downstream equilibrium is given by partial
equilibrium of reaction 4

CO =
k4fCOH

2
eq

k4bCH2O
. (3.28)

Here COHeq is the partial equilibrium concentration obtained from eq. (3.27). If the steady
state relation for COH is truncated such that only the forward and backward rates of
reactions 1 and 3 appear and the above approximation for CO is inserted, one obtains

COH =
k3bCH2OCH + k1fCHCO2

k3fCH2 + k1bk4fk2
3bC

2
HCH2O/(k4bk2

3fC
2
H2

)
. (3.29)

Since the third reaction does not appear in the steady state relation for O and CH3, only
first and second order terms are to be balanced here.
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Fig. 3.3: Reaction rates 9–13 in a stoichiometric methane-air flame at 1 atm as a function
of the non-dimensional coordinate x∗ = ρusL

∫ x
0

(λ/cp)
−1 dx.

O:
k1fCHCO2 + k2bCOHCH + k4fC

2
OH

= CO{k1bCOH + k2fCH2 + k4bCH2O + k13CCH3}
(3.30)

CH3:
{k11fCH + k12fCOH}CCH4

= CCH3{k10bCHCM + k11bCH2 + k12bCH2O + k13CO} .
(3.31)

These are again truncated steady state relations based on the comparison of magnitude
of the rates in Figs. 3.2 and 3.3. Rates of other reactions not shown here are very much
smaller.

Since reaction 13 appears in both expressions, CCH3 must be eliminated and a qua-
dratic equation is obtained for CO

CO =
−b+

√
b2 − 4ac

2a
(3.32)

where
a = k13B, b = BD + k13(C −A)

c = −AD
(3.33)
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Fig. 3.4: Burning velocity sL as a function of the mole fraction of CH4 in the unburnt gas
(starting mechanism: solid line, cases A, B, and C of reduced mechanism formulations:
dashed lines).

and
A = k1fCHCO2 + k2bCOHCH + k4fC

2
OH

B = k1bCOH + k2fCH2 + k4bCH2O

C = {k11fCH + k12fCOH}CCH4

D = k10bCHCM + k11bCH2 + k12bCH2O .

(3.34)

Once solutions to these truncated steady states have been obtained, it is easy to resolve
the steady state relations for CCH3O, CCH2O and CHCO in terms of COH, CO and CCH3

CCH3O =
k18CCH3CO2

k19CH + k20CM

CCH2O =
k13CCH3CO + (k19CH + k20CM)CCH3O

k14CH + k15COH

CHCO =
(k14CH + k15COH)CCH2O

k16CH + k17CM
.

(3.35)

The steady state relation for CHO2 may again be truncated by considering only the rates
of reactions 5–8, since the others involving CHO2 are small. This leads to

CHO2 =
k5CHCO2CM

(k6 + k7)CH + k8COH
. (3.36)
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Finally, the steady state relation for CH2O2 leads to

CH2O2
=
k21C

2
HO2

+ k22bC
2
OHCM + k23bCH2OCHO2

k22fCM + k23fCOH
. (3.37)

3.5 Comparison of Truncated Steady State Relations

The explicit algebraic relations derived above have been used in a numerical calculation
based on the reduced mechanism for methane flames. They are tested against the solution
based on the starting mechanism. Three different formulations of reduced mechanisms
were calculated:

A) uses partial equilibrium of reaction 3 for COH according to eq. (3.27) and neglects the
term involving k13 in the steady state relation for CO, such that only reactions of the
H2O2-system are being balanced there

B) uses partial equilibrium of reaction 3 for COH and the quadratic equation (3.32) for
CO

C) uses the first order correction, eq. (3.29) for COH and the quadratic equation (3.22)
for CO.

Fig. 3.5: Mole fractions and temperature for a stoichiometric methane-air flame at 1 atm
as a function of the non-dimensional coordinate x∗ = ρusL

∫ x
0

(λ/cp)
−1 dx (starting mech-

anism: solid line, reduced mechanism: dashed line).
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Fig. 3.6: Mole fractions for a stoichiometric methane-air flame at 1 atm as a function of
the non-dimensional coordinate x∗ = ρusL

∫ x
0

(λ/cp)
−1 dx (starting mechanism: solid line,

reduced mechanism C: dashed line).

In Fig. 3.4 the burning velocity at 1 atm is plotted as a function of the mole fraction of CH4

in the unburnt mixture and the three cases are compared with the starting mechanism.
The mechanism in Table 3.1 has been used for these calculations. While case A gives
very high burning velocities, which, at φ = 1, corresponding to CCH4u = 9.5%, is around
50 cm/sec, the cases B and C do well. In case C the burning velocity differs from that of
the starting mechanism by less than 1.5 cm/sec over the entire range of equivalence ratios
while case B shows maximum derivations of 3 cm/sec or 10% on the lean side.

The mole fractions of the non-steady state species and the temperature for a stoi-
chiometric flame at 1 atm are plotted in Figs. 3.5 and 3.6. Here the reduced mechanism
formulation based on case C has been used. It is seen, that except for H and H2 the agree-
ment is quite good, but not as good as for the burning velocity. Even larger deviations
are found for the steady state species CO, COH, and CCH3 shown in Fig. 3.7. The larger
differences for these species are expected since the steady state assumptions enter their
balance equations directly.
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Lecture 4: Ignition and Extinction in Homogeneous Systems

If a spatially homogeneous premixed fuel-air mixture is preheated to temperatures of the
order of 750 K and higher, there is a possibility that chain branching reactions accelerate
the generation of radicals and heat which subsequently leads to a thermal runaway. This
process, called autoignition is of technical importance, for example in Diesel engines. A
fundamental quantity that describes autoignition is the ignition delay time ti, which is the
time span of the induction process preceeding the thermal runaway in a homogeneous sys-
tem. The ignition delay time depends on the kinetic properties of the reaction process and
on the initial temperature and pressure. There are conditions of pressure and temperature
where the ignition delay time tends to infinity and autoignition is chemically inhibited.
These conditions are called explosion limits.

We will also consider the case of a well-stirred reactor which has a continuous in-flow
of reactants and out-flow of products. If the residence time within the reactor is sufficiently
long, auto-ignition will take place. Once ignition has occurred in the reactor, in-flowing
reactants are rapidly burned. If the flow rate is increased and thereby the residence time
within the reactor decreases, combustion may be extinguished. The simplified analysis to
be presented in this lecture will also allow us to discuss extinction conditions.

4.1 Theory of Thermal Explosions

It is convenient to assume that during the ignition process either the density or the pressure
remains constant. Here we want to consider the constant density case. Let us consider
a closed adiabatic vessel at constant volume V containing a given mass m such that the
density ρ = m/V remains constant during the ignition process as shown in Fig. 4.1.

With dq = 0 and neglecting the frictional work, dwR = 0, (1.46) states that the change
of internal energy vanishes

du

dt
= 0 . (4.1)

With ρ = const the equations for the chemical species are written as

ρ
dYi
dt

= Wi

r∑
k=1

νikwk . (4.2)

With (4.1) and the definition (1.48) for the internal energy one obtains

du =

n∑
i=1

uidYi +

n∑
i=1

Yidui (4.3)

where
n∑
i=1

Yidui =

(
n∑
i=1

Yicvi

)
dT = cvdT (4.4)
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dq = 0

ρ = const.

Fig. 4.1: Autoignition in a closed volume

which defines the mean specific heat capacity at constant volume cv. With (4.2) this leads
to the temperature equation

ρcv
dT

dt
=

r∑
k=1

Qvkwk (4.5)

where

Qvk = −
n∑
i=1

νikWiui (4.6)

is the heat of combustion for a constant volume process.
Let us, for simplicity, assume a one-step reaction with a large activation energy E and

the reaction rate

ω = B

(
ρYF
WF

) (
ρYO2

WO2

)
exp

(
− E

RT

)
. (4.7)

The governing equations then simplify to

ρ
dYi
dt

= νiWiω , (4.8)

ρcv
dT

dt
= Qvω . (4.9)

Assuming constant cv and Qv and multiplying (4.8) withQv and (4.9) with νiWi leads after
integration to the coupling relation between the species mass fractions and the temperature

cv(T − T0)

Qv
=

(Yi − Yi0)
νiWi

(4.10)
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where T0 is the initial temperature before thermal runaway and Yi0 is the initial mass
fraction. We will, for simplicity, assume that Qv/cv is large compared to T − T0 during
the ignition process and set Yi = Yi0 which corresponds to the neglection of reactant
consumption. With the modified reaction rate

ω = B′ exp

(
− E

RT

)
, B′ = B

YF,0
WF

ρYO2,0

WO2

(4.11)

the temperature equation becomes

dT

dt
=
Qv
cv
B′ exp

(
− E

RT

)
. (4.12)

The temperature is expanded as
T = T0(1 + εy) (4.13)

where ε is a small parameter. A Taylor expansion of the inverse of the temperature

1

T
=

1

T0
− T − T0

T 2
0

=
1

T0
(1− εy) (4.14)

leads to an expansion of the exponential term in (4.12) as

exp

(
− E

RT

)
= exp

(
− E

RT0

)
exp

(
E

RT0
εy

)
. (4.15)

This suggests the definition of ε as

ε =
RT0

E
(4.16)

which implies that the activation energy is large as it was assumed above. When the
expansion (4.13) together with (4.15) is introduced into (4.12) one obtains

dy

dt
=
ey

ti
(4.17)

with the ignition delay time defined as

ti =
RT 2

0

E

cv
QvB′

exp

(
E

RT0

)
. (4.18)

The solution of (4.17) is with the initial condition y = 0 at t = 0 using the transformation
x = e−y which leads to dx/dt = −1/ti with the solution x = 1− t/ti. In terms of T this is

T = T0 −
RT 2

0

E
log

(
1− t

ti

)
(4.19)
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T0
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t
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Fig. 4.2: Thermal runaway illustrated by the solution (4.19)

which is plotted in Fig. 4.2 and shows a thermal runaway at t = ti. The solution is valid
only as long as ε is small and T does not exceed the order of T0(1 +RT 2

0 /E), since y was
assumed of order unity.

4.2 Ignition of Hydrogen-Oxygen Mixtures

In order to analyze the competition between chain-branching and chain-breaking reactions
we will follow [4.1] and consider a simplified mechanism for the ignition of hydrogen-oxygen
or hydrogen-air mixtures

(1) H + O2 → OH + O
(2) O + H2 → OH + H
(3) OH + H2 → H2O + H
(5) H + O2 + M → HO2 + M
(7b) H2 + O2 → H + HO2 .

(4.20)

Assuming reactions (2) and (3) very fast and thereby O and OH in steady state we can
combine the first three reactions to a global step.

(I) 3H2 + O2
k1−→ 2H + 2H2O . (4.21)

as shown in Lecture 3. As it is easily calculated from Table 1.1 the heat of combustion
of reaction I is 48 kJ/mol while reaction (7b) is slightly endothermic with −21 kJ/mol.
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Reaction (5) releases most of the heat with 197 kJ/mol. Only this contribution will be
retained in the temperature equation which then reads

ρcv
dT

dt
= Qv5ω5 . (4.22)

Therefore a significant change of temperature will only occur when reaction (5) becomes
important. The balance equation for the formation of H-radicals is

ρ
dYH

dt
= WH(2ωI + ω7b − ω5) . (4.23)

It will be assumed for simplicity that during the first stage of ignition the temperature
change is small and the reactants and the rate coefficients remain constant. Introducing
non-dimensional variables

x =
YH k1(T0)

(YH2)0 k7b(T0)

τ = tk1(T0)ρ0YO2,0/WO2

κ = k5(T0)z5p/(k1(T0)RT0)

(4.24)

(4.23) becomes
dx

dτ
= (2− κ)x+ 1 (4.25)

with the initial conditions x = 0 at τ = 0. The solution is

x =
exp[(2− κ)τ ]− 1

2− κ . (4.26)

The non-dimensional radical concentration is plotted for κ = 0.1, κ = 2 and κ = 10 in
Fig. 4.3. This shows that it increases exponentially if κ < 2, linearly for κ = 2 and reaches
a constant value x = 1/(κ− 2) for κ > 2.

While (4.19) readily suggests a definition of the ignition delay time as t = ti where y →
∞, such a definition is not evident for the solution (4.26). Here the initially exponential
growth of the radical concentration for κ < 2 and the existence of a threshold at κ = 2
are the main results. The condition κ = 2 defines a cross-over temperature Tc between the
first and the fifth reaction

2k1(Tc) =
z5p

RTc
k5(Tc) . (4.27)

Here z5 is the effective third body efficiency

z5 = XH2,0 + 0.4XO2,0 + 0.4XN2,0

of the initial fuel air mixture. It is around 0.6 for stoichiometric hydrogen-air flames and
around 0.8 for stoichiometric hydrogen-oxygen flames. The pressure dependence of Tc was
evaluated using z5 = 0.7 and the rates from Table 2.1 and is plotted in Fig. 4.5 below.
For p = 1 atm Tc is close to 1000 K. Below this temperature the chain breaking effect of
reaction 5 dominates as compared to the chain-branching effect of reaction 1.
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Fig. 4.3: Solutions of (4.26) for κ = 0.1, κ = 2, κ = 10.

For a homogeneous stochiometric hydrogen-oxygen mixture at 0.1 bar the onset of
ignition was calculated using a 17-step-mechanism or 8-step-mechanism and the 3-step-
mechanism of (4.20) and (4.21). Ignition delay times for both cases are calculated numer-
ically and are compared at different initial temperatures and are shown in an Arrhenius
diagram in Fig. 4.4. It is seen that the ignition delay time increases with decreasing tem-
perature in the range from 1500 K to around 800 K. Then, at 790 K which corresponds
to the cross-over temperature Tc at p = 0.1 bar, it suddenly increases to very large values,
making ignition in technical systems quasi impossible.
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Fig. 4.4: Ignition delay times for stoichiometric hydrogen-oxygen mixtures. The lines
show the full mechanism containing the first 17 steps in Table 2.1, the first 8 steps and the
simplified 3-step mechanism of reactions 5, 7b and I given in (4.20) and (4.21).

4.3 Explosion Limits for Hydrogen-Oxygen Mixtures

The onset of a homogeneous explosion in a closed vessel depends on additional influences,
in particular the heat loss to the walls and thereby on the dimensions of the vessel. Fig. 4.5
taken from [4.2] shows the explosion limits for a stoichiometric hydrogen oxygen mixture
as a function of pressure and temperature. For a time range between 750 K and 840 K
there are three branches separating non-explosive to explosive conditions. The low and
the high pressure branch are influenced by the depletion of chain carrier on the walls of
the vessel. Different coatings with KCl give different values for the explosion limits. The
middle branch is essentially determined by the competition between reaction (1) and (5).
It agrees well with Tc evaluated from (4.27).

The lower branch may be explained as follows: For low temperatures the initial chain
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Fig. 4.5: Explosion limits for a stoichiometric hydrogen oxygen mixture in a spherical
vessel. Solid line: numerical calculations using a full kinetic mechanism by Stahl and
Warnatz [4.2] data points referenced therein, dashed line: (4.27) with z5 = 0.7

branching proceeds through the reaction:

H2 + O2 + M→ H2O2 + M

H2O2 + M → OH + OH + M .

Since the first of these reactions is trimolecular with a large activation energy, it increases
relatively to the other bimolecular reactions as the pressure increases but decreases with
temperature. A line of constant rate should then have a negative slope in the p-T dia-
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gram 4.5. The explosion limit is then given by the condition that the rate of removal of
radicals by wall reactions equals that of production by the two reactions above.

For pressures above the middle branch in Fig. 4.5, chain braking by reaction (5), leads
to a massive formation of HO2. This reacts with H and OH as

(6) H + HO2 → OH + OH
(7) H + HO2 → H2 + O2

(8) OH + HO2 → H2O + O2 .

Only the first of these is radical conserving, while reaction (7) and (8) are chain breaking.
This was already discussed in Lecture 3. Therefore HO2 is not a chain carrier at typical
combustion conditions. When large amounts of HO2 are being formed, however, there is
a chain branching effect through the reactions

(9) H2 + HO2 → H2O2 + H
(10) H2O2 + M → OH + OH + M .

Whether chain branching by reactions (9) and (10) dominates over chain breaking by
reactions (7) and (8) depends on the ratio of H and OH versus H2 and on temperature.
In addition, the possibility of chain branching in a closed vessel depends again on the
vessel diameter. The larger the vessel and therefore the volume to wall area ratio, the
less radicals are removed compared to those that are being formed. Therefore an increase
of pressure beyond the second explosion limit will eventually lead to the third explosion
limit, the upper branch in Fig 4.5. Since reactions (9) and (10) increase with temperature,
the third branch is reached later at lower temperatures, which explains its negative slope
in Fig 4.5.

4.4 Ignition of Higher Hydrocarbon-Oxygen System

While the ignition delay time of lower hydrocarbons increases monotonically with decreas-
ing temperature in a similar way as that of hydrogen-oxygen mixtures, higher hydrocarbons
behave differently. There is a high temperature regime where the fuel is rapidly decom-
posed into small C2- and C1-hydrocarbons, which are subsequently oxidized leading to
a thermal runaway as for small hydrocarbons. At intermediate temperatures, the igni-
tion delay time decreases with decreasing temperature. At temperatures below typically
700 K the ignition delay time decreases again with increasing temperature. In this low
temperature regime the fuel is oxidized by O2-addition in a degenerated chain branching
mechanism. Fig. 4.6 shows the ignition delay time for n-heptane. Rather detailed mech-
anisms have been proposed to model the ignition delay times of fuels like n-heptane and
iso-octane over a large temperature range [4.3]. While n-heptane may be considered as a
reference fuel for the (desired) auto-ignition in a Diesel engine, iso-octane may represent a
gasoline fuel, where auto-ignition leads to (undesired) engine knock.

The high temperature oxidation of n-heptane proceeds from the attack of the fuel by
H, OH and HO2 radicals to form n-heptyl radicals and through the break-up of these into
C2H4, CH3 and H radicals. These are oxidized by reactions of the C1-C2-chemistry. The
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low temperature chemistry of lower aliphatic hydrocarbons is characterized by degenerated
chain branching which may be illustrated by the following sequence of reaction steps:

RH + O2 −→ R + HO2 (initiation)

RH + OH −→ R + H2O (initiation)

R + O2 −⇀↽− RO2 (first O2-addition)

RO2 −→ R′O2H (internal H-abstraction)

R′O2H + O2 −⇀↽− O2R
′O2H (second O2-addition)

O2R
′O2H −→ HO2R

′′O2H (internal H-abstraction)

HO2R
′′O2H −→ HO2R

′′O + OH (chain propagation)

HO2R
′′O −→ OR′′O + OH . (chain branching)

Fig. 4.6: Comparison of calculated ignition delay times for stoichiometric n-heptane-air
mixtures by a full kinetic mechanism of 1011 elementary reactions with experimental data
[4.4] at 40 atm.

For n-heptane R is represented by C7H15, R′ = C7H14 and R′′ = C7H13. This low
temperature mechanism is no longer valid when the temperature increases beyond about
800 K. The competition of the reverse reactions of the first and second O2-addition with
the subsequent internal H-abstraction reaction is the key to the understanding of the
negative temperature dependence of ignition delay. With increasing temperature these
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reverse reactions become faster than their forward reactions, thereby stopping the reaction
sequence. A transition to the high temperature mechanism must occur.

The apparent negative temperature dependence of the intermediate branch shall be
explained by discussing a simplified 4-step ad-hoc model with adjusted rate constants of
n-heptane ignition [4.5], which is written as

F
1−→ X

X + 11 O2
2−→ P

F + 2 O2

3f−⇀↽−
3b

I

I + 9 O2
4−→ P .

Here F stands for the fuel, with F = n-C7H16. X and I represent the combined intermedi-
ates, where X = 3C2H4 + CH3 + H and I = HO2R

′′O + H2O. P represents a combination
of the products, with P = 7CO2 + 8H2O.

The first two reactions correspond to a two-step high temperature scheme containing
an endothermic fuel decomposition into small hydrocarbons and the exothermic oxidation
of these into the final combustion products. The last two steps represent the degenerated
chain branching mechanism discussed above. Combining all steps up to the formulation
of HO2R

′′O leads to the third global step of the model. The fourth step contains the
chain branching and the oxidation to the combustion products. Only the third reaction is
considered to be reversible. The activation energy of the backward reaction 3b is assumed
much larger than that of the forward reaction 3f . Therefore, at low temperatures the
backward reaction 3b is unimportant. However, at temperatures around 800 K and higher,
the backward reaction dominates over the forward reaction and thereby decreases the
relative importance of reactions 3 and 4 in the mechanism. This shall explain the transition
from the low temperature to the high temperature branch.

Let us, for the moment, neglect the effects of reactions 1 and 2. The conservation
equations for the mole fractions XF and XI of the fuel F and the intermediate I then
simplify to

d

dt
XF = −k3f XFXO2 + k3bXI

d

dt
XI = k3f XFXO2 − k3bXI − k4XIXO2 .

(4.28)

For temperatures above 800 K the rate of reaction 4 is small compared to the rates of the
two reactions 3. Under these conditions, there are two stages in the ignition process: In
a first stage, with a characteristic time determined by the reactions 3, we can neglect the
effect of reaction 4. No significant change of temperature occurs during this stage because
the heat release of reaction 3 is small compared to that of reaction 4. The consumption of
oxygen during this stage is also small because the stoichiometric coefficient 2 of reaction 3
is small compared to 9 of reaction 4. The temperature rise can only occur during the
second stage, when the fast reactions 3 are in partial equilibrium. Therefore, assuming
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partial equilibrium of reaction 3, (4.28) simplifies to

k3f XOXF = k3bXI

d

dt
(XI +XF) = −k4XIXO2

.
(4.29)

The reaction rate constants appearing in (4.29) are given by

k3f = B3f e
−E3f/RT , k3b = B3b e

−E3b/RT , k4 = B4 e
−E4/RT .

If we define XS = XI +XF, the mole fraction of the pool formed by I and F, we can express
XI as a function of XS as

XI = XS
KXO2

1 +KXO2

(4.30)

where K is the equilibrium constant of the third reaction

K =
k3f

k3b
=
B3f

B3b
exp ( (E3b − E3f ) /RT ) . (4.31)

Thus the second of (4.29) becomes

d

dt
XS = −k4

KXO2

1 +KXO2

XO2 XS . (4.32)

For values of T larger than the cross-over temperature of approximately 800 K, KXO2

becomes small compared to 1. In this case the reverse reaction 3 is so fast that the
concentration of I cannot grow, XI ¿ 1 according to (4.30) and remains in steady state.
Then XS = XF and (4.32) simplifies to

d

dt
XF = −k4KXFX

2
O2
. (4.33)

corresponding to the overall kinetic scheme

F + 11 O2 −→ P .

The combined reaction rate constant

k4K =
B3f

B3b
B4 exp [− (E4 + E3f − E3b) /RT ] (4.34)

is associated with the apparent activation energy E3f +E4 −E3b, which is negative if E3b

is sufficiently larger than the sum of E3f and E4 as it was assumed in [4.5].
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Fig. 4.7: Schematic representation of a continuously stirred flow reactor

4.5 The Continuously Stirred Flow Reactor, Steady State Solutions

We now want to consider an idealized flow reactor of constant mass m and volume V
shown in Fig. 4.7. The mass flow rate ṁ enters with reactants Yi = Yiu at temperature
T = Tu. The reactants are immediately mixed with combustion products at the entrance
of the reactor where the flow is assumed to be highly stirred by many incoming turbulent
jets.

The temperature and the concentrations within the reaction are assumed to be uniform
equal to T and Yi, respectively. The reactor is assumed adiabatic for simplicity.

The time rate of change dmi/dt of the partial mass mi of species i within the reactor
is equal to the difference between it inflowing and outflowing mass flow rate of species i,
ṁ(Yi,u − Yi) and the change by chemical reactions (dmi/dt)chem. Using mi = mYi and(

dmi

dt

)
chem

= V ṁi = VWi

r∑
k=1

νikwk (4.35)

where ṁi is the chemical mass production rate per unit volume, one obtains

m
dYi
dt

= ṁ (Yiu − Yi) + VWi

r∑
k=1

νikwk . (4.36)

For an open adiabatic system at constant pressure the first law of thermodynamics yields
dh = 0. Similar to (4.3) and (4.4) one now obtains

dh =

n∑
i=1

hidYi +

n∑
i=1

Yidhi = 0 (4.37)
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and
n∑
k=1

Yidhi =

(
n∑
i=1

Yicpi

)
dT = cpdT . (4.38)

Combining this with (4.36) leads to the temperature equation

mcp
dT

dt
= ṁcp (Tu − T ) + V

r∑
k=1

Qkwk (4.39)

where

Qk = −
n∑
i=1

νikWihi (4.40)

is the heat of combustion for a constant pressure process. We will now consider a single
one-step reaction with a large activation energy governed by the reaction rate

ω = B
ρYF
WF

exp

(
− E

RT

)
. (4.41)

In assuming a dependence on the concentration of the fuel F only, but not on that of the
oxidizer, we implicitly consider a sufficiently lean mixture with a large excess of oxygen.
Therefore the concentration of oxygen does not change much during combustion and there-
fore does not affect the reaction rate. (This will be discussed in more detail in Lecture 6.)
In (4.41) B has the dimension sec−1 and therefore represents the inverse of a reaction time.
It must be compared to the residence time tν within the reactor which is

tν =
m

ṁ
(4.42)

Using ρ = m/V and introducing the nondimensional quantities

Y ∗ =
YF
YF,u

, T ∗ =
T

Tu
, t∗ =

t

tν
,

Da = Btν , E∗ =
E

RTu
, Q∗ =

QYu
cpWFTu

,

(4.43)

one obtains the non-dimensional reactor equations (with the asterisk removed)

dY

dt
= 1− Y −DaY exp (−E/T )

dT

dt
= 1− T +QDaY exp (−E/T )

(4.44)

The parameters of these equations are the Damköhlers number Da, the non-dimensional
heat of combustion Q and the non-dimensional activation energy E. (The definition of
the Damköhler number differs here from the one to be used in subsequent lectures, where
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the exponential term evaluated at a specific temperature will be included. Here we want
to consider a large range of temperatures and therefore use the product of the reaction
frequency B and the residence time to define Da.)

Multiplying the first of (4.44) by Q and adding both equations one obtains a linear
equation dx/dt = −x for x = 1− T +Q(1− Y ) which has the trivial solution x = 0. This
leads to the following coupling relation between the temperature and the concentration

T +QY = 1 +Q (4.45)

Introducing this into (4.44) the problem of the adiabatic reactor is described by a single
equation for the temperature

dT

dt
= 1− T + DaN (T ) (4.46)

where the non-linear operator N defined by

N = (1 +Q− T ) exp (−E/T ) (4.47)

From (4.45) it is seen that the minimum and the maximum values of the temperature are

Y = 1 : Tmin = 1

Y = 0 : Tmax = 1 +Q
(4.48)

We will now assume that the reactor has reached a steady state. The steady state tem-
perature TS is obtained from the algebraic equation

0 = 1− TS + DaN (TS) (4.49)

Fig. 4.8: Steady state solutions of the reactor equations
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Solutions of (4.49) for Q = 4 and E = 2, E = 5 and E = 10 are shown in Fig. 4.8.
For E = 2 one obtains a monotonous increase of TS with increasing Damköhler number.
For E = 10, however, there is a range of Damköhler numbers between DaQ and DaI
where multiple solutions exist. The shape of this curve reminds vaguely of an S, it is often
called the “S-shaped curve”. At the points Q and I, corresponding to the Damköhler
numbers DaQ and DaI the curve for E = 10 has a vertical tangent. If the reactor is
originally operated with a low residence time and therefore a small Damköhler number,
the solution remains close to the TS = 1 corresponding to the non-reacting case. When
the Damköhler number increases beyond Da = 100 in the case E = 10, there is a small
temperature increase. Beyond Da = DaI , however, the low temperature solution does no
longer exist and the only steady state solution at which the reactor can operate is the
solution on the high temperature branch. The instationary transition from the low to the
high temperature branch corresponds to an ignition process. It starts from the point I of
the lower temperature branch, and is denoted by an arrow in Fig. 4.8.

When the upper branch is reached, steady state combustion is established. If one then
reduces the residence time again, thereby lowering the Damköhler number, one follows the
curve E = 10 to the left towards lower temperatures. This indicates that the available
residence time is unsufficient for complete combustion and that an increasing amount of
fuel will remain unreacted. When the Damköhler number becomes lower then DaQ an
unstationary transition from the upper to the lower temperature branch occurs. This
corresponds to the extinction or quenching of the reaction. The temperature then drops
from the value at the point Q to a value close to T = 1. This is again denoted by an arrow
in Fig. 4.8. The ignition at a large Damköhler number DaI and subsequent extinction
at a lower Damköhler number DaQ is a typical hysteresis process. We will show below
that only the upper and the lower branch of the steady state solution are stable while the
middle branch solution is unstable.

4.6 Ignition and Extinction of the Continuously Stirred Flow Reactor

In order to determine the conditions for which multiple solutions exist, we want to calculate
the temperatures TI and TQ corresponding to the ignition and quenching points. At these
points the curve has a vertical tangent leading to the condition

dDa

dTS
= 0 . (4.50)

Since (4.49) may be expressed as

Da =
TS − 1

N (TS)
(4.51)

(4.50) leads to

N (TS)− (TS − 1)
dN (TS)

dTS
= 0 (4.52)

with
dN (TS)

dTS
= N (TS)

(
E

T 2
S

− 1

1 +Q− TS

)
(4.53)
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one obtains after some algebraic manipulations a quadratic equation which has the solution

TI,Q =
(2 +Q)±Q

√
1− 4(1 +Q)/EQ

2(1 +Q/E)
. (4.54)

The term under the square root vanishes for E = 4(1 + Q)/Q. For this combustion of
parameters the ignition and the quenching points coincide. For the value Q = 4 chosen
in Fig. 4.8 this corresponds to E = 5. Two solutions and therefore ignition as well as
quenching exist only if

E > 4(1 +Q)/Q . (4.55)

For smaller values of the activation energy a monotonous transition from lower to higher
temperatures takes place. This is shown for E = 2 in Fig. 4.8. Typical combustion
processes starting from ambient temperature are nearly always in the regime of large non-
dimensional activation energies where ignition and quenching may occur.

Approximate expressions for the temperatures TI and TQ resulting from (4.54) may
be obtained in the limit E → ∞. Expanding the square root term and the term in the
denominator of (4.53) up to first order as√

1− 4(1 +Q)/EQ ≈ 1− 2(1 +Q)/EQ

(1 +Q/E)−1 ≈ 1−Q/E
(4.56)

one obtains

TI = 1 + 1/E , TQ = 1 +Q− (1 +Q)2

E
. (4.57)

In terms of dimensional quantities this may be expressed as

TI = Tmin

(
1 +
RTmin

E

)
, TQ = Tmax

(
1− RTmax

E

)
(4.58)

It is easily seen that for ignition the temperature increment RTmin/E corresponds to that
used in (4.13).

Quenching occurs, when the temperature decreases by a small amount below the
maximum temperature. For typical maximum combustion temperatures around 2000 K
and activation energies corresponding to E/R = 20,000 K, a temperature decrease of
around 200 K would already lead to extinction.

It is worthwhile to study the upper branch of the steady state solution up to the
extinction point by an asymptotic expansion. We write the non-dimensional temperature
as

TS = 1 +Q− εy (4.59)

where ε is yet to be determined. Expanding the inverse temperature in the exponential
term in (4.47) as

1

TS
=

1

(1 +Q)[1− εy/(1 +Q)]
=

1

1 +Q
+

εy

(1 +Q)2
(4.60)
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and inserting this into (4.49) one obtains

0 = −Q+ εy + Da εy exp

(
− E

1 +Q

)
exp

(
− Eε

(1 +Q)2
y

)
(4.61)

In the limit ε → 0 the second term in this equation vanishes. Assuming Q of order
unity, a balance of the first with the third term then requires that the Damköhler number
is sufficiently large. We shall now discuss (4.61). Depending on the magnitude of the
activation energy there are two cases:

1. The Non-dimensional activation energy E is of order unity.
This suggests the definition ε = 1/Da leading to a large Damköhler number anal-
ysis. The second exponential then vanishes in the limit ε→ 0 and with

y = Q exp

(
E

1 +Q

)
(4.62)

the temperature expansion (4.59) becomes

TS = 1 +Q− Q

Da
exp

(
E

1 +Q

)
. (4.63)

This expression is able to approximate the upper branch of the S-shaped curve for the
case E = 2 in Fig. 4.8. It is not suitable for the case E = 10 and is in particular not
able to predict the turning point of this curve at extinction.

2. The Non-dimensional activation energy E is asymptotically large.
The grouping in the second exponential in (4.61) then suggests the definition

ε =
(1 +Q)2

E
(4.64)

equivalent to large activation energy asymptotics. In order to obtain a balance of
the remaining terms in (4.61) one must now require that the quantity

δ =
Da (1 +Q)2

EQ
exp

(
− E

1 +Q

)
(4.65)

is of order unity. This indicates that the Damköhler number must grow as

Da ∼ ε−1 exp((1 +Q)/ε)

in the limit ε → 0. This linking of two asymptotically large parameters in a specific
way is called a distinguished limit. Inserting (4.64) and (4.65) into (4.61) leads to the
nonlinear equation

1 = δy exp(−y) (4.66)
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Fig. 4.9: Large activation energy asymptotic solution of the upper branch of the S-shaped
curve showing a turning point which corresponds to extinction.

from which y may be determined. Its solution is plotted in Fig. 4.9 showing a turning
point at y = 1, δ = e. For values of δ > e there are two solutions, the lower one
corresponding to the upper branch in Fig. 4.8, the upper one corresponding to the
intermediate branch. The turning point characterizes the extinction condition.

It shall be noted that the analysis of extinction requires large activation energy rather than
large Damköhler number asymptotics.

4.7 Stability of the Steady State Solutions

Finally, we want to show that, when multiple solutions exist, only the lower and the upper
branches of the S-shaped curve are stable, while the intermediate branch is unstable. We
go back to (4.46) and introduce the small temperature perturbation T ′ of the steady state
solution

T = TS + T ′(t) . (4.67)

When this is introduced into (4.46) and (4.49) is substracted, one obtains after linearisation

dT ′

dt
= −λT ′ (4.68)

where

λ = 1−Da
dN(TS)

dTS
= N(TS)

dDa

dTS
. (4.69)
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Here (4.51) has been used. The perturbation

T ′ = T ′0 exp(−λt) (4.70)

where T ′0 is an arbitrary initial perturbation, clearly decays with time if it is positive, but it
grows if λ is negative. Since the sign of λ equals the sign of dDa/dTS , steady state solutions
showing an increase of temperature with increasing Damköhler number are stable. This is
true for the lower and the upper branch of the S-shaped curve. The opposite is true for
the middle branch which therefore is unstable.

Exercise 4.1

Derive an approximate expression for the ignition delay time in the high and intermediate
temperature range by assuming that the activation energy E1 of reaction 1 is very large
and the intermediate X in steady state.

Solution

With the steady state approximation reactions 1 and 2 can be replaced by the overall
reaction

F + 11 O2 → P

with the rate
d

dt
XF = −k1XF .

Combining this with the contribution of reactions 3 and 4 according to (4.33) in the
intermediate temperature range the rate of fuel consumption can be written as

d

dt
XF = −k1XF − k4KXFX

2
O2
. (∗)

The corresponding temperature equation is

d

dt
T = Q

(
k1XF + k4KXFX

2
O2

)
. (∗∗)

where Q is the heat reduction of the overall reaction. Equations (∗) and (∗∗) are to
be solved with the initial conditions XF = XF,0 and T = T0 at t = 0. Due to the
large exothermicity of the reactions, small changes in the fuel and oxygen concentration
are sufficient to increase the temperature significantly. Accounting for the fact that the
activation energy E1 is large compared to E3f −E3b +E4, which then is of order unity, a
suitable expansion of the temperature is

T = T0(1 + εy) , ε =
RT0

E1
.

Neglecting the reactant consumption in (∗∗) by setting XF = XF,0 and XO2 = XO2,0 one
obtains the equation for the non-dimensional temperature increment y

dy

dt
=

1

t1
ey +

1

t2
(∗ ∗ ∗)
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with the initial condition y(0) = 0. Here the inverse characteristic times are defined as

1

t1
=

E1

RT 2
0

QXF,0B1 exp (−E1/RT0)

1

t2
=

E1

RT 2
0

QXF,0X
2
O2,0B4

B3f

B3b
exp (−(E3f − E3b + E4)/RT0)

Equation (∗ ∗ ∗) may be transformed using x = e−y. One then has to solve a linear
differential equation which is easily integrated. The solution in terms of t as a function of
y is finally

t

t2
= log

(
1 +

t1
t2

)
− log

(
1 +

t1
t2
e−y
)
.

When y becomes infinite, the ignition time is

tign = t2 log(1 + t1/t2) ,

For small values of t1 corresponding to large T0, the log may by linearized leading to
tign → t1 describing the high temperature range. For large values of t1 the 1 in the log
may be neglected leading to a weak temperature dependence of tign.
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Lecture 5: Fluid Dynamics and Basic Equations for Flames

The basic equations for calculating combustion processes in the gas phase are the equations
of continuum mechanics. They include in addition to balance equations for mass and
momentum those for the energy and the chemical species. Associated with the release of
thermal energy and the increase in temperature is a local decrease in density which in turn
affects the momentum balance. Therefore, all these equations are closely coupled to each
other. Nevertheless, in deriving these equations we will try to point out how they can be
simplified and partially uncoupled under certain assumptions.

5.1 Balance Equations

Let us consider a general quality per unit volume f(~x, t). Its integral over the finite volume
V , with the time-independent boundary A is given by

F (t) =

∫
V

f(~x, t) dV (5.1)

The temporal change of F
∂F

∂t
=

∫
V

∂f

∂t
dV (5.2)

is then due to the following three effects:

1. by the flux ~φf across the boundary A. This flux may be due to convection or molecular
transport. It is directed inwards and therefore opposite to the normal vector ~n on the
surface, which is directed outwards. By integration over the boundary A we therefore
obtain

−
∫
A

~φf~n dA ;

2. by a local source σf within the volume. This is an essential production of partial mass
by chemical reactions. Integrating the source term over the volume leads to∫

V

σf dV ;

3. by an external induced source. Examples are the gravitational force or thermal radi-
ation. Integration of sf over the volume yields∫

V

sf dV .
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Fig. 5.1: Volume F with time-independent boundary A

We therefore have the balance equation∫
V

∂f

∂t
dV = −

∫
A

~φf~n dA+

∫
V

(σf + sf ) dV

Changing the integral over the boundary A into a volume integral using Gauss’ theorem∫
A

~φf~n dA =

∫
V

div ~φf dV

and realizing that the balance must be independent of the volume, we obtain the general
balance equation in differential form

∂f

∂t
= − div ~φf + σf + sf . (5.3)

Mass Balance

Set the partial mass per unit volume ρi = ρYi = f . The partial mass flux across the
boundary is ρi~vi = ~φf , where ~vi the diffusion velocity. Summation over all components
yields the mass flow

ρ~v =

n∑
i=1

ρi~vi (5.4)

where ~v is the mass average velocity. The difference between ~vi defines the diffusion flux

~vi − ~v =
~ji
ρi

(5.5)
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where the sum satisfies
n∑
i=1

ji = 0 . (5.6)

Setting the chemical source term

σf = ṁi = Wi

r∑
k=1

νikwk

one obtains the equation for the partial density

∂ρi
∂t

= − div(ρi~vi) + ṁi (i = 1, 2, ..., n) . (5.7)

The summation over i leads to the continuity equation

∂ρ

∂t
= − div(ρ~v) . (5.8)

Introducing the total derivative of a quantity a

Da

Dt
=
∂a

∂t
+ ~v · grad a , (5.9)

a combination with the continuity equation yields

ρ
Da

Dt
=
∂(ρa)

∂t
+ div(ρ~va) . (5.10)

Then (5.7) may also be written using (5.5)

ρ
DYi
Dt

= − div~ji + ṁi (i = 1, 2, ..., n) . (5.11)

Momentum Balance

Set the momentum per unit volume ρ~v = f . The momentum flux is the sum of the
convective momentum in flow ρ~v~v and the pressure tensor

=

P = p
=

E +
=
τ (5.12)

where
=

E is the unit tensor and
=
τ is the viscous stress tensor. Therefore ρ~v~v+

=

P= φf .

There is no local source of momentum but the gravitational force from outside sf = −~iρg
where ~i is the unit vector and g the constant of gravity. The momentum equation then
reads

∂ρ~v

∂t
= −Div(ρ~v~v+

=

P )−~iρg (5.13)

or with (5.7) and (5.11)

ρ
D~v

Dt
= − grad p−Div

=
τ −~iρg . (5.14)
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Kinetic Energy Balance

Multiplying (5.13) with ~v for each component of ~v one obtains the balance for the kinetic
energy v2 = ~v · ~v

1

2

∂

∂t
(ρv2) = − div(

=

P ·~v +
1

2
~vρv2)+

=

P : Grad~v −~iρg~v . (5.15)

Potential Energy Balance

The gravitational force may be written as the derivative of the time-independent potential

~ig = gradψ,
∂ψ

∂t
= 0 . (5.16)

Then with (5.8) the balance for the potential energy is

∂(ρψ)

∂t
= − div(ρ~vψ) +~iρg~v . (5.17)

Total and Internal Energy and Enthalpy Balance

The first law of thermodynamics states that the total energy must be conserved, such that
the local source σf = 0. We set ρe = f , where the total energy per unit mass is

e = u+
1

2
v2 + ψ (5.18)

this defines the internal energy introduced in (1.46). The total energy flux ~je = ~φf is

je = ρe~v+
=

P ·~v +~jq (5.19)

which defines the total heat flux ~jq. The externally induced source due to radiation is
qR = sf . Then the total energy balance

∂(ρe)

∂t
= − div~je + qR (5.20)

may be used to derive an equation for the internal energy

∂(ρu)

∂t
= − div(ρ~vu+~jq)−

=

P : Grad~v + qR . (5.21)

Using (5.10) this may be written with the total derivative

ρ
Du

Dt
= − div~jq − p div~v+

=
τ : Grad~v + qR . (5.22)
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Since div~v = ρDρ−1/Dt this may be written as

Du

Dt︸︷︷︸
du

+ p
Dρ−1

Dt︸ ︷︷ ︸
p dv

=
1

ρ

[
− div~jq + qR

]
︸ ︷︷ ︸

dq

+
1

ρ

=
τ : Grad~v︸ ︷︷ ︸
dwR

(5.23)

illustrating the equivalence with the first law introduced in a global thermodynamic balance
in (1.46). With h = u+ p/ρ the enthalpy balance equation is then

ρ
Dh

Dt
=
Dp

Dt
− div~jq+

=
τ : Grad~v + qR . (5.24)

5.2 Transport Processes

In its most general form Newton’s law states that the stress tensor is proportional to the
symmetric, trace-free part of the velocity gradient, more specifically

=
τ= −µ

Grad~v −
=

E

3
div~v

s . (5.25)

Here the suffix s denotes that only the symmetric part is taken and the second term in the
brackets subtracts the trace elements from the tensor. Newton’s law thereby defines the
dynamic viscosity. Similarly Fick’s law states that the diffusion flux is proportional to the
concentration gradient. Due to thermodiffusion it is also proportional to the temperature
gradient. The most general form for multicomponent diffusion is written as

~ji =
Wi

W

n∑
j=1
j 6=i

ρDijWj gradXj −
DT
i

T
gradT (i = 1, 2, ...n) . (5.26)

For most combustion processes thermodiffusion can safely be neglected. For a binary
mixture (5.26) then reduces to

~ji = −ρDij gradYi (5.27)

where Dij = Dji is the binary diffusion coefficient. For multicomponent mixtures where
one component occurs in large amounts, as for the combustion in air where nitrogen is
abundant, all other species may be treated as trace species and (5.27) with the binary
diffusion coefficient with respect to the abundant component may be used as an approxi-
mation

~ji = −ρDi gradYi, Di = Di,N2 . (5.28)

A generalization for an effective diffusion coefficient Di to be used for the minor species in
(5.28) is

Di =

n∑
i6=j
i=1

Xi

n∑
j=1
j 6=i

Xi/Dij
. (5.29)
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Note that the use of (5.28) does not satisfy the condition (5.6). Finally, Fourier’s law of
thermal conductivity states that the heat flux should be proportional to the temperature
gradient. The heat flux ~jq includes the effect of partial enthalpy transport by diffusion and
is written

~jq = −λ gradT +

n∑
i=1

hi~ji (5.30)

which defines the thermal conductivity λ. In (5.30) the Dufour heat flux has been neglected.
Transport coefficients for single components can be calculated on the basis of the theory
of rarefied gases [5.1].

5.3 Different forms of the energy equation

We start from the enthalpy equation and neglect in the following the viscous dissipation
term

=
τ : Grad~v and the radiative heat transfer term qR. Then, differentiating (1.48) as

dh = cpdT +
n∑
i=1

hidYi (5.31)

where cp is the heat capacity at constant pressure of the mixture, we can write the heat
flux as

~jq = − λ
cp

gradh+
n∑
i=1

hi

(
~ji +

λ

cp
gradYi

)
. (5.32)

For the special case that the diffusion flux can be approximated by (5.27) with an effective
diffusion coefficient Di we introduce the Lewis number

Lei =
λ

ρcpDi
(5.33)

and write the last term in (5.32) as

n∑
i=1

hi

(
1− 1

Lei

)
λ

cp
gradYi . (5.34)

This term vanishes if the Lewis numbers of all species can be assumed equal to unity.
This is an interesting approximation because it leads to the following form of the enthalpy
equation

ρ
Dh

Dt
=
Dp

Dt
+ div

(
λ

cp
gradh

)
. (5.35)

If furthermore the pressure is constant as it is approximately the case in all applications
except in reciprocating engines, the enthalpy equation would be very much simplified.
The assumption of unity Lewis numbers for all species is not justified in many combustion
applications. In fact, deviations from that assumption lead to a number of interesting phe-
nomena that have been studied recently in the context of flame stability and the response
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of flames to external disturbances. We will address these questions in some of the lectures
below.

Another important form of the energy equation is that in terms of the temperature.
With (5.31) and (5.11) the total derivative of the enthalpy can be written as

ρ
Dh

Dt
= ρcp

DT

Dt
+

n∑
i=1

(− div~ji + ṁi)hi . (5.36)

Then with (5.30), the enthalpy equation (5.24) without the second last term yields the
temperature equation

ρcp
DT

Dt
=
Dp

Dt
+ div(λ gradT )−

n∑
i=1

cpi~ji gradT −
n∑
i=1

hiṁi + qR . (5.37)

Here the last term describes the temperature change due to chemical reactions. It may be
written as

−
n∑
i=1

hiṁi = −
r∑

k=1

n∑
i=1

νikWihiwk =
r∑

k=1

Qkwk (5.38)

where definition (2.7) has been used for each reaction. The second term on the right
hand side may be neglected, if one assumes that all specific heats cpi are equal. This
assumption is very often justified since this term does not contribute as much to the change
of temperature as the other terms in the equation, in particular the chemical source term.
If one also assumes that spatial gradients of cp may be neglected for the same reason, the
temperature equation takes the form

ρ
DT

Dt
=

1

cp

Dp

Dt
+ div

(
λ

cp
gradT

)
+

r∑
k=1

Qk
cp
wk +

qR
cp
. (5.39)

For a constant pressure it is very similar to (5.10) with an effective diffusion coefficient for
all reactive species and a spatially constant Lewis number Lei may be written as

ρ
DYi
Dt

=
1

Lei
div

(
λ

cp
gradYi

)
+Wi

r∑
k=1

νikwk . (5.40)

For unity Lewis numbers this and the temperature equation are easily combined to obtain
the enthalpy equation (5.35). Since the use of (5.39) and (5.40) does not require the unity
Lewis number assumption, this formulation is often used when non-unity Lewis number
effects are to be analyzed. For flame calculations a sufficiently accurate approximation for
the transport properties is [5.2]

λ

cp
= 2.58 · 10−4 g

cm sec

(
T

298K

)0.7

, (5.41)
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a constant Prandtl number
Pr =

µcp
λ

= 0.75 , (5.42)

and constant Lewis numbers. For a number of species occurring in methane-air flames
approximate values from [5.2] are listed in Table 5.1. A first approximation for other
hydrocarbon species can be based on the assumption that the binary diffusion coefficients
of species i with respect to nitrogen is approximately proportional to

Di ∼
(
Wi +WN2

2WiWN2

)1/2

. (5.43)

Then the ratio of its Lewis number to that of methane is

Lei
LeCH4

=

(
Wi

WCH4

WCH4
+WN2

Wi +WN2

)1/2

. (5.44)

CH4 O2 H2O CO2 H O OH HO2

0.97 1.11 0.83 1.39 0.18 0.70 0.73 1.10

H2 CO H2O2 HCO CH2O CH3 CH3O
0.3 1.10 1.12 1.27 1.28 1.00 1.30

Table 5.1: Lewis numbers of some reacting species occurring in methane-air flames

5.3 Balance Equations for Element Mass Fractions

Summation of the balance equations for the mass fractions (5.11) according to (1.10) leads
to the balance equations for Zj

ρ
DZj
Dt

= − div

n∑
i=1

aijWj

Wi

~ji . (5.45)

Here the summation over the chemical source terms vanishes

Wj

n∑
i=1

r∑
k=1

aijνikwk = Wj

r∑
k=1

wk

n∑
i=1

aijνik = 0

since the last sum vanishes for each reaction. The diffusion term simplifies if one assumes
that the diffusion coefficients of a species are equal. If one further more assumes a unity
Lewis number this leads to

ρ
DZj
Dt

= div

(
λ

cp
gradZj

)
. (5.47)
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A similar equation may be derived for the mixture fraction Z. Since Z is defined according
to (1.32) as the mass fraction of the fuel stream, it represents the sum of element mass
fractions contained in the fuel stream. The mass fraction of the fuel is the sum of the
element mass fractions

YF,u =

ne∑
j=1

Zj,F (5.48)

where

Zj,F = aF,j
Wj

WF
YF,u . (5.49)

With (1.33) the mixture fraction may therefore be expressed as a sum of element mass
fractions

Z =

∑ne
j=1 Zj,F

YF,1
. (5.50)

Then, with the assumption of unit Lewis numbers, a summation over (5.47) leads to a
balance equation for the mixture fraction

ρ
DZ

Dt
= div

(
λ

cp
gradZ

)
. (5.51)

For a one-step reaction with the reaction rate w this equation can also be derived using
(1.35) and (5.40) for YF and YO2 with LeF = LO2 = 1 as

ρ
DYF
Dt

= div

(
λ

cp
gradYF

)
− ν′FWFw

ρ
DYO2

Dt
= div

(
λ

cp
gradYO2

)
− ν′O2

WO2w .

(5.52)

Dividing the first of these by ν′O2
WO2 and subtracting yields a source-free balance equation

for the combination
YF

ν′FWF
=

YO2

ν′O2
WO2

(5.53)

which is a linear function of Z according to (1.35). This leads again to (5.51). For constant
pressure the enthalpy equation (5.35) has the same form as (5.51) and a coupling relation
between the enthalpy and the mixture fraction may be derived

h = h2 + Z(h1 − h2) (5.54)

where h1 is the enthalpy of the fuel stream and h2 that of the oxidizer stream. Similarly,
using (5.47) and (5.51) the element mass fractions may be expressed in terms of the mixture
fraction

Zj = Zj,2 + Z(Zj,1 − Zj,2) (5.55)

where Zj,1 and Zj,2 are the element mass fractions in the fuel and oxidizer stream, respec-
tively. It should be noted that the coupling relations (5.54) and (5.55) required a two feed
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Z = Zst

dZ / dn = 0  ,   dh / dn = 0

dZ / dn = 0  ,   dh / dn = 0

dZ / dn = 0

dh / dn = 0

Z = 0

m2
.

m2
.

Z = 0

(air)

(air)

Z = 1m1
.

(fuel)

n2

n1

n2

Fig. 5.2: Coflow diffusion flame

system with equivalent boundary conditions for the enthalpy and the mass fractions. A
practical example is a single jet as fuel stream with co-flowing air as oxidizer stream into an
open atmosphere, such that zero gradient boundary conditions apply everywhere except at
the input streams as shown in Fig. 5.2. Once the mixture fraction field has been obtained
by numerical solution of (5.51) the adiabatic flame temperature may be calculated using
the methods of lecture 2 as a local function of Z.
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Lecture 6: Laminar Premixed Flames: Burning Velocities and

One-step Asymptotics

6.1 The Laminar Burning Velocity

The classical device to generate a laminar premixed flame is the Bunsen burner shown
in Fig. 6.1. Gaseous fuel from the fuel supply enters through an orifice into the mixing
chamber, into which air is entrained through adjustable openings from the outside. The
cross sectional area of the fuel orifice may be adjusted by moving the needle through an
adjustment screw into the orifice. Thereby the velocity of the jet entering into the mixing
chamber may be varied and the entrainment of the air and the mixing can be optimized.
The mixing chamber must be long enough to generate a premixed gas issuing from the
Bunsen tube into the surroundings. If the velocity of the issuing flow is larger than the
laminar burning velocity to be defined below, a Bunsen flame cone establishes itself at the
top of the tube. It represents a steady premixed flame propagating normal to itself with
the burning velocity sL into the unburnt mixture.

The kinematic balance of this process is illustrated for a steady oblique flame in
Fig. 6.2. The oncoming flow velocity vector vu of the unburnt mixture (subscript u) is
split into a component vt,u which is tangential to the flame and into a component vn,u
normal to the flame front. Due to thermal expansion within the flame front the normal
velocity component is increased, since the mass flow ρv through the flame must be the
same in the unburnt mixture and in the burnt gas (subscript b)

(ρvn)u = (ρvn)b , (6.1)

therefore

vn,b = vn,u
ρu
ρb
. (6.2)

The tangential velocity component vt is not affected by the gas expansion and remains the
same

vt,b = vt,u . (6.4)

Vector addition of the velocity components in the burnt gas in Fig. 6.2 then leads to
~vb which points into a direction which is deflected from the flow direction of the unburnt
mixture. Finally, since the flame front is stationary in this experiment, the burning velocity
sL,u with respect to the unburnt mixture must be equal to the flow velocity of the unburnt
mixture normal to the front.

sL,u = vn,u (6.5)

With the Bunsen flame cone angle in Fig. 6.1 denoted by α the normal velocity is vn,u =
vu · sinα and it follows

sL,u = vu sinα . (6.6)

84



   

orifice adjustment screw

fuel from

supply

needle

fuel orifice

air air

premixing region

Bunsen tubemixing chamber

streamline

(particle track)

Bunsen

flame

cone

α

Fig. 6.1: The Bunsen burner
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vt,b = vt,u 

vn,bu

vu
→

b
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→
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flame front
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→

Fig. 6.2: Kinematic balance for a steady oblique flame

This allows to experimentally determine the burning velocity by measuring the cone angle
α under the condition that the flow velocity vu is uniform across the tube exit. If this is
not the case the flame angle also varies with radial distance, since the burning velocity
sL,u is essentially constant.

A particular phenomenon occurs at the flame tip. If the tip is closed, which is in
general the case for hydrocarbon flames (but not necessarily for lean hydrogen flames) the
burning velocity at the tip, being normal and therefore equal to the flow velocity, is by
a factor 1/ sinα larger than the burning velocity through the oblique part of the cone.
This will be explained in Lecture 8 by the strong curvature of the flame front at the tip
leading to a preheating by the lateral parts of the flame front and thereby to an increase
in burning velocity. This analysis also includes the effect of non-unity Lewis numbers by
which, for instance, the difference between lean hydrogen and lean hydrocarbon flames can
be explained. Finally, it is shown in Fig. 6.1 that the flame is detached form the rim of
the burner. This is due to conductive heat loss to the burner which leads in regions very
close to the rim to temperatures, at which combustion cannot be sustained.

Another example for an experimental device to measure laminar burning velocities
is the combustion bomb (Fig. 6.3) within which a flame is initiated by a central spark.
Spherical propagation of a flame then takes place which may optically be detected through
quartz windows and the flame propagation velocity drf/dt may be recorded. Now the
flame front is not stationary. If the radial flow velocities are defined positive in inward
direction, the velocity of the front must be substracted from these in the mass flow balance
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Fig. 6.3: Laminar spherical flame propagation in a combustion bomb

through the flame front

ρu

(
vu −

drf
dt

)
= ρb

(
vb −

drf
dt

)
(6.7)

At the flame front the kinematic balance between propagation velocity, flow velocity and
burning velocity with respect to the unburnt mixture is

drf
dt

= vu + sL,u . (6.8)

Similarly, the kinematic balance with respect to the burnt gas is

drf
dt

= vb + sL,b . (6.9)

In the present example the flow velocity vb in the burnt gas behind the flame is zero
due to symmetry. This leads with (6.7) and (6.8) to

drf
dt

=
ρu

ρu − ρb
vu = vu + sL,u (6.10)

from which the velocity in the unburnt mixture is calculated as

vu =
ρu − ρb
ρb

sL,u (6.11)

This velocity is induced by the expansion of the gas behind the flame front. Furthermore
it follows that the flame propagation velocity is related to the burning velocity sL,u by

drf
dt

=
ρu
ρb
sL,u (6.12)
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Measuring the flame propagation velocity drf/dt then allows to determine sL,u. Further-
more, from (6.9) it follows with vb = 0 that

drf
dt

= sL,b . (6.13)

The comparison of (6.12) and (6.13) shows that the burning velocity with respect to the
burnt gas is by a factor ρu/ρb larger than that with respect to the unburnt gas. This is
equivalent to (6.2).

For convenience we will denote in the following the burning velocity with respect to
the unburnt gas by sL

sL ≡ sL,u . (6.14)

while we keep the notation sL,b for the burning velocity with respect to the burnt gas.

6.2 Governing Equations for Steady Premixed Flames,

Numerical Calculations and Experimental Data

Let us consider a planar steady state flame configuration normal to the x-direction
with the unburnt mixture at x→ −∞ and the burnt gas at x→ +∞.

The flame structure is schematically shown in Fig. 6.4 for the case of a lean flame
with a one-step reaction.

ν′FF + ν′O2
O2 → ν′′PP . (6.19)

The fuel and oxidizer are convected from upstream with the burning velocity sL having
the mass fractions YF,u and YO2,u at x → −∞ and diffuse into the reaction zone. Here
the fuel is entirely depleted while the remaining oxygen is convected downstream where it
has the mass fraction YO2,b. The chemical reaction forms the product P and releases heat
which leads to a temperature rise. The mass fraction YP increases therefore in a similar
way from zero to YP,b as the temperature from Tu to Tb. The product diffuses upstream,
and mixes with the fuel and the oxidizer. Heat conduction from the reaction zone is also
directed upstream leading to a preheating of the fuel/air mixture. Therefore the region
upstream of the reaction zone is called the preheat zone

We will now consider the general as with multi-step chemical kinetics. The funda-
mental property of a premixed flame, the burning velocity sL may be calculated by solving
the governing conservation equations for the overall mass, species and temperature

Continuity
d(ρu)

dx
= 0 , (6.15)

Species

ρu
dYi
dx

= −dji
dx

+ ṁi , (6.16)

Energy

ρucp
dT

dx
=

d

dx
(λ

dT

dx
)−

n∑
i=1

hiṁi −
n∑
i=1

cpji
dT

dx
+
∂p

∂t
. (6.17)

88



      

0 x*

YO2,b

reaction zone
O(ε)

Tb

YO2
YF

YO2,u

YF,u

sL

Tu

preheat zone
O(1)

Yp

Yp,b

Fig. 6.4: Flame structure of a lean flame with one-step asymptotics

The continuity equation may be integrated once to yield

ρu = ρusL , (6.18)

where the subscript u denotes conditions in the fresh, unburnt mixture, and where sL
denotes the burning velocity. The latter is an eigenvalue, which must be determined as
part of the solution. For flame propagation with burning velocities much smaller than
the velocity of sound, the pressure is spatially constant and is determined from the ther-
mal equation of state. Therefore spatial pressure gradients are neglected in (6.17) while
temporal pressure gradients have been retained.

The system of equations (6.16)–(6.18) may be solved numerically with the appropri-
ate upstream boundary conditions for the mass fractions and the temperature and zero
gradient boundary conditions downstream. As an example taken from [6.1] calculations
of the burning velocity of premixed methane-air flames using a mechanism that contains
only C1-hydrocarbons and a mechanism that includes the C2-species are shown in Fig. 6.5
as a function of the equivalence ratio Φ. The two curves are compared with compilations
of various data from the literature. It is seen that the calculations with the C2-mechanism
shows a better agreement than the C1-mechanism. As an other example burning velocities
of propane flames taken from [6.4] are shown in Fig. 6.6.

6.3 Premixed Flames Based on One-step Asymptotics

A classical example of an asymptotic description of the structure of a premixed flame is
due to Zeldovich and Frank-Kamenetzki in 1938. It is known as the thermal flame theory
and considers the single one-step reaction (6.19)

We will assume that reaction rate is first order with respect to fuel and to oxygen

w = B
ρYF
WF

ρYO2

WO2

exp

(
−E
RT

)
(6.20)
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Fig. 6.5: Burning velocities calculated with a starting C1-mechanism and a starting C2-
mechanism, several data compiled by Warnatz [6.2], and recent data referenced by Law
[6.3] for atmospheric methane-air-flames

Fig. 6.6: Burning velocity of propane-air flames vs. equivalence ratio Φ obtained with an
elementary mechanism containing only species up to C3 hydrocarbons from Table 3.1 and
a reduced 9-step mechanism and from experimental results (©: Metghalchi et al, [6.5], ×:
Smith et al., [6.6], ¦: Scholte et al., [6.7], 4: Yamaoka et al., [6.8], •: C.K. Law, [6.3])
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Alternative forms, in particular a rate which is first order with respect to the fuel only,
may also be considered. We will show that this case will be contained as a limit for
extremely lean flames in the expression above. The most important feature in (6.20) is the
Arrhenius type temperature dependence where the activation energy E is assumed to be
large. Both the activation energy and the frequency factor B are adjustable parameters
and cannot be deduced from elementary kinetic data. The one-step model has widely been
used in descriptions of flame stability where it essentially serves as model that produces a
thin flame with a strong temperature sensitivity. In this lecture we will derive an explicit
expression for the burning velocity. This is to be compared in lecture 7 to results derived
from a four-step reduced mechanism for methane-air flames.

The flame structure was already shown schematically in Fig. 6.4. Since the reaction is
assumed to be irreversible, the reaction rate must vanish in the burnt gas. Therefore one
of the reactants must be entirely depleted: the fuel in the case of lean flames, the oxidizer
for rich flames and both for stoichiometric flames. This leads to the condition in the burnt
gas

YF,b · YO2,b = 0 . (6.21)

The combustion of the reactants in the reaction zone leads to an increase in temperature
and therefore an increase of the reaction rate. In the asymptotic analysis to be developed,
the large temperature dependence of the reaction rate, expressed by the large activation
energy will play a crucial role.

Let us assume at first that (5.28) for the diffusion flux can be employed and that the
Lewis number is unity. Then, using ρu = ρusL the species balance equation (5.40) is for
the mass fractions of fuel and oxygen

ρusL
dYF
dx

=
d

dx

(
λ

cp

dYF
dx

)
− ν′FWFw

ρusL
dYO2

dx
=

d

dx

(
λ

cp

dYO2

dx

)
− ν′O2

WO2w

. (6.22)

These can be combined with the temperature equation (5.39) in the form

ρusL
dT

dx
=

d

dx

(
λ

cp

dT

dx

)
+
Q

cp
w . (6.23)

This leads to algebraic coupling relations between the mass fractions and the temperature
which may be integrated from the burnt state to any state within the flame as

YF = −ν
′
FWF cp
Q

(T − Tb) + YF,b

YO2 = −
ν′O2

WO2cp

Q
(T − Tb) + YO2,b .

(6.24)

Here Q and cp have been assumed constant for simplicity. With (6.24) the reaction rate is
a function of temperature and only (6.23) needs to be considered in the following.
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We will now introduce the non-dimensional coordinate

x∗ = ρusL

∫ x

0

cp
λ
dx (6.25)

and a non-dimensional temperature

T ∗ =
T − Tu
Tb − Tu

(6.26)

where Tb − Tu is given by (2.9) or by (2.11) for lean or rich flames, respectively. Then the
nondimensional reaction rate takes the form

w∗ =
λQ

ρ2
us

2
Lc

2
p(Tb − Tu)

w(T ) (6.27)

and the temperature equation may be written (with the asterisks removed)

dT ∗

dx∗
=

d2T ∗

dx∗ 2
+ w∗ , (6.28)

subject to the boundary condition

T ∗ = 0 at x∗ → −∞, T ∗ = 1 at x∗ →∞ . (6.29)

Since the temperature decreases towards the unburnt mixture and the activation energy
is large, there is only a small region where the reaction rate is close to its maximum value.
Only in a thin region the reaction rate is non-negligible and it is therefore called the
reaction zone. Its thickness is of order O(ε) in terms of the non-dimensional coordinate
x∗, where ε is a smaller parameter to be determined during the analysis.

In order to analyze the flame structure in the reaction zone, we introduce a stretched
coordinate

ζ =
x∗

ε
(6.30)

and expand the temperature around its maximum value as

T ∗ = 1− εy . (6.31)

Similarly, the mass fractions and ρ as well as λ may be expanded to first order as

YF = YF,b + ε
cp(Tb − Tu)ν′FWF

Q
y ,

YO = YO,b + ε
cp(Tb − Tu)ν′O2

WO2

Q
y ,

ρ = ρb − ε(Tb − Tu)
∂ρ

∂T

∣∣∣∣
b

y ,

λ = λb − ε(Tb − Tu)
∂λ

∂T

∣∣∣∣
b

y .

(6.32)
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With the dimensional temperature T = Tu+T ∗(Tb−Tu) the expansion of the exponential
term to first order is

exp

(
− E

RT

)
= exp

(
−E/R

Tb − (Tb − Tu)εy

)
= exp

(
− E

RTb

)
exp

(
−εE(Tb − Tu)

RT 2
b

y

)
.

(6.33)

This suggests the following definition of ε

ε =
RT 2

b

E(Tb − Tu)
(6.34)

which is therefore the inverse of a non-dimensional activation energy. The quantity

Ze =
E(Tb − Tu)
RT 2

b

(6.35)

will be called the Zeldovich number. Introducing (6.32)–(6.34) into the non-dimensional
reaction rate leads to

w = Da ε(y + by2) exp(−y) . (6.36)

Here Da is the Damköhler number

Da =
Bρ2

bλb
(ρv)2u

(
YO2,bν

′
FWF + YF,bν

′
O2
WO2

)
WFWO2

exp

(
− E

RTb

)
, (6.37)

and

b =
εcp(Tb − Tu)ν′F ν′O2

WFWO2(
YF,bν′O2

WO2 + YO2,bν
′
FWF

)
Q
, (6.38)

a grouping of quantities that will be discussed below. Introducing the expansion (6.30),
(6.31) and (6.36) into the non-dimensional temperature equation one obtains to leading
order

d2y

dζ2
= Λ(y + by2) exp(−y) . (6.39)

Here the first order derivative of the temperature, which was the convective term, has
been neglected as being small of order O(ε) compared to the second order derivative, the
thermal diffusive term. In addition, the burning velocity eigenvalue

Λ = ε2Da (6.40)

has been introduced. This quantity must be of order O(1) if the reaction term is to balance
the diffusive term in the reaction. This indicates that the Damköhler number must be large
of order O(ε−2).
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The boundary conditions of (6.39) must be obtained from matching conditions at the
boundary to the preheat zone and towards the burnt gas area region. The latter leads
simply to

y → 0 for ζ →∞ . (6.41)

According to the arguments given above the reaction rate in the preheat zone is expo-
nentially small and can be neglected. This leads to the solution of (6.28) in the preheat
zone

T ∗ = expx∗ , x∗ < 0 (6.42)

where the origin x∗ = 0 was fixed at the thin reaction zone. Matching between this preheat
zone and the reaction zone can be achieved by expanding the preheat zone temperature
around x∗ = 0 as

T ∗ = 1 + x∗· (6.43)

and realizing that the solution of (6.39) turns into a linear function as ζ → −∞ where the
reaction rate term on the r.h.s. vanishes. Therefore

y → c0 + c1ζ as ζ → −∞ . (6.44)

Since the entire flame structure is translationally invariant, the origin of the ζ-coordinate
may be shifted by introducing a new coordinate

ζ̂ = ζ +
c0
c1

(6.45)

in terms of which (6.44) is y = c1ζ̂. Therefore the constant c0 may be unambiguously set
equal to zero.

Matching may formally be performed by introducing an intermediate coordinate

xi =
x

k(ε)
=

εζ

k(ε)
(6.46)

where k(ε)→ 0 and k(ε)/ε→∞ as ε→ 0. Taking the limit of the difference between the
two expansions (6.43) and (6.44) using (6.31) with the intermediate coordinate fixed

lim
ε→0

[1 + x− (1− εc1ζ)] = lim
ε→0

[1 + k(ε)xi − (1− c1k(ε)xi)] = 0 (6.47)

shows that both solutions match to order O(k(ε)) if

c1 = −1 . (6.48)

This leads to the second boundary condition for (6.39)

y → −ζ for ζ → −∞ . (6.49)
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Fig. 6.7: Numerical solutions of (6.39) for b = 0 and b = 5.

Numerical solutions of (6.39) with (6.41) and (6.49) for b = 0 and b = 5 are shown in
Fig. 6.7.

A first integral of (6.39) can be obtained by introducing the derivative z = dy/dζ as
a new dependent variable and y as the independent variable. Then, since

d2y

dζ2
=

dz

dζ
=

dy

dζ

dz

dy
= z

dz

dy
=

1

2

dz2

dy
(6.50)

(6.39) may be written as
dz2

dy
= 2Λ

(
y + by2

)
exp (−y) (6.51)

This may be integrated between ζ → −∞ where y →∞, z → −1 and ζ →∞ where y = 0,
z = 0 as

z2(∞)− z2(−∞) = 1 = 2Λ

0∫
−∞

(y + by2) exp(−y)dy . (6.52)

Evaluating the integral with its boundary conditions leads to the following solution for the
burning velocity eigenvalue

2Λ(1 + 2b) = 1 . (6.53)

With (6.40), (6.37) and (6.38) and some algebraic manipulations this may be expressed
in terms of physical quantities yielding the following expression for the laminar burning
velocity

ρusL =

(
2

BρbλbR
2T 4
b

cp(Tb − Tu)2E2
exp

(
− E

RTb

)
A

)1/2

(6.54)
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where

A = ρb

(
ν′FYO2,b

WO2

+
ν′O2

YF,b

WF
+ 2

ν′O2
ν′F cpRT 2

b

QE

)
. (6.55)

For sufficiently lean flames the first term in the quantity A dominates, while for sufficiently
rich flames the second one dominates. In both cases the last term is small in the limit
E → ∞ which is equivalent to b = 0 in (6.39) since in (6.38) the quantity b vanishes for
ε→ 0. In that case one obtains the equation

d2y

dζ2
= Λy exp(−y) (6.56)

with the burning velocity eigenvalue from (6.53) as

Λ = 1/2 . (6.57)

It can easily be shown that a first order reaction rate of the form

w = B
ρYF
WF

exp

(
− E

RTb

)
(6.58)

would also lead to (6.56) and the burning velocity is in that case given by (6.54) with
A = ν′F . Similar arguments would apply for rich flames.

In the case of stoichiometric flames both YF,b and YO2,b vanish and b tends to infinity.
In this case Λ must be rescaled as

Λ′ = bΛ (6.59)

and one obtains in the limit b→∞ instead of (6.39) the following equation

d2y

dζ2
= Λ′y2 exp(−y) (6.60)

which leads to the eigenvalue
4 Λ′ = 4bΛ = 1 (6.61)

as a limiting expression of (6.53). This corresponds to the case where the last term in
(6.55) dominates.

6.4 The Influence of a Lewis Number Nonequal to Unity

We now want to analyze the influence of the Lewis number on the burning velocity eigen-
value. For simplicity we will consider a sufficiently lean flame with the reaction rate
expression (6.58). Then, instead of the first of (6.22) we write the balance equation for the
fuel mass fraction

ρsL
dYF
dx

=
1

Le

d

dx

(
λ

cp

dYF
dx

)
− ν′FWFw (6.62)

where Le is the Lewis number of the fuel assumed to be constant. Equation (6.62) is now
to be solved together with (6.23). Introducing the non-dimensional quantities defined in
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(6.25) and (6.26) as before and the normalized fuel mass fraction Y = YF /YF,u one obtains
instead of (6.28) the set of equations

dY

dx
=

1

Le

d2Y

dx∗ 2
− w∗

dT ∗

dx∗
=

d2T ∗

dx∗ 2
+ w∗ .

(6.63)

Instead of (6.31) we now introduce in the reaction zone the expansions

T ∗ = 1− εz , Y = εy (6.64)

which leads instead of (6.56) to the system

1

Le

d2y

dζ2
= Λy exp(−z)

d2z

dζ2
= Λy exp(−z) .

(6.65)

In the preheat zone the solution of (6.63) is with w∗ = 0

T ∗ = expx∗ , Y = 1− exp(Lex∗) (6.66)

which leads through matching to the following boundary conditions of (6.65)

z → −ζ , y → −Le ζ for ζ → −∞
z = 0 , y = 0 for ζ → +∞ .

(6.67)

A solution that satisfies (6.65) and the boundary conditions (6.67) is the coupling relation

y

Le
= z . (6.68)

Introducing this into the second of (6.65) leads to the temperature equation of the form

d2z

dζ2
= LeΛz exp(−z) . (6.69)

A first integration of this equation yields now the burning velocity eigenvalue

Λ =
1

2Le
(6.70)

instead of (6.57). Since the burning velocity eigenvalue is inversely proportional to the
square of the burning velocity this shows that the burning velocity increases with the
square root of the Lewis number.
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6.5 Flame Thickness and Flame Time of Laminar Premixed Flames

The laminar burning velocity sL defines a velocity scale that can be used together with
the thermal diffusivity λ/ρcp to define a length and a time scale. Equation (6.54) may be
rewritten as

sL =

(
λb
ρucp

1

tc

)1/2

(6.71)

where a chemical time scale defined by

tc =
ρucp(Tb − Tu)2E2

2BρbR2T 4
b A

exp

(
E

RTb

)
(6.72)

is introduced. An expression for the flame thickness may be derived by considering (6.25).
When x∗ is set equal to unity in (6.25) and the corresponding spatial distance x equal to
the flame thickness `F this leads to the definition

`F =
(λ/cp)Tref

ρusL
. (6.73)

Since in the one-step asymptotic model all properties relevant to the reaction rate are to
be evaluated at the burnt gas temperature as reference temperature suggest that cp/λ
should also be evaluated at Tb. From this the time required for the flame to traverse its
own thickness, called the flame time, may also be derived

tF = `F /sL . (6.74)

Comparing (6.71)–(6.73), it is seen that the flame time tF is equal to tc for a one-step
flame. Therefore, it has the same physical significance as the chemical time.

The flame thickness defined by (6.73) is a measure of the width of the preheat zone
of a premixed flame. For real flames the evaluation of the properties at Tb is not realistic.
It will be shown in the next lecture that a quantity called the inner layer temperature
T 0 is a more suitable as a reference temperature. Typical values of `F for atmospheric
stoichiometric methane-air flames lie around 0.175 mm when (λ/cp)Tref

/ρu is estimated as
7×10−5m2/sec and sL as 0.4 m/s [6.4]. The corresponding flame time is 0.4375×10−3sec.
As the pressure p increases, the density increases linearly with pressure, whereas λ/cp is
independent of pressure for ideal gases. However, the burning velocity also changes with
pressure. For hydrocarbon flames, the burning velocity decreases approximately as p−n,
where the exponent n is around 0.5 for methane flames. Therefore, the flame thickness
varies with pressure as pn−1.
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Lecture 7: Asymptotic Structure for Four-Step Premixed
Methane Flames, Lean Flammability Limits

In the preceeding lecture we have developed an asymptotic description of premixed flames
based on an assumed one-step reaction. This has provided a basic understanding of the
flame structure when a large sensitivity to temperature was built into the model. There
is no chemical basis for such a one-step assumption and the results must we regarded
with caution when conclusions about dependence of the burning velocity on parameters
effecting the chemistry, such as pressure and reactant concentrations, as well as flammabil-
ity and extinction limits are concerned. While numerical calculations of full and reduced
mechanisms are able to predict these flame properties, they contribute little to the under-
standing of the fundamental parameters that influence flame behaviour. Therefore there
is a need to fill the gap between the numerical calculations based on reduced mechanisms
with elementary kinetics and asymptotic analysis based on assumed chemistry models.
An asymptotic description of stoichiometric methane-air flames [7.1], based on a four-step
reduced mechanism derived in lecture 3, shall be presented in this lecture. Since the basic
chemical parameters were retained, this mechanism has been quite successfull in describing
the dependance of the burning velocity on pressure and preheat temperature. A similar
asymptotic analysis as in [7.1] was also carried out for lean methane flames [7.2]. This
description may, with some modifications, also serve as a model for other hydrocarbon
flames. This will be shown by using analytical approximation [7.3] formulas that are based
on the asymptotic description of methane flames for flames of C2H6, C2H4, C2H2 and C3H8

in air. Even lean flammability limits that cannot be adressed by the one-step formulation
can be predicted by such a description.

7.1 The Four-Step Model for Methane-Air Flames

The four-step model for methane flames derived in Lecture 3 in (3.25) is

I CH4 + 2H + H2O ⇀↽ CO + 4H2

II CO + H2O ⇀↽ CO2 + H2

III H + H + M ⇀↽ H2 + M
IV O2 + 3H2 ⇀↽ 2H + 2H2O .

(7.1)

From the global rates (3.26) based on the elementary scheme given in Table 3.1 we will
retain here only the principle rates

wI = w11 , wII = w9

wIII = w5 , wIV = w1

(7.2)

which correspond to the elementary reactions

11 CH4 + H → CH3 + H2

9 CO + OH ⇀↽ CO2 + H
5 H + O2 + M → HO2 + M
1 H + O2 ⇀↽ OH + O .

(7.3)
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We neglect the influence of the other reactions here in order to make the algebraic descrip-
tion more tractable.

Since OH and O appear in this formulation as reactants we need to express them in
terms of the species in the four-step mechanism by using the partial equilibrium assumption
of reactions 2 and 3 in Table 3.1

[O] =
[H][OH]

K2[H2]

[OH] =
[H2O][H]

K3[H2]
.

(7.4)

This leads to the following reaction rates of the global steps I–IV:

wI = k38[CH4][H]

wII =
k18f

K3

[H]

[H2]

{
[CO][H2O]− 1

KII
[CO2][H2]

}
wIII = k5[H][O2][M]

wIV = k1
[H]

[H2]3

{
[O2][H2]

3 − 1

KIV
[H2]

2[H2O]2
}
.

(7.5)

which is explicit in terms of the concentrations of species appearing in the four-step mech-
anism.

The equilibrium constants in these rates are given by

K3 = 0.216 exp(7658/T )

KII = 0.035 exp(3652/T )

KIV = 1.48 exp(6133/T ) .

(7.6)

We now want to go one step further and assume steady state of the radical H. Adding
reaction IV to I and III leads to the three steps

I′ CH4 + O2 = CO + H2 + H2O
II′ CO + H2O = CO2 + H2

III′ O2 + 2H2 = 2H2O
(7.7)

with the first three rates of (7.5). The concentration of H must now be determined from
the steady state equation for H

wI + wIII = wIV . (7.8)

This may be written as

[H] = [Heq]

(
1− k5[M]

k1
− k38[CH4]

k1[O2]

)1/2

(7.9)
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Fig. 7.1: Schematic illustration of the structure of a premixed methane-air flame.

where [Heq] based on partial equilibrium of reaction IV

[Heq] = K
1/2
IV

[O2]
1/2[H2]

3/2

[H2O]
. (7.10)

Equation (7.9) shows an interesting structure: At temperatures of 1400K and above
the second term in the brackets is small and the ratio k38/k1 is much larger than unity.
It follows that [CH4]/[O2] must be much smaller than unity, if [H] is to remain real. This
will be used to develop an asymptotic description of the inner layer below but also shows
that (7.9) cannnot be valid in the preheat zone upstream of the inner layer. The structure
of the flame is schematically shown in Fig. 7.1. From (7.9) it follows that [H] vanishes in
the preheat zone which is therefore chemically inert.

A further approximation that will reduce the three step mechanism (7.7) effectively
to a two-step mechanism is the assumption of partial equilibrium of reaction II. Assuming
the concentrations of H2O and CO2 to be known this leads to a coupling between CO and
H2 of the form

[CO] = α′[H2] (7.11)

where

α′ =
[CO2]

[H2O]KII(T )
(7.12)

In introducing partial equilibrium of reaction II one assumes that the effective rate co-
efficient k18/K3 in the second equation of (7.5) tends to infinity while the term in curly
brackets tends to zero and wII remains finite. Since wII is indefinite, the rate wII must be
eliminated from the balance equations. For the three-step mechanism these are written in
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the following operator form

Species Li(Yi) ≡ ρusL
dYi
dx
− 1

Lei

d

dx

(
λ

cp

dYi
dx

)
= Wi

III′∑
k=I′

νikwk

Temperature LT (T ) ≡ ρusL
dT

dx
− d

dx

(
λ

cp

dT

dx

)
=

1

cp

III′∑
k=1

Qkwk .

(7.13)

In terms of the variable Γi = Yi/Wi introduced in (2.33) and using the stoichiometric
coefficients of the three-step mechanism, the balance equations for the concentrations are

LF (ΓF ) = −wI

LO2(ΓO2) = wI + wIII

LH2(ΓH2) = wI + wII − 2wIII

LCO(ΓCO) = wI − wII

LH2O(ΓH2O) = wI − wII + 2wIII

LCO2(ΓCO2) = wII .

(7.14)

Here F stands for the fuel CH4.
The rate wII may be eliminated from (7.14) by combining the balance equations of

H2, H2O, and CO2 with that of CO

LH2(ΓH2) + LCO(ΓCO) = 2wI − 2wIII

LH2O(ΓH2O)− LCO(ΓCO) = 2wIII

LCO2(ΓCO2) + LCO(ΓCO) = wI .

(7.15)

We will anticipate that in the thin reaction layers to be considered below, the diffusive
terms dominate for the same reason as in the thin reaction zone for one-step asymptotics.
Therefore we will neglect the convective terms in the operators (7.13) for the thin reaction
zones and consider only the diffusive terms. This suggests that the concentrations should
be scaled with the Lewis numbers. We introduce the non-dimensional variables

Xi =
YiWF

YFuWi
, xi =

Xi

Lei
,

T ∗ =
T − Tu
Tb − Tu

, x∗ = ρusL

x∫
0

cp
λ

dx ,

w∗k =
λWFwk

cpYFu(ρv)2u
, Q∗k =

QkYFu
cp(Tb − Tu)WF

,

(7.16)

and redefine the parameter α′

α = α′
LeH2

LeCO
. (7.17)
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With (7.11) one then obtains the following balance equations of the two-step mechanism
(the asterisks will be removed from here on)

− d2

dx2
(xF ) = −wI ,

− d2

dx2
(xO2

) = −wI − wIII ,

− d2

dx2
(xH2

) =
2

1 + α
(wI − wIII) ,

− d2

dx2
(xCO) =

2α

1 + α
(wI − wIII) ,

− d2

dx2
(xH2O) =

2α

1 + α
wI +

2

1 + α
wIII ,

− d2

dx2
(xCO2) =

1− α
1 + α

wI +
2α

1 + α
wIII .

(7.18)

The stoichiometric coefficients are those of the two global reactions

I′′ CH4 + O2 =
2

1 + α
(H2 + αCO) +

2α

1 + α
H2O +

1− α
1 + α

CO2 ,

III′′ O2 +
2

1 + α
(H2 + αCO) =

2

1 + α
H2O +

2α

1 + α
CO2 .

(7.19)

Here the combination H2 + αCO appears as an intermediate which is formed in I′′ and
consumed in III′′. The rates of these reactions are still the same as of I and III in the
four-step mechanism.

If the balance equations (7.18)1 and (7.18)3 are used to determine xF and xH, all other
concentrations and the temperature can be determined deriving the following coupling
equations from (7.18) and the corresponding temperature equation

d2

dx2
[(1 + α)xH2 + 4xF − 2xO2 ] = 0 ,

d2

dx2
[xH2 + 2xF + xH2O] = 0 ,

d2

dx2
[xH2 + xF + xCO2 ] = 0 ,

d2

dx2
[(qH2 + αqCO)xH2 + xF + T ] = 0 .

(7.20)

Here the reduced heats of reaction are

qH2 =
1

2

QIII

Q
= 0.3116

qCO =
( 1
2QIII +QII)

Q
= 0.3479

(7.21)
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where Q is the heat of reaction of the global step

CH4 + 2O2 = CO2 + 2H2O .

In the following we approximate both qH2
and qCO by q = 0.33 for simplicity.

7.2 The Asymptotic Structure of Stoichiometric Methane-Air Flames

The flame structure of the two-step mechanism is shown in Fig 7.1 and contains three
layers

1. a chemically inert preheat zone of order O(1) upstream,

2. an thin inner layer of order O(δ) in which the fuel is consumed and the intermediates
H2 and CO formed according to the global step I′′,

3. a thin oxidation layer of order O(ε) downstream where H2 and CO are oxidized ac-
cording to the global step III′′.

At first the inner layer shall be analysed. We will denote quantities at the inner layer
with a subscript 0 but the inner layer temperature as T 0. In this layer all concentrations
except that of the fuel, which is depleted may be assumed constant to leading order.
Introducing (7.9) into the (7.5)1 and neglecting the second term in the brackets of (7.9)
this leads to

wI = DaIxF

(
1− xF

δ

)1/2

(7.22)

where the Damköhler number of reaction I is

DaI =
ρ2
0

ρ2
us

2
L

YFu
WF

λ0

cp0

(
KIVXO2X

3
H2

)1/2
0

XH2O
LeF k38(T

0) . (7.23)

The small parameter δ was defined as

δ =
k1(T

0)XO2,0

k38(T 0)LeF
(7.24)

It describes the ratio of the rate coefficients of reaction I and II and thereby describes the
competition of these two reactions in producing and consuming H-radicals according to
the global steps IV and I. Since it happens that the reaction rate k1 is typically smaller
than k38, and since also XO2 in the inner layer is smaller than unity, δ is around 0.1 and
sufficiently small for an asymptotic expansion. If δ is small, since wI must be real it follows
from the term in brackets in (7.22) that xF must not exceed the value of δ. Fig 7.1 shows
that the fuel is of order O(1) in the preheat zone but decreases rapidly towards the inner
layer. In the inner layer xF is then of order O(δ) and one may introduce the scaling

y =
xF
δ

(7.25)

and the stretched variable
ζ =

x

δ
. (7.26)

105



   

Introducing these into the first equation of (7.18) leads to the differential equation that
governs the structure of the inner layer

d2y

dζ2
= (δ2DaI)y(1− y)1/2 . (7.27)

The downstream boundary condition of this equation is

y = 0 as ζ → +∞ (7.28)

since reaction I is irreversible. The matching with the preheat zone should, as for the
one-step asymptotic problem, provide the second boundary condition. The solution for
the fuel concentration in the preheat zone is

XF = 1− exp(LeF x) (7.29)

which leads to the expansion xF = −x· around x = 0. It turns out, however, that the
inner layer and the preheat zone are separated by an additional thin layer, the radical
consumption layer where the steady state approximation for the H-radical breaks down.
This layer occurs at y = 1, ζ = −1 in terms of the inner layer variables. Since the fuel
is not consumed in this radical layer the slope of the fuel concentration is continuous and
matching across this layer leads to

y = 1 ,
dy

dζ
= −1 at ζ = −1 . (7.30)

With the boundary conditions (7.28) and (7.30) equation (7.27) can be integrated once to
obtain the eigenvalue

δ2DaI =
15

8
(7.31)

With (7.31) one could now determine the burning velocity sL if the temperature T0

and all other properties at the inner layer were known. In order to determine these, the
structure of the oxidation layer also must be resolved. In the oxidation layer xF = 0 and
therefore wI = 0. The temperature varies only slowly in this layer and since the activation
energy of k5 is small, temperature variations may be neglected. Since most of the chemical
activity takes place in the vicinity of the inner layer, all properties shall be evaluated at
x = 0. Choosing xH2 as the dependent variable in the oxidation layer and scaling it in
terms of a new variable z as

xH2 =
εz

(1 + α)q
(7.32)

one may use the coupling relations (7.20) to show that the downstream boundary conditions
are satisfied by

xO2 = εz/2q , T = 1− εz .
In these expansions ε is the small parameter related to the thickness of the oxidation layer.
Introducing (7.32) and (7.33) into the third of (7.5) leads to

wIII = 2qDaIIIε
3z3 (7.33)
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where the Damköhler number of reaction III is defined

DaIII =
ρ2
0

ρ2
us

2
L

YFu
WF

λ0

cp0

(
KIVLe3

O2
Le3

H2

25(1 + α)3

)1/2

0

k5[M]

q4XHO2

(7.34)

The concentration of the third body is reaction 5 may be determined approximately by
using the third body efficiencies given in Table 3.1 evaluated at the burnt gas conditions.
This leads to

[M] =
1.6p

RT
which introduces a pressure dependence of DaI and will finally determine the pressure
dependence of the burning velocity. Introduction of a stretched coordinate

η =
2qx

ε
(7.35)

then leads from the third equation of (7.18) with wI = 0 to the governing equation of the
oxidation layer

d2z

dη2
= (ε4DaIII)z

3 . (7.36)

This suggests the definition

ε = Da
−1/4
III . (7.37)

It turns out that for p ≥ 1 atm ε is smaller than unity but typically larger than δ. Even
though ε is not very small, we will consider it as small enough to justify an asymptotic
description of the oxidation layer. The downstream boundary condition of (7.36) is

z = 0 for η →∞ (7.38)

since reaction III is irreversible. The upstream boundary condition must be determined
from jump conditions across the inner layer. Since the fuel is depleted and H2 is formed
in the inner layer following reaction I′′, the stoichiometry of this reaction also determines
the change of slopes of the H2 in comparison of those of the fuel. This is written as

dxF
dx

∣∣∣∣∣
0−

− dxF
dx

∣∣∣∣∣
0+

= 1 = −1 + α

2

{
dxH2

dx

∣∣∣∣∣
0−

− dxH2

dx

∣∣∣∣∣
0+

}
(7.39)

Since the thickness of the preheat zone is of order O(1) and that of the oxidation layer
of order O(ε) the upstream slope of the H2 concentration (dH2/dx)0+ can be neglected
compared to the downstream slope (dH2/dx)0−. It then follows with (7.32) and (7.35)
that the upstream boundary condition of (7.36) is

dz

dη
= −1 at η = 0 . (7.40)
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Then the solution of (7.36) with (7.37) is

z =
21/2

21/4 + η
(7.41)

with
z0 = 21/4 at η = 0 . (7.42)

The form of the solution is plotted in Fig. 7.2 showing a very slow decrease of z towards
η →∞. This may explain why in numerically and experimentally obtained concentration
and temperature profiles the downstream conditions are approached only very far behind
the flame.

Fig. 7.2: Normalized H2-profile in the oxidation layer

7.3 An Analytic Expression for the Burning Velocity

The result (7.42) may now be used in (7.32) and (7.33) to determine the quantities required
in (7.23) and thereby the burning velocity sL. Also by dividing (7.23) by (7.35) one can
eliminate sL and obtain a relation of the form

k2
1(T

0)

k38(T 0)k5(T 0)/RT 0
= 1.5p

LeF
LeO2

. (7.43)

Here the universal gas constant R must be used as R = 82.05 atm cm3/mol K in order to
be consistent with the units of the reaction rates and the pressure. Equation (7.43) shows
that with the rate coefficients fixed, the inner layer temperature is function of the pressure
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only. It does not depend on the preheat temperature, the dilution of the fuel concentration
in the unburnt mixture and thereby the adiabatic flame temperature. This is an important
property that will be discussed below.

After some algebraic manipulations the expression for the burning velocity reads

s2L =
8

15

k2
1

k38

1

q4XH2O

YFu
WF

λ0

cp0

(
Le5

O2
Le3

H2
KIV(T 0)

LeF 25(1 + α0)3

)1/2
T 2
u

T 2
0

(Tb − T 0)4

(Tb − Tu)4
(7.44)

where (7.42) and (7.33) were used to relate ε to the difference between Tb and T0

εz0 =
Tb − T 0

Tb − Tu
. (7.45)

The burning velocity calculated from (7.44) and the pressure from (7.43) are plotted in
Fig. 7.3 for an undiluted flame with Tu = 300 K as a function of T0 choosing p = 1 atm
one obtains a laminar burning velocity of 54 cm/sec for stoichiometric methane flames.
This value is satisfactory in view of the many approximations that were made and the few
kinetic rates that were retained. In fact, it is seen from (7.43) and (7.44) that only the
rates of reactions 1, 5, and 11 influence the burning velocity in this approximation.

Fig. 7.3: The burning velocity for an undiluted stoichiometric methane-air flame at Tu =
300 K
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A further consequence of (7.44) is that the burning velocity vanishes as T 0 reaches Tb.
This is seen in Fig. 7.3 with Tb = 2320 K the pressure is larger than approximately 20 atm.
Different values of Tb would been obtained for a diluted or preheated flame. The fact that
at a fixed pressure T 0 is fixed by the rate of rate coefficients in (7.43) points towards the
possibility to explain flammability limits at least in terms of dilution for stoichiometric
flames: if the amount of fuel is so low that in the unburnt mixture the corresponding
adiabatic flame temperature is lower than T 0, a premixed flame cannot be established.

7.4 Relation to the Activation Energy of the One-step Model

Using the burning velocity expression (6.52) from the preceeding lecture, one may plot the
burning velocity in an Arrhenius diagram over 1/Tb. Then in the limit of a large activation
energy the slope in this diagram is given by

d ln s2L
d(1/Tb)

= −ER (7.46)

or
d ln s2L
d lnTb

=
E

RTb
(7.47)

Applying this form to (7.44) with T0 fixed leads to

d ln s2L
d lnTb

=
4Tb

Tb − T 0
− 4Tb
Tb − Tu

(7.48)

Since the second of the terms is much smaller then the first one obtains with (7.45) when
T 0 approaches Tb and ε is small

E

RTb
=

4Tb
Tb − Tu

1

εz0
(7.49)

Therefore the Zeldovich number introduced in (6.35) may be expressed as

Ze =
E(Tb − Tu)
RT 2

b

=
4

εz0
(7.50)

In the one-step model the thickness of the reaction zone was of the order of the inverse of
the Zeldovich number. This corresponds for the two-step model for methane flames to the
thickness of the oxidation layer. Therefore the oxidation layer seems to play a similar role
in hydrocarbon flames as the reaction zone in one-step asymptotics.

Values of the Zeldovich number for lean to stoichiometric methane flames, obtained
by asymptotic analysis in [7.2] are shown in Fig. 7.4. The Zeldovich number measures
the sensitivity of the burning velocity to perturbations of the maximum temperature.
Figure 7.4 shows that this sensitivity increases as the mixture becomes leaner and when
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Fig. 7.4: Variation in the value of the effective Zeldovich number with Φ for various values
of p at Tu = 300 K.

the pressure increases. The flame will then become very sensitive to heat loss and flame
stretch effects.

7.5 Analytic Approximations of Burning Velocities for Lean

CH4, C2H6, C2H4, C2H2, and C3H8 Flames

The burning velocity expression presented in (7.43) and (7.44) may be generalized by
writing an approximation formula for burning velocities as

sL = Y mFuA(T 0)
Tu
T 0

(
Tb − T 0

Tb − Tu

)n
(7.51)

and
p = P (T 0) (7.52)

where the functions A(T 0) and P (T 0) are determined by fitting numerical or experimental
data and the values m = 1/2 and n = 2 would correspond to the previous expressions for
premixed methane flames.

Equation (7.52) assumes that the inner layer temperature is a function of pressure
only, and it does not depend, for instance, on the equivalence ratio. This is a fairly crude
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approximation as may be seen from Fig. 7.5 where inner layer temperatures obtained from
asymptotic analysis [7.2] are plotted together with the adiabatic temperatures as a function
of the equivalence ratio. If one would replace the curves for the inner layer temperature
by a horizontal line, its intersection with the curve for Tb would yield a lower theoretical
limit for the lean flammability limit. This will be discussed in the next section.

Fig. 7.5: Variation of the adiabatic flame temperature Tb and the temperature at the inner
layer T 0 with equivalence ratio Φ for various values at the pressure p, and for Tu = 300 K.

If the structure of any other hydrocarbon fuel is similiar to that of methane, these
exponents should not differ very much from these numbers. Since A(T 0) and B(T 0) con-
tain essentially the temperature dependence due to rate coefficients, we express them in
Arrhenius form

A(T 0) = F exp(−G/T 0) (7.53)

P (T 0) = B exp(−E/T 0) . (7.54)

This concept was tested in [7.3]. The basis of the approximation was a data set of 197, 223,
252, 248, and 215 premixed flames for CH4, C2H6, C2H4, C2H2 and C3H8, respectively in
the range between p = 1 atm and 40 atm, Tu between 298 K and 800 K, and the fuel-air
equivalence ratio between Φ = 0.4 and Φ = 1.0. A nonlinear approximation procedure was
employed, yielding the following values for the coefficients:
The approximation was surprisingly the best for C2H2, yielding a standard deviation for
sL of 2.3%, followed by C2H4 with 3.2%, C2H6 and C3H8 with 6.2%, and CH4 with 7.4%.

112



0

10

20

30

40

50

0.4 0.5 0.6 0.7 0.8 0.9 1

Fuel: CH
4

1 bars
L
 [cm/s]

φ

40 bar

0

50

100

150

200

250

300

1 10

sL [cm/s]

p [bar]

Fuel: C3H8

Tu = 289 K

 400 K 

 500 K 

 600 K 

 700 K 

 800 K 

Fig. 7.6: Burning velocity sL of methane vs. fuel-air-equivalence ratio Φ for various pres-
sures with a fixed unburnt temperature Tu of 298 K (solid lines). The markers denote the
values of detailed numerical calculations.

Fig. 7.7: Burning velocity sL of propane vs. pressure for various unburnt gas temperatures
Tu at stoichiometric mixture (solid lines). The markers denote the values of detailed
numerical calculations.
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Fuel B [bar] E [K] F [cm/s] G [K] m n

CH4 3.1557e8 23873.0 22.176 -6444.27 0.565175 2.5158
C2H2 56834.0 11344.4 37746.6 1032.36 0.907619 2.5874
C2H4 3.7036e5 14368.7 9978.9 263.23 0.771333 2.3998
C2H6 4.3203e6 18859.0 1900.41 -506.973 0.431345 2.1804
C3H8 2.2501e6 17223.5 1274.89 -1324.78 0.582214 2.3970

Table 7.1: Approximation coefficients for the burning velocity.

These deviations may be considered extremely small in view of the fact that such a large
range of equivalence ratios, pressures and preheat temperatures has been covered with an
approximation formula containing only six coefficients. A closer look at the exponents m
and n shows that m is close to 1/2 for CH4 and C3H8, but close to unity for C2H2 and
C2H4, suggesting that the asymptotic model for these flames should differ from the one for
CH4 in some important details. The exponent m lies around 2.5 and thereby sufficiently
close to 2 for all fuels.

Burning velocities for methane calculated from (7.51) and (7.52) are shown as a func-
tion of equivalence ratio for different pressures at Tu = 298 K in Fig. 7.6 and compared
with the values obtained from the numerical computations. Generally the largest deriva-
tions from the numerical computations occur around φ = 1. The pressure and unburnt
temperature variation of sL at stoichiometric mixture is shown in Fig. 7.7 for propane.

7.6 Lean flammability limits of hydrocarbon flames

Flammability is the ability of a mixture, once it has been ignited, to enable flame pro-
pagation without further heat addition. This requires that a sufficient amount of fuel is
available to reach a temperature, that, in view of the flame structure as shown in Fig. 7.1
should exceed the inner layer temperature T 0.

Le Chatelier in 1891 was the first to point towards a criterion that relates the flamma-
bility limit to the thermodynamic properties of the fuel mixture. In 1898 Le Chatelier and
Boudouard investigated experimental data and wrote that “the flammability limit of most
hydrocarbons corresponds to a heat of combustion close to 12.5 kcal”. This is essentially
Le Chatelier’s famous “mixing rule”. It determines an adiabatic flame temperature and
should be valid for mixtures of hydrocarbons with inerts, too.

Equation (7.51) now shows that the burning velocity vanishes if the adiabatic flame
temperature is equal to the inner layer temperature. A lower theoretical limit for the lean
flammability limit is therefore given by

Tb = T 0 . (7.55)

In view of this criterion the adiabatic flame temperature identified by Le Chatelier
and Boudouard corresponds to the inner layer temperature and thus describes a chemical
rather than a thermodynamic property. In using (7.55) the concept can generalized to
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variable preheat temperatures and pressures and compared with experimental data. Many
data on flammability limits are given in [7.7]

As the lean flammability limit is approached, the burning velocity drops sharply, but
shows a finite value at the limiting point. Egerton and Thabet [7.5] and Powling [7.6]
report a value of 5 cm/s at atmospheric pressure using flat-flame burners. Experimental
data for the lean flammability limit are always influenced by external disturbances, such
as radiative heat loss or flame stretch. Radiation heat loss will be discussed in the next
section. We note that flame extinction occurs at a finite value of the burning velocity.

Equation (7.55) may be used to calculate the limiting fuel mass fraction (YF,u)l.l. as
a quantity that determines the flammability limit. At the flammability limit it is accurate
enough to assume complete combustion and to use (2.9) to determine Tb as a function of
YF,u and Tu. Then, with Tb = T 0, one obtains

(YF,u)l.l. =
(T 0 − Tu)cpν′FWF

Qref
(7.56)

This indicates that the limiting fuel mass fraction decreases linearly with increasing Tu.

Fig. 7.8: Comparison of experimental data for the lean limit CH4 mole fraction from [7.7]
for different preheat temperatures with the two criteria.

Fig. 7.8 compares the results using (7.56) with recent experimental data obtained by
Hustad and Sønju [7.8]. The criterion T 0 = Tb underpredicts the measured values for
the lean limit, but shows already the right behavior. The criterion sL = 5 cm/s is in
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excellent agreement with the measured values. In this figure we also plotted the curves for
sL = 2.5 cm/s and sL = 10 cm/s showing that the present model is not very sensitive to
the precise value of the limiting burning velocity.

7.7 Extinction of a Plane Flame by Volumetric Heat Loss

An additional influence that affects the stability of flames is volumetric heat loss. In order
to analyse this effect we will compare the one-step model with a large activation energy
and unity Lewis number and the four-step model. We will assume that the volumetric
heat loss qR is proportional to the temperature difference T − Tu and write

qR = −α(T − Tu) . (7.57)

where α is a heat loss coeffizient. The one-dimensional temperature equation for a steady
state premixed flame is then written as

ρusL
dT

dx
=

d

dx

(
λ

cp

dT

dx

)
+
Q

cp
w − α

cp
(T − Tu) . (7.58)

In terms of the nondimensional quantities defined in (6.25)—(6.27) this may be written
(with the asterisks removed)

M
dT

dx
=

d2T

dx2
+ w − πT . (7.59)

HereM is the burning velocity of the plane flame with heat loss normalized by the reference
burning velocity sL,ref of a plane flame without heat loss

M =
sL
sL,ref

. (7.60)

The non-dimensional heat loss parameter is defined

π =
λα

ρ2
us

2
L,refc

2
p

. (7.61)

It will be assumed constant with λ evaluated at T = T0. It should be noted here that π
increases rapidly as sL,ref decreases. Therefore heat loss has a strong influence close to the
flammability limit when sL,ref is small.

The structure of a premixed flame with heat loss is shown in Fig. 7.9. We will treat
π as a small expansion parameter and expand the temperature as

T = T0(1 + πz) (7.62)

where T0 is the leading order temperature for π → 0. The reaction term w in (7.58)
can be eliminated by coupling it with the equation (6.22) for the fuel mass fraction. In
non-dimensional form one then obtains the enthalpy

h = T + Y − 1 (7.63)
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Fig. 7.9: Structure of a premixed flame with heat loss

governed by the equation

M
dh

dx
=

d2h

dx2
− πT . (7.64)

This equation may be integrated across the thin reaction zone from x = −∞ to x = 0+.
This leads to

Mh(0+) =
dh

dx

∣∣∣∣∣
0+

− π
0+∫
−∞

T0dx (7.65)

since at x→ −∞ the enthalpy and its gradient vanishes. Introducing (7.62) into (7.63) at
x = 0+, where T0 = 1 and Y = 0 one obtains

h(0+) = πz(0+) . (7.66)

The integral over the preheat zone in (7.65) may evaluated by integrating the temperature
equation (7.59) to leading order

M
dT0

dx
=

d2T0

dx2
(7.67)

leading to
T0 = exp(Mx) for x < 0 . (7.68)

The downstream enthalpy gradient at the flame front is equal to the downstream tem-
perature gradient since Y = 0 for x ≥ 0. It can be evaluated by realizing that the heat
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loss region behind the flame is broad of order O(π−1). This suggest the introduction of a
contracted coordinate

x̃ = πx (7.69)

into the downstream temperature equation

M
dT

dx̃
= π

d2T

dx̃2
− T x > 0 . (7.70)

In the limit π → 0 the heat conduction term can now be neglected and with T0(0+) = 1
one obtains to leading order

dh

dx

∣∣∣∣∣
0+

=
dT

dx

∣∣∣∣∣
0+

= − π

M
. (7.71)

With (7.66), (7.68) and (7.71) inserted into (7.65) the flame temperature pertubation is

z(0+) = − 2

M2
. (7.72)

Since for a one step flame with a large activation energy the burning velocity depends
according to (6.52) on the flame temperature as

s2L ∼ exp

(
− E

RTb

)
, (7.73)

a perturbation of the temperature at x = 0+ behind the reaction zone will lead in terms
of the dimensional temperature to

M = exp

{
− E

2R

(
1

T (0+)
− 1

T0

)}
(7.74)

Using the expansion (7.62) in terms of the non-dimensional temperature one obtains with
(6.35)

M = exp (π Ze z(0+)) (7.75)

When this is combined with (7.72) one obtains

M2 lnM2 = −2πZe . (7.76)

A similar analysis may be performed for the four-step asymptotic analysis of methane
flames. Then, since with (7.44)

s2L ∼ (Tb − T 0)4 (7.77)

one obtains with (7.45) and (7.50)

M2 =

(
Tb − T 0 + Tbπz(0+)

)4
(Tb − T 0)4

=

(
1 +

πZez(0+)

4

)4

, (7.78)
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Fig. 7.10: The change of burning velocity and flame extinction due to heat loss for one-step
and four-step asymptotics

since Tb/(Tb − T 0) = 1/(εz0) = Ze/4 to leading oeder. If this is now combined with (7.72)
one obtains

M2
(
1−M1/2

)
= πZe (7.79)

instead of (7.76). Both equations, (7.76) and (7.79), are plotted in Fig. 7.10 showing a
qualitatively and even quantitatively very similar behaviour.

Only the upper branch of these curves represents a stable solution. It shows a decrease
of the burning velocity as the heat loss parameter π increases. There is a maximum value
for the product πZe for each of these curves beyond which no solution exists. At this value
heat loss extinguishes the flame. The non-dimensional burning rates at which this happens
are very close to each other: Mex = 0.61 for the one step kinetics and Mex = 0.64 for the
four-step kinetics. This is surprising because the kinetics for both cases are fundamentally
different. This supports the previous conclusion that the one-step large activation energy
model is a good approximation for the temperature sensitivity of hydrocarbon flames.
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Lecture 8: Laminar Premixed Flames: Flames Shapes and

Instabilities

The fundamental property of a premixed flame is its ability to propagate normal to itself
with a burning velocity that, to first approximation, depends on thermo-chemical param-
eters of the premixed gas ahead of the flame only. In a steady flow of premixed gas a
premixed flame will propagate against the flow until it stabilizes itself such that locally the
flow velocity normal to the flame is equal to burning velocity. We have already discussed
that for a Bunsen flame the condition of a constant burning velocity is violated at the top
of the flame and that additional influences such as flame curvature must be taken into
account. In this chapter we want to calculate flame shapes. We then will consider external
influences that locally change the burning velocity and discuss the response of the flame
to these disturbances.

burnt

gas




G > G0

unburnt

mixture




G < G0

n
→

sL

v
→

u

v
→

b

Fig. 8.1: Schematic illustration of a propagating flame with arbitrary shape
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8.1 A Field Equation Describing the Flame Position

The kinematic relation (6.8) between the propagation velocity, the flow velocity, and the
burning velocity that was derived for spherical flame propagation may be generalized by
introducing the vector n normal to the flame and writing

~n
dx

dt

∣∣∣
f

= v n+ sL (8.1)

where xf is the vector describing the flame position, (dx/dt)f the flame propagation
velocity, and v the velocity vector.
The normal vector points towards the unburnt mixture and is given by

n = − ∇G|∇G| . (8.2)

where G(x, t) can be identified as a scalar field whose level surfaces

G(x, t) = G0 (8.3)

where G0 is arbitrary, represent the flame surface (conf. Fig 8.1). The flame contour
G(x, t) = G0 divides the physical field into two regions where G > G0 is the region of
burnt gas and G < G0 that of the unburnt mixture. If one differentiates (8.3) with respect
to t at G = G0, such as

∂G

∂t
+∇G ∂x

∂t

∣∣∣
G=G0

= 0 , (8.4)

one obtains with (8.2)
∂G

∂t
= |∇G|~n∂x

∂t

∣∣∣
G=G0

. (8.5)

Introducing (8.1) into (8.5) and identifying (dx/dt)f as (dx/dt)G=G0 one obtains the field
equation

ρ

(
∂G

∂t
+ v∇G

)
= (ρsL) |∇G| . (8.6)

It will be called G-equation in the following. If the burning velocity sL is defined with
respect to the unburnt mixture, then ρ = ρu the flow velocity v in (8.6) is defined as the
conditioned velocity field in the unburnt mixture ahead of the flame. For a constant value
of sL the solution of (8.6) is non unique, and cusps will be formed where different parts
of the flame intersect. Even an originally smooth ondulated front in a quiescent flow will
form cusps and eventually become flatter with time as illustrated in Fig. 8.2. This is called
Huygen’s principle.

As an example of a closed form solution of the G-equation let us consider the case of
a slot burner with a constant exit velocity u for premixed combustion, Fig. 8.3. This is
the two-dimensional planar version of the axisymmetric Bunsen burner.

The G-equation takes the form

u
∂G

∂x
= sL

√(
∂G

∂x

)2

+

(
∂G

∂y

)2

. (8.7)
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Fig. 8.2: Illustration of Huygens principle in flame propagation with constant sL
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Fig. 8.3: A premixed laminar flame on a slot burner.
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With the ansatz
G = x+ F (y) (8.8)

and G0 = 0 one obtains

u = sL

√
1 +

(
∂F

∂y

)2

(8.9)

leading to

F =

(
u2 − s2L

)1/2
sL

|y|+ const . (8.10)

As the flame is attached at x = 0, y = ±b/2, where G = 0, this leads to the solution

G =

(
u2 − s2L

)1/2
sL

(
|y| − b

2

)
+ x . (8.11)

The flame tip lies with |y| = 0, G = 0 at

x0 =
b

2

(
u2 − s2L

)2
sL

(8.12)

and the flame angle α is given by

tanα =
b/2

x0
=

sL

(u2 − s2L)
1/2

(8.13)

With tan2 α = sin2 α/(1− sin2 α) it follows that

sinα =
sL
u

(8.13)

which is equivalent to (6.6).
This solution shows a cusp at the flame top x = x0, y = 0. In order to obtain a

rounded flame tip, one has to take modifications of the burning velocity due to flame
curvature into account. This leads to the concept of flame stretch.

8.2 Flame stretch

Flame stretch consists of two contributions: One due to flame curvature and another due
to flow divergence. It may be showen [8.1], [8.2] that for a one-step large activation energy
reaction and with the assumption of constant propaties the burning velocity sL is modified
by these two effects as

sL = s0L − s0L Lκ+ Ln · ∇v · n . (8.15)

Here s0L is the burning velocity for an unstretched flame and L is the Markstein length to
the presented below. The flame curvature κ is defined as

κ = ∇ · n = −∇ ·
(
∇G
|∇G|

)
, (8.16)
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which may be transformed as

κ = −∇
2G

|∇G| +
∇ |∇G| ∇G
|∇G|2 = −∇

2G+ n · ∇ |∇G|
|∇G| . (8.17)

We will explore the influence of the curvature effect by considering the burnout of a spher-
ical pocket of premixed gas by inward flame propagation. For this unsteady process the
velocity within the pocket is assumed zero and the G-equation takes with (8.17) the form

∂G

∂t
= s0L

[∣∣∣∣∂G∂r
∣∣∣∣+ L( 1

r2
∂

∂r

(
r2
∂G

∂r

)
− ∂

∂r

∣∣∣∣∂G∂r
∣∣∣∣)] . (8.18)

For the solution of (8.18) the ansatz

G = r − rF (t) (8.19)

leads to
∂rF
∂t

= −s0L
(

1 +
2L
rF

)
(8.20)

where G = 0, r = rF at the flame front has been used. This may be integrated to obtain
the time t in term s of rF (t)

s0Lt = − (rF − rF,0) + 2L ln

(
rF + 2L
rF,0 + 2L

)
(8.21)

which is plotted in non-dimensional form in Fig. 8.4. At t = 0 the initial flame radius rF,0
was taken as 10L.

Fig. 8.4: The burnout of a spherical pocket of premixed gas.
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It is seen that the burnout accelerates as the pocket becomes smaller and the curvature
effect increases.

The Markstein length is a quantity of the order of the flame thickness. For the case of
a one-step large activation energy reaction and a constant thermal conductivity λ, dynamic
viscosity µ and heat capacity cp, the ratio of L to the flame thickness lF is

L
`F

=
1

γ
ln

1

1− γ +
Ze(Le− 1)

2

(1− γ)
γ

γ/(1−γ)∫
0

ln(1 + x)

x
dx . (8.22)

This expression was first derived by Clavin and Williams [8.3]. Here γ = (Tb − Tu)/Tb
where Tb and Tu are the temperatures in the burnt and the unburnt gas, respectively,
Ze = E(Tb − Tu)/RT 2

b is the Zeldovich number, where E is the activation energy and R
the universal gas constant, and Le = λ/ρ cpD is the Lewis number of the reactant, assumed
constant, where D is the molecular diffusivity. The flame thickness is `F = λ/(ρ cp sL).
Equation (8.22) was derived with respect to the unburnt mixture. Clavin [8.1] shows that
with respect to the burnt gas one obtains a similar but different expression where the factor
(1−γ) in the nominator of the second term is missing. This increases the influence of Lewis
number effects since the term (1 − γ) is equal to Tu/Tb, which is typically between 0.15
and 0.2 in technical flames. For the four-step asymptotic model for methane presented in
lecture 7 the same expression as (8.22) can be derived with the Zeldovich number replaced
by Ze = 4/εz0 as in (7.50) [8.4]. Experimental values for the ratio in (8.22) range typically
from L/`F = 2 to L/`F = 6 (Searby and Quinard [8.5]). The last term in (8.15), the flame
stretch due to flow divergence, will not be discussed here but in the context of turbulent
premixed flames, lecture 14.

8.3 Flame Front Instability

As it was discussed in lecture 6 gas expansion in the flame front will lead to a deflection of
a stream line that enters the front with an angle. This is shown in Fig. 8.5 where a slightly
ondilated flame front in the x-y coordinate system is assumed.

A stream tube with cross-sectional area A0 and upstream flow velocity u−∞ widens
due to flow-divergence ahead of the flame. This divergence effect is generated by the
expansion at the front that induces a flow component normal to the flame contour. As
the stream lines cross the front they are deflected. At large distances from the front the
stream lines are parallel again, but the downstream velocity is u∞ = (ρu/ρb)u−∞. At the
cross section A1, where the density is still equal to ρu the flow velocity due to continuity
and the widening of the stream tube is

u1 =
A

A1
u−∞ < u−∞

Since the unperturbed flame propagates with u−∞ = sL the burning velocity is larger than
u1 and the flame will propagate upstream and thereby enhance the initial pertubation.

In the following we will neglect viscous and gravity effects and treat the flame as
a discontinuity in density that propagates normal to itself. While the influence of the
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Fig. 8.5: Illustration of the hydro-dynamic instability

flame curvature on the burning velocity is retained, flame stretch due to flow divergence is
neglected (see [8.7]). The burning velocity is then given by

sL = sL0 (1 + χL) . (8.23)

The velocity components u and v will be normalized with the burning velocity sLu (defined
with respect to the unburnt mixture), the coordinates x and y with the flame thickness `F
and the time with `F /sLu. As a reference value for the density we take ρu, introduce the
density rate r = ρb

ρu
and normalize the pressure with ρus

2
Lu.

u∗ = u/sLu , v∗ = v/sLu , p∗ =
p

ρus2Lu
,

x∗ = x/`F , y∗ = y/`F , t∗ = tsLu/`F .
(8.24)

The non-dimensional governing equations are then (with the asterisks removed)

ux + vy = 0

ut + uux + vuy +
1

ρ
px = 0 (8.25)

vt + uvx + vvy +
1

ρ
py = 0
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where ρu = 1 and ρb = r in the unburnt and burnt mixture respectively. The G-field is
described by

G = x− F (y, t) . (8.26)

With equations (8.2) and (8.5) the normal vector ~n and the normal propagation velocity
then are

n =

 −1√
1 + F 2

y

,
Fy√

1 + F 2
y

 , n
dx

dt

∣∣∣
G=G0

=
−Ft√
1 + F 2

y

. (8.27)

Due to the discontinuity in density at the flame front, the Euler equations (8.25) are only
valid on either side of the front, but do not hold across it. Therefore jump conditions
for mass and momentum conservation across the discontinuity are introduced (conf. [8.6],
p. 13):

(r − 1)n
dx

dt
= (rv+ − v−)n

(rv+ − v−)n
dx

dt
= rv+v+n+ p+n− v−v−n− p−n .

(8.28)

Here the subscripts “+” and “−” refer to the burnt and the unburnt gas respectively and
denote the properties immediately downstream and upstream of the flame front. In terms
of the u and v components the jump conditions are written

(r − 1)Ft = ru+ − u− − Fy(rv+ − v−)

(ru+ − u−)Ft = ru+(u+ − Fyv+)− u−(u− − Fyv−) + p+ − p−
(rv+ − v−)Ft = rv+(u+ − Fyv+)− v−(u− − Fyv−)− Fy(p+ − p−) .

(8.29)

With the coordinate transformation:

x = ξ + F (η, τ), y = η, t = τ (8.30)

we fix the discontinuity at ξ = 0. Under the assumption of small perturbations of the
front, the unknowns are expanded as

u = U + εu, v = εv

p = P + εp, F = εf
(8.31)

where ε is an asymptotically small parameter. Inserting (8.30) into the jump conditions
one obtains to the leading order the steady-state solution

U− = 1, P− = 0

U+ = 1/r, P+ = (r − 1)/r .
(8.32)

and to first order
(r − 1)fτ = ru+ − u−

0 = 2(u+ − u−) + p+ − p−

0 = v+ − v− +
1− r
r

fη

(8.33)
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where the leading order mass flux ṁ′′ = rU+ = U− has been set equal to 1. To first order
the equations for the perturbed quantities on both sides of the flame front now read

uξ + vη = 0

uτ + Uuξ +
1

ρ
pξ = 0

vτ + Uvξ +
1

ρ
pη = 0

(8.34)

where ρ = 1 for ξ < 0 (unburnt gas) and ρ = r for ξ > 0 (burnt gas) is to be used. To
test the solutions for instability, we want them of such structure that the perturbations
increase with time, are periodic in the η-direction and vanish for ξ → ±∞. Since the
system is linear, the solution may be written as

w =

u
v
p

 = w0 exp (αξ) exp (στ − ikη) (8.35)

=

A w = 0 (8.36)

where σ is the non-dimensional growth rate and k the non-dimensional wave number.

Introducing this into (8.32) one obtains a linear system where the matrix
=

A is given by

=

A=

 α −ik 0
σ + αU 0 α/ρ

0 σ + αU −ik/ρ

 . (8.37)

The eigenvalues of
=

A are obtained by setting det|A| = 0. This leads to the characteristic
equation

det|A| = 1

ρ
(k2 − α2)(σ +

α

ρ
) = 0 . (8.38)

Here again U = 1/ρ, ρ = r for ξ > 0 and ρ = 1 for ξ < 0 were used. There are three
solutions of (8.38) for the eigenvalues αj , where positive values satisfy the upstream (ξ < 0)
and negative values the downstream (ξ > 0) boundary conditions of (8.34). Therefore

ξ > 0 : α1 = −rσ, α2 = −k
ξ < 0 : α3 = k .

(8.39)

The corresponding eigenvectors w0,j are determined by introducing the eigenvalues αj

(j = 1, 2, 3) into
=

A and solving again

=

A wj = 0 . (8.40)
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This leads to

j = 1 : w0,1 = a

 1
irσ/k

0


j = 2 : w0,2 = b

 1
i

−1 + rσ/k


j = 3 : w0,3 = c

 1
−i

−1− σ/k

 .

In terms of the original unknowns u, v and p the solution is now

ξ > 0 :

u
v
p

 =

a
 1
irσ/k

0

 e−rσξ + b

 1
i

−1 + rσ/k

 e−kξ

 eστ−ikη

ξ < 0 :

u
v
p

 = c

 1
−i

−1− σ/k

 e(kξ+στ−ikη) .

(8.41)

For the perturbation f(η, τ) the form

f = f̃ eστ−ikη (8.42)

will be introduced.
Inserting (8.17), (8.26) and (8.31) into the non-dimensional G-equation

ρ

(
∂G

∂t
+ u

∂G

∂x
+ v

∂G

∂y

)
=

√(
∂G

∂x

)2

+

(
∂G

∂y

)2

ρsL0 (1 + χL)

satisfies to leading order (8.32) and x = 0−, x = 0+ respectively and leads to first order to

u− = fτ − fηηL

u+ = fτ −
fηη
r
L .

(8.43)

With (8.42) the jump conditions (8.33) can be written as

(r − 1)σf̃ = r(a+ b)− c

0 = 2a+ b
(
1 + r

σ

k

)
+ c

(σ
k
− 1
)

1− r
r

kf̃ = a
σ

k
+ b+ c

(8.44)

130



    

and (8.43) then reads

c = σf̃ + k2L

a+ b = σf̃ +
k2L
r

.
(8.45)

Since equation (8.44)1 is linear dependent from equations (8.45)1,2 it is dropped and the
equations (8.44)2,3 and (8.45)1,2 remain for the determination of a, b, c and σ(k). Dividing

all equations by kf̃ one obtains four equations for â = kf̃ , b̂ = b/kf̃ , ĉ = c/kf̃ and ϕ = σ
k .

The elimination of the first three unknown yields the equation

ϕ2(1 + r) + 2ϕ(1 + kL) +
2kL
r

+
r − 1

r
= 0 . (8.46)

The solution may be written in terms of dimensional quantities as

σ =
s−L0

k

1 + r

{√
1 + k2L2 − 2kL

r
+

1− r2
r
− (1 + kL)

}
(8.47)

Here only the positive root of (8.46) has been taken since it refers to possible solutions
with exponential growing amplitudes. (8.47) is the dispersion relation which shows that the
perturbation f grows exponentially in time only for a certain wavenumber range 0 < k < k∗

with k∗ = r−1
2L .

For perturbations at wavenumbers k > k∗ a plane flame of infinitively small thickness,
described as a discontinuity in density, velocity and pressure is unconditionally stable. This
is due to the influence of the front curvature on the burning velocity. As one would expect
on the basis of simple thermal theories of flame propagation, the burning velocity increases
when the flame front is concave and decreases when it is convex towards the unburnt gas,
so that initial perturbations are smoothened.

However, hydronamic and curvature effects are not the only influencing factors for
flame front stability. Flame stretch due to flow divergence, gravity (in a downward pro-
pagating flame) and the thermo-diffusive effect with a Lewis number larger unity are
stabilizing effects. A more detailed discussion of these phenomena may be found in [8.1]
and [8.6].

Exercise 8.3.1

Under the assumption of a constant burning velocity sL = sL0 the linear stability analysis
leads to the following dispersion relation

σ =
s−L0

k

r + 1

{√
1 +

1− r2
r
− 1

}
. (8.48)

Validate this expression by inserting L = 0 in (8.47). What is the physical meaning of this
result? What effect has the front curvature on the flame front stability?
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Solution:

The dispersion relation for constant burning velocity sL = sL0 , (8.48), shows that the
perturbation f grows exponentially in time for all wavenumbers. The growth rate σ is
proportional to the wavenumber k and always positive since the density rate r is less than
unity. This means that a plane flame front with constant burning velocity is unstable to any
perturbation. The front curvature has a stabilizing effect on the flame front stability. As it
is shown in 8.3, the linear stability analysis for a burning velocity with the curvature effect
retained leads to instability of the front only for the wavenumber range 0 < k < k∗ = r−1

2L ,
whereas the front is stable to all perturbations with k > k∗.

8.4 Extinction of a Plane Flame by Volumetric Heat Loss

An additional influence that affects the stability of flames is volumetric heat loss. In order
to analyse this effect we will consider for simplicity a one-step model with a large activation
energy and unity Lewis number and the four-step model derived in lecture 7 where α is
a heat loss coeffizient. For thin gas radiation it may be related to radiative emission and
(8.49) may be interpreted as a lincarized version of radiativ heat exchange. We will assume
that the volumetric heat loss is proportional to the temperature difference T−Tu and write

qR = −α(T − Tu) . (8.48)

The one-dimensional temperature equation for a steady state premixed flame is then writ-
ten as

ρusL
dT

dx
=

d

dx

(
λ

cp

dT

dx

)
+
Q

cp
w − α

cp
(T − Tu) . (8.49)

In terms of the nondimensional quantities defined in (6.25)—(6.27) this may be written
(with the asterisks removed)

M
dT

dx
=

d2T

dx2
+ w − πT . (8.50)

HereM is the burning velocity of the plane flame with heat loss normalized by the reference
burning velocity sL,ref of a plane flame without heat loss

M =
sL
sL,ref

. (8.51)

The non-dimensional heat loss parameter is defined

π =
λα

ρ2
us

2
L,refc

2
p

. (8.52)

It will be assumed constant with λ evaluated at T = T0. It should be noted here that π
increases rapidly as sL,ref decreases. Therefore heat loss has a strong influence close to the
flammability limit when sL,ref is small.
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Fig. 8.6: Structure of a premixed flame with heat loss

The structure of a premixed flame with heat loss is shown in Fig. 8.6. We will treat
π as a small expansion parameter and expand the temperature as

T = T0(1 + πz) (8.53)

where T0 is the leading order temperature. The reaction term w in (8.49) can be eliminated
by coupling it with the equation (6.22) for the fuel mass fraction. In non-dimensional form
one then obtains the enthalpy

h = T + Y − 1 (8.54)

governed by the equation

M
dh

dx
=

d2h

dx2
− πT . (8.55)

This equation may be integrated across the thin reaction zone from x = −∞ to x = 0+.
This leads to

Mh(0+) =
dh

dx

∣∣∣∣∣
0+

− π
0+∫
−∞

T0dx (8.56)

since at x→ −∞ the enthalpy and its gradient vanishes. Introducing (8.53) into (8.54) at
x = 0+, where T0 = 1 and Y = 0 one obtains

h(0+) = πz(0+) . (8.57)
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The integral over the preheat zone in (8.56) may evaluated by integrating the temperature
equation (8.50) to lesding order

M
dT0

dx
=

d2T0

dx2
(8.58)

leading to
T0 = exp(Mx) for x < 0 . (8.59)

The downstream enthalpy gradient at the flame front is equal to the downstream tem-
perature gradient since Y = 0 for x ≥ 0. It can be evaluated by realizing that the heat
loss region behind the flame is broad of order O(π−1). This suggest the introduction of a
contracted coordinate

x̃ = πx (8.60)

into the downstream temperature equation

M
dT

dx̃
= π

d2T

dx̃2
− T x > 0 . (8.61)

In the limit π → 0 the heat conduction term can now be neglected and with T0(0+) = 1
one obtains to leading order

dh

dx

∣∣∣∣∣
0+

=
dT

dx

∣∣∣∣∣
0+

= − π

M
. (8.62)

With (8.57), (8.59) and (8.62) inserted into (8.56) the flame temperature pertubation is

z(0+) = − 2

M2
, (8.63)

since for a one step flame with a large activation energy the burning velocity depends
according to (6.52) on the flame temperature as

s2L ∼ exp

(
− E

RTb

)
. (8.64)

A temperature pertubation of the form (8.53) will lead to

M = exp (π Ze z(0+)) (8.65)

When this is combined with (8.63) one obtains

M2 lnM2 = −2πZe . (8.66)

A similar analysis may be performed for the four-step asymptotic analysis of methane
flames. Then, since with (7.44)

s2L ∼ (Tb − T 0)4 (8.67)
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Fig. 8.7: The change of burning velocity and flame extinction due to heat loss for one-step
and four-step asymptotics

one obtains with (7.45) and (7.50)

M2 =

(
Tb − T 0 + Tbπz(0+)

)4
(Tb − T 0)4

=

(
1 +

πZez(0+)

4

)4

, (8.68)

since Tb/(Tb − T 0) = 1/(εz0) = Ze/4 to leading oeder. If this is now combined with (8.64)
one obtains

4M2
(
1−M1/2

)
= 2πZe (8.69)

instead of (8.66). Both equations, (8.66) and (8.69), are plotted in Fig. 8.7 showing a
qualitatively and even quantitatively very similar behaviour.

Only the upper branch of these curves represents a stable solution. It shows a decrease
of the burning velocity as the heat loss parameter π increases. There is a maximum value
for the product πZe for each of these curves beyond which no solution exists. At this value
heat loss extinguishes the flame. The non-dimensional burning rates at which this happens
are very close to each other: Mex = 0.61 for the one step kinetics and Mex = 0.64 for the
four-step kinetics. This is surprising because the kinetics for both cases are fundamentally
different. This supports again, as it was already pointed out for the Markstein length,
that the one-step large activation energy model is a good approximation for predicting the
response of hydrocarbon flames to external pertubations.
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Lecture 9: Laminar Diffusion Flames: Flame Structure

In this lecture we will consider systems where fuel and oxidizer enter separately into the
combustion chamber initially non-premixed. Mixing then takes place by convection and
diffusion. Only where fuel and oxidizer are mixed on the molecular level, chemical reactions
can occur. This is why flames in non-premixed combustion are called diffusion flames. A
classical example of a diffusion flame is a candle flame shown in Fig. 9.1.

Z = Zst

fuel

airair

x2

x1

Fig. 9.1: The candle flame as the classical example of a laminar diffusion flame

Its structure is similar to that shown in the introduction, except that the flow entrain-
ing the air into the flame is driven by buoyancy rather than by forced convection as in a
jet flame. The paraffin of the candle first melts due to radiative heat from the flame to
the candle, mounts by capillary forces into the wick where it then evaporates to become
paraffin vapor, a gaseous fuel.

In this lecture we will focus on the structure of the combustion zones in a diffusion
flame. These are best described by an asymptotic expansion for very fast chemistry starting
from the limit of complete combustion. To leading order one obtains the adiabatic flame
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temperature which is a function of mixture fraction only as already shown in lecture 1.
The asymptotic expansion around this limit will then describe the influence of finite rate
chemistry. If the expansion takes the temperature sensitivity of the chemistry into account
diffusion flame quenching can also be described. The quenching mechanism is similar to
that described for the continuously stirred reactor in lecture 4. It will be shown that
by introducing the mixture fraction as an independent coordinate for all reacting scalars,
a universal coordinate transformation leads in the limit of sufficiently fast chemistry to a
one-dimensional problem for the reaction zone. This is the basis of the flamelet formulation
for non-premixed combustion.

9.1 Flamelet Structure of a Diffusion Flame

Under the condition that equal diffusivities of chemical species and temperature can be
assumed (an assumption that is good for hydrocarbon flames but much less realistic for
hydrogen flames), all Lewis numbers

Lei = λ/ (cpρDi) = 1 (i = 1, 2, ..., n) (9.1)

are unity, and a common diffusion coefficient D = λ/(ρcp) can be introduced. The balance
equation for Z, (5.51), and the temperature T , (5.39), are in cartesian coordinates

ρ
∂Z

∂t
+ ρvα

∂Z

∂xα
− ∂

∂xα

(
ρD

∂Z

∂xα

)
= 0 , (9.2)

ρ
∂T

∂t
+ ρvα

∂T

∂xα
− ∂

∂xα

(
ρD

∂T

∂xα

)
=

r∑
k=1

Qk
cp
wk +

qR
cp

+
1

cp

∂p

∂t
. (9.3)

Here the low Mach number limit that leads to zero spatial pressure gradients has been
employed, but the temporal pressure change ∂p/∂t has been retained. The heat capacity
cp is assumed constant for simplicity. The equations (5.40) for the mass fractions of the
species could also have been written down and can be analyzed in a similar way as the
temperature equation. They are omitted here for brevity. Equation (9.2) does not contain
a chemical source term, since Z represents the chemical elements originally contained in
the fuel, and elements are conserved during combustion. We assume the mixture fraction
Z to be given in the flow field as a function of space and time by solution of (9.2) as
shown schematically in Fig. 5.2. Then the surface of the stoichiometric mixture can be
determined from

Z(xα, t) = Zst .

Combustion occurs in a thin layer in the vicinity of this surface if the local mixture fraction
gradient is sufficiently high. Let us locally introduce an orthogonal coordinate system x1,
x2, x3, t attached to the surface of a stoichiometric mixture as as shown in Fig. 9.1, where
x1 points normal to the surface Z(xα, t) = Zst and x2 and x3 lie within the surface. We
replace the coordinate x1 by the mixture fraction Z and x2, x3 and t by Z2 = x2, Z3 = x3

and t = τ . This is a coordinate transformation of the Crocco type. (Crocco expressed the
temperature in a flat-plate boundary layer as functions of another dependent variable, the

138



  

velocity.) Here the temperature T , and similarly the mass fractions, will be expressed as a
function of the mixture fraction Z. By definition, the new coordinate Z is locally normal
to the surface of the stoichiometric mixture. With the transformation rules

∂

∂t
=

∂

∂τ
+
∂Z

∂t

∂

∂Z
,

∂

∂xk
=

∂

∂Zk
+
∂Z

∂xk

∂

∂Z
(k = 2, 3) ,

∂

∂x1
=

∂Z

∂x1

∂

∂Z

(9.4)

we obtain the temperature equation in the form

ρ

(
∂T

∂τ
+ v2

∂T

∂Z2
+ v3

∂T

∂Z3

)
− ∂(ρD)

∂x2

∂T

∂Z2
− ∂(ρD)

∂x3

∂T

∂Z3

− ρD
[(

∂Z

∂xα

)2
∂2T

∂Z2
+ 2

∂Z

∂x2

∂2T

∂Z∂Z2
+ 2

∂Z

∂x3

∂2T

∂Z∂Z3
+
∂2T

∂Z2
2

+
∂2T

∂Z2
3

]
=

r∑
k=1

Qk
cp
wk +

qR
cp

+
1

cp

∂p

∂t
.

(9.5)

If the flamelet is thin in the Z direction, an order-of-magnitude analysis similar to that
for a boundary layer shows that the second derivative with respect to Z is the dominating
term on the left-hand side of (9.5). This term must balance the terms on the right-hand
side. All other terms containing spatial derivatives in x2 and x3 directions can be neglected
to leading order. This is equivalent to the assumption that the temperature derivatives
normal to the flame surface are much smaller than those in tangential direction. The term
containing the time derivative in (9.5) is important only if very rapid changes, such as
extinction, occur. Formally, this can be shown by introducing the stretched coordinate ξ
and the fast time scale σ

ξ = (Z − Zst)/ε , σ = τ/ε2 (9.6)

where ε is a small parameter, the inverse of a large Damköhler number or a large activation
energy, for example, representing the width of the reaction zone.

If the time derivative term is retained, the flamelet structure is to leading order de-
scribed by the one-dimensional time-dependent temperature equation

ρ
∂T

∂t
− ρχ

2

∂2T

∂Z2
=

r∑
k=1

Qk
cp
wk +

qR
cp
. (9.7)

Similar equations may be derived for the mass fractions. In Eq.(9.7)

χ = 2D

(
∂Z

∂xα

)2

(9.8)
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is the instantaneous scalar dissipation rate. It has the dimension 1/s and may be inter-
preted as the inverse of a characteristic diffusion time. It may depend on t and Z and acts
as a prescribed parameter in (9.7), representing the flow and the mixture field. As a result
of the transformation, it implicitly incorporates the influence of convection and diffusion
normal to the surface of the stoichiometric mixture. In the limit χ→ 0, equations for the
homogeneous reactor, analyzed in lecture 4, are obtained.

The neglection of all spatial derivatives tangential to the flame front is formally only
valid in the thin reactionzone around Z = Zst. This is shown in [9.1]. There are, however,
a number of typical flow configurations where (9.7) is valid in the entire Z-space. As
example, we will analyze here the unsteady reacting mixing layer and the counterflow
diffusion flame.

9.2 The Unsteady Mixing Layer

We consider the instationary interdiffusion of fuel and oxidizer in a quiescent flow field.
The continuity equation then yields ∂ρ/∂t = 0. The mixture fraction and the temperature
are governed by the equations

ρ
∂Z

∂t
=

∂

∂y

(
ρD

∂Z

∂y

)
(9.9)

ρ
∂T

∂t
=

∂

∂y

(
ρD

∂T

∂y

)
+

r∑
k=1

Qk
cp
wk +

qR
cp

+
1

cp

∂p

∂t
(9.10)

with the initial and boundary conditions

t = 0 : Z = 1 , T = T1 for y < 0, Z = 0 , T = T2 for y > 0,

t > 0 : Z = 1 , T = T1 for x→ −∞, Z = 0 , T = T2 for y → +∞.

u

y

x

oxidizer

fuel

u

Fig. 9.2: The mixture fraction profile in the flow behind a splitter plate

Here t denotes the time and y the spatial coordinate. For a steady two-dimensional flow
behind a splitter plate, shown in Fig. 9.2, which is of the boundary layer type, where
the velocity u in x-direction depends only on x and the normal velocity v is zero, t may
represent a transformed axial coordinate

t =

x∫
0

u−1 (x) dx . (9.11)
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Introducing the Chapman-Rubesin parameter

C =
ρ2D

(ρ2D)0
(9.12)

where the subscript 0 denotes the initial state for y > 0, for example, one obtains in terms
of the similarity coordinate

η =
1

2
(D0t)

−1/2

y∫
0

ρ

ρ0
dy , τ = t (9.13)

the equations

t
∂Z

∂t
− 1

2
η
∂Z

∂η
=

∂

∂η

(
C
∂Z

∂η

)
(9.14)

t
∂T

∂t
− 1

2
η
∂T

∂η
=

∂

∂η

(
C
∂T

∂η

)
+

t

ρcp

(
r∑

k=1

Qkwk + qR +
∂p

∂t

)
(9.15)

The mixture fraction equation has a steady state solution which, for the special case C = 1
is

Z =
1

2
erfc (η) (9.16)

where erfc is the complementary error function. If one now transforms (9.15) again by
replacing the similarity coordinate η by Z one obtains

t
∂T

∂t
+
∂T

∂Z

[
∂Z

∂t
− 1

2
η
∂Z

∂η
− ∂

∂η

(
C
∂Z

∂η

)]
= C

∂2Z

∂η2

∂2T

∂Z2
+

t

ρcp

(
r∑

k=1

Qkwk + qR +
∂p

∂t

)
.

(9.17)
Since the term in square brackets is equal to (9.14) and therefore vanishes, (9.17) is identical
to (9.7) if one reintroduces the transformation (9.13). Therefor the flamelet transformation
is exact for the unsteady mixing layer and the steady two-dimensional flow behind a splitter
plate. The scalar dissipation rate may be calculated using (9.16) as

χ =
1

2πt
exp

(
−2η2(Z)

)
, (9.18)

where for C = 1 the inverse of (9.16) can be used to express η in terms of Z

η(Z) = erfc−1 (2Z) . (9.19)

Here erfc−1 is the inverse (not the reciprocal) of the complementary error function. For
small values of Z (large positive values of η) the complementary error function may be
replaced by π−1/2η−1 exp

(
−η2

)
such that χ can be expressed as

χ = 2Z2
[
erfc−1(2Z)

]
/t , (9.20)
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Fig. 9.3: Variation of the normalized scalar dissipation χt with Z in the insteady mixing
layer and the two-dimensional flow behind a splitter plate.

showing that it varies as Z2 for small values of Z. The variation of χ · t with Z is shown
for the two expressions (9.18) with (9.19) and (9.20) in Fig. 9.3.

9.3 The Planar Counterflow Diffusion Flame

Counterflow diffusion flames are very often used experimentally because they represent an
essentially one-dimension diffusion flame structures. Fig. 9.6 below shows two typical cases
where counterflow flames have been established between an oxidizer stream from above
and a fuel stream from below. The latter may either be a gaseous fuel or an evaporating
liquid fuel. If one assumes that the flow velocities of both streams are sufficiently large
and sufficiently removed from the stagnation plane, the flame is embedded between two
potential flows, one coming from the oxidizer and one from the fuel side. Prescribing the
potential flow velocity gradient in the oxidizer stream by a = −∂v∞/∂y, the velocities and
the mixture fraction are there

y →∞ : v∞ = −ay , u∞ = ax , Z = 0 . (9.21)

Equal stagnation point pressure for both streams requires that the velocities in the fuel
stream are

y → −∞ : v−∞ = −
√
ρ∞/ρ−∞ ay , u−∞ =

√
ρ∞/ρ−∞ ax , Z = 1 . (9.22)
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The equations for continuity, momentum and mixture fraction are given by

∂ (ρu)

∂x
+
∂ (ρv)

∂y
= 0 , (9.23)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+

∂

∂y

(
µ
∂u

∂y

)
, (9.24)

ρ

(
u
∂Z

∂x
+ v

∂Z

∂y

)
=

∂

∂y

(
ρD

∂Z

∂y

)
. (9.25)

Introducing the similarity transformation

η =

(
a

(ρµ)∞

)1/2
y∫
o

ρdy , ξ = x (9.26)

one obtains the system of ordinary differential equations

f =

η∫
0

f ′dη (9.27)

∂

∂η

(
C
∂f ′

∂η

)
+ f

∂f ′

∂η
+
ρ∞
ρ
− f ′2 = 0 (9.28)

∂

∂η

(
C

Sc

∂Z

∂η

)
+ f

∂Z

∂η
= 0 (9.29)

in terms of the nondimensional stream function

f = − ρv

((ρµ)∞ a)
1/2

(9.30)

and the normalized tangential velocity

f ′ =
u

ax
. (9.31)

Furthermore the Chapman-Rubesin parameter C and the Schmidt number Sc are defined

C =
ρµ

(ρµ)∞
, Sc =

µ

ρD
. (9.32)

The boundary equations are

η = +∞ : f ′ = 1 , Z = 0

η = −∞ : f ′ = ρ∞/ρ−∞ , Z = 1 .
(9.33)
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An integral of the Z-equation is obtained as

Z =
1

2

I(∞)− I(η)
I(∞)

(9.34)

where the integral I(η) is defined as

I(η) =

η∫
o

Sc

C
exp

−
η∫

0

fSc/Cdη

 dη . (9.35)

For constant properties (ρ = ρ∞, C = 1) f = η satisfies (9.28) and

Z =
1

2
erfc

(
η/
√

2
)
. (9.36)

The instantaneous scalar dissipation rate is here

χ = 2D

(
∂Z

∂y

)2

= 2

(
C

Sc

)
a

(
∂Z

∂η

)2

(9.37)

where Eqs. (9.26) and (9.32) have been used. When the scalar dissipation rate is evaluated
with the assumptions that led to (9.36) one obtains

χ =
a

π
exp

[
−η2(Z)

]
=
a

π
exp

(
−2
[
erfc−1(2Z)

]2)
(9.38)

where η(Z) is obtained as inverse of (9.36). For small Z one obtains with l’Hospital’s rule

dZ

dη
= −1

2

dI

dη

1

I(∞)
=

−dI/dη

I(∞)− I(η) Z = −Sc

C
fZ . (9.39)

Therefore, in terms of the velocity gradient a the scalar dissipation rate becomes

χ = 2af2Z2(Sc/C) (9.40)

showing that χ increases as Z2 for small Z. Assuming again f = η as well as C/Sc = 1
one obtains

χ = 4aZ2
[
erfc−1(2Z2)

]
(9.41)

The scalar dissipation rate in (9.38) and in (9.41) has the same Z-dependence as for the
unsteady mixing layer and the two-dimensional flow behind a splitter plate. This points
towards common features for these two flow configurations as far as the scalar structure is
concerned. Fig. 9.3 is therefore also valid for counterflow diffusion flames if one replaces
the time t by (2a)−1.
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9.4 Steady State Combustion and Quenching of Diffusion Flames

with One-Step Chemistry

If the unsteady term is neglected, (9.7) is an ordinary differential equation that describes
the structure of a steady state flamelet normal to the surface of stoichiometric mixture. It
can be solved for general reaction rates either numerically or by asymptotic analysis. In
the following we will express the chemistry by a one-step reaction with a large activation
energy, assume constant pressure and the heat loss term qR to be negligible. We will
analyze the upper branch of the S-shaped curve shown in Fig. 9.4. This curve is equivalent
to that previously discussed in Fig. 4.8 for E = 10. We will introduce an asymptotic
analysis for large Damköhler numbers and large activation energies. In the limit of large
Damköhler numbers which corresponds to complete combustion the chemical reaction is
confined to an infinitely thin sheet around Z = Zst. Assuming constant cp the temperature
and the fuel, oxidizer, and product mass fraction profiles are piecewise linear functions of
Z. These are shown in Figs. 1.??? and 1.???. The temperature profile is given by (2.13)
with (2.14). This is called the Burke-Schumann solution. The coupling relations (6.24)
yield the corresponding profiles for YF and YO2 :
lean mixture, Z ≤ Zst:

T (Z) = Tu(Z) +
QYF,1
cpν′FWF

Z , YF = 0 , YO2 = YO2,2

(
1− Z

Zst

)
, (9.42)

rich mixture, Z ≥ Zst:

T (Z) = Tu(Z) +
QYO2,2

cpν′O2
WO2

(1− Z) , YO2 = 0 , YF = YF,1

(
Z − Zst

1− Zst

)
(9.43)

where
Tu(Z) = T2 + Z(T1 − T2) . (9.44)

Tmax

χ
st
 (sec)-1

χ
q
-1

Q

I

Fig. 9.4: The S-shaped curve showing the maximum temperature in a diffusion flame as a
function of the inverse of the scalar dissipation rate at stoichiometric mixture.
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The mass fractions of product species may be written similarly. We define the reaction rate
as in (6.20) to show that (9.7) is able to describe diffusion flame quenching. For simplicity
we will assume T1 = T2 = Tu. Then, for one reaction with

Q

cp
=

(Tst − Tu) ν′FWF

YF,1Zst
(9.45)

(9.7) is written as

d2T

dZ2
= −2Bν′F ρ (Tst − Tu)

χYF,1ZstWO2

YFYO2 exp

(
− E

RT

)
. (9.46)

The temperature and the fuel and oxygen mass fraction are expanded around Zst as

T = Tst − ε (Tst − Tu) y
YF = YF,1ε (Zst + ξ)

YO2 = YO2,2ε ((1− Zst)− ξ)
(9.47)

where ε is a small parameter to be defined during the analyses. The exponential term in
the reaction rate may be expanded as

exp

(
− E

RT

)
= exp

(
− E

RTst

)
exp(Ze εy) (9.48)

where the Zeldovich number is defined as

Ze =
E (Tst − Tu)
RT 2

st

. (9.49)

If all other quantities in (9.46) are expanded around their value at the stoichiometric flame
temperature one obtains

d2y

dξ2
= 2 Da ε3 (Zsty + ξ) ((1− Zst)y − ξ) exp(−Ze εy) (9.50)

where

Da =
Bρstν

′
O2
YF,1

χstWF (1− Zst)
exp

(
− E

RT

)
(9.51)

is the Damköhler number.
The differential equation (9.50) is cast into the same form as the one that governs

Liñán’s diffusion flame regime [9.3] by using the further transformation

z = 2y(1− Zst)Zst − γξ
γ = 2Zst − 1

β = Ze
/

[2Zst (1− Zst)]

(9.52)
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to yield
d2z

dξ2
= Da ε3(z2 − ξ2) exp [−βε(z + γξ)] . (9.53)

There are evidently two ways to define the expansion parameter ε, either by setting βε = 1
or by setting Da ε3 = 1. The first one would be called a large activation energy expan-
sion and the second one a large Damköhler number expansion. Both formulations are
interrelated if we introduce the distinguished limit where the rescaled Damköhler number

δ = Da/β3 (9.54)

is assumed to be of order one. Thus a definite relation between the Damköhler number
and the activation energy is assumed as ε goes to zero. We set

ε = Da−1/3 = δ−1/3/β (9.55)

to obtain Liñán’s equation for the diffusion flame regime

d2z

dξ2
= (z2 − ξ2) exp[−δ−1/3(z + γξ)] . (9.56)

The boundary conditions are obtained by matching to the outer flow solution

dz

dξ
= 1 for ξ →∞ ,

dz

dξ
= −1 for ξ → −∞ .

(9.57)

δq

Tst

T

0 Zst Z 1

δ→∞

δ→∞

(∆Z)F

Fig. 9.5: Temperature and fuel mass fraction profiles over mixture fraction for diffusion
flamelet at increasing Damköhler numbers.
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The essential property of this equation, as compared to the large Damköhler number limit
(δ → ∞) is that the exponential term remains, since δ was assumed to be finite. This
allows extinction to occur if the parameter δ decreases below a critical value δq. Liñán
gives an approximation of δq in terms of |γ|. For small values of Zst extinction occurs at
the transition to the premixed-flame regime [9.3]. He obtains

δq = e(1− |γ|) . (9.58)

Characteristic profiles for the temperature over Z are schematically shown in Fig. 9.5 with
δ as a parameter. There is a limiting profile Tq(Z) corresponding to δq. Any solution
below this profile is unstable, and the flamelet would be extinguished.

The extinction condition δ = δy defines with (9.54) and (9.51) a maximum dissipation
rate χq at the surface of stoichiometric mixture for a flamelet to be burning, namely

χq =
8Bρstν

′
O2
YF,1Z

3
st(1− Zst)

2

WF δqZe3 exp

(
− E

RTst

)
. (9.59)

We may interpret χst as the inverse of a characteristic diffusion time. If χst is large, heat
will be conducted to both sides of the flamelet at a rate that is not balanced by the heat
production due to chemical reaction. Thus the maximum temperature will decrease until
the flamelet is quenched at a value of χst = χq. This is shown in Fig. 9.4. Burning of
the flamelet corresponds to the upper branch of the S-shaped curve. If χst is increased,
the curve is traversed to the left until χq is reached, beyond which value only the lower,
nonreacting branch exists. Thus at χst = χq the quenching of the diffusion flamelet occurs.

The transition from the point Q to the lower state corresponds to the unsteady transi-
tion. Auto-ignition, which would correspond to an unsteady transition from the point I to
the upper curve, is unlikely to occur in open diffusion flames, since the required very large
residence times (very small values of χst) are not reached. An example for auto-ignition
in non-premixed systems is the combustion in a Diesel engine. Here interdiffusion of the
fuel from the Diesel spray with the surrounding hot air leads to continuously decreasing
mixture fraction gradients and therefore to decreasing scalar dissipation rates. This cor-
responds to a shift on the lower branch of the S-shaped curve up to the point I where
ignition occurs.

9.5 Time and Length Scales in Diffusion Flames

We will define the chemical time scale at extinction as

tc = Z2
st(1− Zst)

2/χq . (9.60)

This definition is motivated by expression (9.59) for χq. By comparing this with the time
scale of a premixed flame with the same chemical source term one obtains

tc =
δq (ρλ/cp)st
2 (ρusL)

2
st

(9.61)
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where (ρusL)st has been calculated using (6.54) and (6.55) for a stoichiometric premixed
flame. This indicates that there is a fundamental relation between a premixed flame and
a diffusion flame at extinction: In a diffusion flame at extinction the heat conduction out
of the reaction zone towards the lean and the rich side just balances the heat generation
by the reaction. In a premixed flame the heat conduction towards the outburnt mixture is
such that it balances the heat generation by the reaction for a particular burning velocity.
These two processes are equivalent. A diffusion flame, however, can exist at lower scalar
dissipation rates and therefore at lower characteristic flow times. The flow time in a
premixed flow is fixed by the burning velocity, which is an eigenvalue of the problem.
Therefore combustion in diffusion flame offers an additional degree of freedom: that of
choosing the ratio of the convective to the reactive time, represented by the Damköhler
number defined in (9.51) as long as χst is smaller than χq. This makes non-premixed
combustion to be better controllable and diffusion flames more stable. It is also one of
the reasons why combustion in Diesel engines which operate in the non-premixed regime
is more robust and less fuel quality dependent than that in spark ignition engines where
fuel and air are premixed before ignition.

Equations (9.60) and (9.38) may now be used to calculate chemical time scales for dif-
fusion flames. The inverse complementary error function erfc−1(2Zst) is 1.13 for methane-
air flames with Zst = 0.055 and 1.34 for H2-air flames with Zst = 0.0284. Extinction of
the H2-air diffusion flame occurs at a strain rate aq = 14260/s and that of the CH4-air
flame at 420/s. This leads to tc = 0.64 · 10−5s for hydrogen-air/diffusion flames and to
tc = 0.29 · 10−3s for methane-air/diffusion flames. The latter estimate is of the same order
of magnitude as tc for stoichiometric premixed methane flames. Comparing the velocity
gradient at extinction for premixed methane-air flames of aq = 2275/s, given in lecture
6, with the value above, one realizes that, while the extinction time scales in premixed
methane-air diffusion flames are comparable, the velocity gradients aq for extinction are
larger by a factor of 7 for premixed flames. This indicates that, in terms of the imposed
strain rate, a diffusion flame extinguishes more easily than a premixed flame. Physically,
this is due to the fact that the inner structure of a diffusion flame looses heat to both sides,
the lean and the rich, while a premixed flame looses heat only to the preheat zone.

In diffusion flames, in contrast to premixed flames, there is no velocity scale, such as
the burning velocity, by which a characteristic length scale such as the premixed flame
thickness lF could be defined. There is, however, the velocity gradient a, the inverse of
which may be interpreted as a flow time.

Based on this flow time one may define an appropriate diffusive length scale. Dimen-
sional analysis leads to a diffusive flame thickness

lF =

√
Dref

a
. (9.62)

Here the diffusion coefficient D should be evaluated at a suitable reference condition, con-
veniently chosen at stoichiometric mixture. Assuming a one-dimensional mixture fraction
profile in y-direction as for the insteady mixing layer the flame thickness in mixture fraction
space may be defined

(∆Z)F =

(
∂Z

∂y

)
F

lF . (9.63)
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Here (∂Z/∂y)F is the mixture fraction gradient normal to the flamelet. This flamelet
thickness contains the reaction zone and the surrounding diffusive layers. Equation (9.63)
leads with (9.62) and (9.8) to

(∆Z)F =

√
χref

2a
(9.64)

where χref represents the scalar dissipation rate at the reference condition. If χref is
evaluated at Zst and (9.41) is used, it is seen that (∆Z)F is of the order of 2Zst if Zst is
small. With an estimate (∆Z)F = 2Zst the flame thickness would cover the reaction zone
and the surrounding diffusive layers in a plot of the flamelet structure in mixture fraction
space. This is shown schematically in Fig. 9.5.

9.6 Numerical Calculation of Counterflow Diffusion Flames

with general boundary conditions

∇
stagnation


plane

nozzle nozzle

nozzle

oxidizer oxidizer

flameflame

stream

line

pool of liquid fuelgaseous

fuel

y

x

y

x

Fig. 9.6: A schematic illustration of the experimental configuration for counterflow flames
for gaseous and liquid fuels.

We now consider planar or axi-symmetric counterflow configurations for general boundary
conditions and chemical mechanisms. Two configurations are shown in Fig. 9.6 for gaseous
and liquid fuels. As for the planar counterflow flame there exists a similarity solution valid
in the vicinity of the stagnation line which results in a set of one-dimensional equations.
Here we will not introduce a non-dimensional similarity coordinate as in (9.26) but use
the y-coordinate directly. Rather than prescribing the velocity u by (9.31) we introduce
u = Gx where G replaces af ′. Then one obtains the following governing equations:

Continuity
∂(ρv)

∂y
+ (j + 1)ρG = 0 , (9.65)
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Momentum

ρv
dG

dy
= −ρG2 + P ′ +

d

dy

(
µ

dG

dy

)
= 0 , (9.66)

Species

ρv
dYi
dy

=
dji
dy

+ ṁi (i = 1, 2, ..., n) , (9.67)

Energy

ρvcp
dT

dy
=

d

dy

(
λ

dT

dy

)
−

n∑
i=1

himi −
n∑
i=1

cpiji
dT

dy
, (9.68)

Mixture fraction

ρv
dZ

dy
=

d

dy

(
λ

cp

dZ

dy

)
. (9.69)

Fig. 9.7: Comparison between the measured (line through points) and calculated temper-
ature profile (From the paper by C. M. Müller, J. Y. Chen and K. Seshadri in [9.4]).

Here j = 0 applies for the planar and j = 1 for axi-symmetric configuration. The parameter
P ′ represents the axial pressure gradient and is defined for the counterflow flame considered
in paragraph 9.3 as

P ′ = ρ∞a
2 , (9.70)

where a = (∂u/∂x)∞ is the velocity gradient and u∞ = ax the tangential velocity in
the oxidizer stream. The parameter a represents the strain rate and is prescribed for a
counterflow between two potential flows considered above. If, however, the oxidizer or the
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gaseous fuel flow issues from a burner sufficiently close to the flame the boundary condition
u = 0 must be imposed at the burner and the velocity gradient must be calculated as an
eigenvalue of the solution. As an example, for the counterflow flame over a liquid pool, the
boundary conditions at the exit of the oxidizer duct located at y = L can be written as

ρv = ρeve ;

G = 0 , YO2
= YO2e ;

Yi = 0 (i 6= O2, N2) ;

Z = 0 ; T = Te .

(9.71)

Subscript e denotes conditions at the exit of the oxidizer duct. At the surface of the
liquid pool located at y = 0, the value of the tangential component of the flow velocity
is presumed to be zero (no slip) and the appropriate interface balance conditions can be
written as

G = 0 ,

ρwvwYiw + jiw = 0 (i 6= F ) ,

ρwvw(1− YFw)− jFw = 0 ,

ρwvw(1− Zw) +

[
λ

cp

dZ

dy

]
w

= 0 ,[
λ

dT

dy

]
w

− ρwvwhL = 0 ,

T = Tw ,

(9.72)

where hL is the latent heat of vaporization of the fuel, which is presumed to be known.
Subscript F and w refer to the fuel and conditions on the gas side of the liquid-gas interface
respectively. For simplicity the surface temperature Tw is presumed to be equal to the
boiling point of methanol. The mass burning rate of the liquid fuel ρwvw is an unknown
and will be determined as a part of the solution.

A number of diffusion flames have been calculated numerically with full and reduced
mechanisms in [9.4]. As an example the temperature profile over a liquid pool of methanol
is shown in Fig. 9.7.

9.7 Diffusion Flames Structure of Methane-Air Flames

The one-step model with a large activation energy is able to predict important features
such as extinction, but for small values of Zst it predicts the leakage of fuel through the
reaction zone. This was schematically shown in Fig. 9.5. Experiments of methane flames,
on the contrary, show leakage of oxygen rather than of fuel through the reaction zone. A
numerical calculation with the four-step reduced mechanism

CH4 + 2H + H2O = CO + 4H2

CO + H2O = CO2 + H2

H + H + M = H2 + M

O2 + 3H2 = 2H + 2H2O
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Fig. 9.8: Temperature profiles of methane-air diffusion flames for a = 100/s and a = 400/s
as a function of mixture fraction.
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mixture fraction.
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has been performed [9.5] for the counter-flow diffusion flame in the stagnation region of a
porous cylinder. This flow configuration, initially used by Tsuji and Yamaoka [9.6], will
be presented in the next lecture in Fig. 10.1.

Temperature and fuel and oxygen mass fractions profiles are plotted in Fig. 9.8 and
9.9 for the strain rates of a = 100/s and a = 400/s as a function of mixture fraction. The
second value of the strain rate corresponds to a condition close to extinction. It is seen
that the temperature in the reaction zone decreases and the oxygen leakage increases as
extinction is approached.

T

Yi

T∞ 

0 Zst 1.0

T0

Z

O2

CH4

T

inner layer

oxidation layer

Fig. 9.10: Illustration of the asymptotic structure of the methane-air diffusion flame based
on the reduced four-step mechanism [9.7]. The dotted line is the Burke-Schumann solution.

An asymptotic analysis [9.7] based on the four-step model shows a close correspon-
dence between the different layers identified in the premixed methane flame in lecture 7
and those in the diffusion flame. The structure obtained from the asymptotic analysis is
schematically shown in Fig. 9.10. The outer structure of the diffusion flame is the clas-
sical Burke-Schumann structure governed by the overall one-step reaction CH4 + 2O2 →
CO2 + 2H2O, with the flame sheet positioned at Z = Zst. The inner structure consists of
a thin H2 − CO oxidation layer of thickness O(ε) toward the lean side and a thin inner
layer of thickness O(δ) slightly toward the rich side of Z = Zst. Beyond this layer the rich
side is chemically inert because all radicals are consumed by the fuel. The comparison of
the diffusion flame structure with that of a premixed flame shows that the rich part of the
diffusion flame corresponds to the upstream preheat zone of the premixed flame while its
lean part corresponds to the downstream oxidation layer.
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Fig. 9.11: Inner flame temperature T 0 plotted as a function of χ−1
st . 4, numerical calcu-

lations using the four-step mechanism [9.5]; © experimental data quoted in [9.7].

The maximum temperature which corresponds to the inner layer temperature of the
asymptotic structure, is shown in Fig. 9.11 as a function of the inverse of the scalar dis-
sipation rate. This plot corresponds to the upper branch of the S-shaped curve shown in
Fig. 9.4. The calculations agree well with numerical [9.5] and experimental [9.8] data and
also show the vertical slope of T 0 versus χ1

st which corresponds to extinction.

References

[9.1] Peters, N., Combustion, Science and Technology 30, pp. 1–17, 1983.

[9.2] Peters, N., Progress in Energy and Combustion Science, 10, pp. 319–339, 1984.
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Lecture 10: Laminar Diffusion Flames:

Different Flame Geometries and Single Droplet Burning

In this lecture we want to present solutions for the velocities and the mixture fraction
fields for some typical laminar flame configurations. Based on the assumption chemistry
we will then be able to calculate the flame contour defined by the condition Z(xα, t) = Zst.
We will for simplicity always assume the Lewis number to be equal to unity and the heat
capacity to be constant. The first case to be considered is the flame stagnation point
boundary layer, which is similar to the counterflow flow of the previous chapter but with
different boundary conditions. We then will investigate a laminar plane jet diffusion flame
and determine its flame length. The third example will include the effect of buoyancy in
a vertical plane diffusion flame. Finally we will also calculate the combustion of a single
droplet surrounded by a diffusion flame.

10.1 Diffusion Flames in a Stagnation Point Boundary Layer:

The Tsuji Flame

Let us consider the flame configuration shown in Fig. 10.1. Gaseous fuel from a sinter
metal tube is injected into the surrounding air which flows vertically upwards. Below the
tube a stagnation point is formed. This burner is known as the Tsuji burner [10.1]. If the
Reynolds number based on the cylinder radius and the free stream velocity is large, the flow
field may be split into an inviscous outer flow and a boundary layer close to the surface.
The potential flow solution for the flow around a cylinder then yields at the stagnation
point the velocity gradient

a =
2v∞
R

(10.1)

where v∞ is the velocity very far from the cylinder. The free-stream velocities at the edge
of the boundary layer are

ue = ax, ve = −ay . (10.2)

If the boundary layer thickness δ, which is proportional to the viscous length

`ν =

√
νe
a
, (10.3)

where νe is the kinematic viscosity at the edge of the boundary layer, is small compared
to the cylinder radius, the curvature of the cylinder surface may be neglected and the
boundary may be treated as two-dimensional in a cartesian coordinate system.

The equations describing the boundary layer flow are the
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Fig. 10.1: Schematic diagram of a stagnation point diffusion flame in front of a porous
cylinder

Continuity
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0 , (10.4)

Momentum

ρu
∂u

∂x
+ ρv

∂u

∂y
=

dp

dx

∣∣∣∣
e

+
∂

∂y

(
ρν
∂u

∂y

)
, (10.5)

Mixture fraction

ρu
∂Z

∂x
+ ρv

∂Z

∂y
=

∂

∂y

(
ρD

∂Z

∂y

)
. (10.6)

The pressure gradient at the boundary layer edge is obtained from Bernoulli’s equation

ρeue
due
dx

= −dp

dx

∣∣∣∣
e

= −ρea2x . (10.7)

The boundary conditions are

u = 0 , ṁw = (ρv)w , (ρD)w
∂Z

∂y

∣∣∣∣
w

= mw(Zw − 1) at y = 0 , (10.8)

and
u = ax , Z = 0 at y →∞ . (10.9)
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Here u = 0 is the non-slip condition at the surface. The mass flow rate ṁw of fuel issuing
through the porous metal into the boundary layer is imposed. The boundary condition
for the mixture fraction equation represents the integrated mixture fraction balance at the
surface of the porous metal by assuming that the mixture fraction gradient within the
metal is zero. Introducing the similarity variable

η =

(
a

νe

)1/2
y∫

0

ρ

ρe
dy (10.10)

The continuity equation is satisfied by introducing the stream function ψ such that

ρu =
∂ψ

∂η
,

ρv = −∂ψ
∂x

(10.11)

A non-dimensional stream function f(η), that depends on the similarity variable η only, is
then defined as

f(η) =
ψ

ρex
√
aνe

(10.12)

such that the velocities are

u = ax
∂f

∂η
, v = −ρe

ρ
(aνe)

1/2f(η) (10.13)

one obtains the similarity equations

−f d2f

dη2
=

[
ρe
ρ
−
(

df

dη

)2
]

d

dη

(
C

d2f

dη2

)
(10.14)

−f dZ

dη
=

d

dη

(
C

Sc

dZ

dη

)
(10.15)

Here Sc = ν/D is the Schmidt number and C is the Chapman-Rubesin parameter

C =
ρ2ν

ρ2
eνe

. (10.16)

Since ν changes as with temperature as T 1.7 and ρ as T−1, this quantity changes less than
the viscosity itself in a flow with strong heat release. The boundary conditions for the
similar solution are

fw = − (ρv)w
(ρ2
eaνe)

1/2
, f ′ = 0 ,

C

Sc

dZ

dη

∣∣∣∣
w

= fw(1− Z) at η = 0 (10.17)
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f ′(∞) = 1 for η →∞ . (10.18)

The mixture fraction equation may be transformed into

d

dη

[
ln

(
C

Sc

dZ

dη

)]
= −fSc

C
(10.19)

which can formally be solved as

Z =
fw[I(η)− I(∞)]

1− fwI(∞)
(10.20)

where

I(η) =

η∫
0

Sc

C
exp

− η∫
0

fSc

C
dη

dη . (10.21)

The mixture fraction at the surface is given by

Zw =
−fwI(∞)

1− fwI(∞)
. (10.22)

This indicates that the mixture fraction varies between Z = 0 and Z = Zw rather than
between 0 and 1. The boundary condition for the fuel and oxidizer fractions satisfy the
Burke-Schumann solution at Zw , as may easily be shown. The boundary condition for
the temperature at the surface is to be imposed at Z = Zw.

If the mass flow rate at the surface is increased and fw takes large negativ values, the
mixture fraction at the surface tends towards unity. This is the limit of a counter-flow
diffusion flame detached from the surface.

Equations (10.14) and (10.15) have been solved numerically using the Burke-Schuh-
mann solution for combustion of methane in air (1.67)–(1.68) with Zst = 0.055, Tu = 300 K,
and Tst = 2263 K. The profiles of u/ax, v, T , Z, ρ/ρe, and C are shown in Figures 10.2
a–c.

10.2 The Plane Jet Diffusion Flame on a Slot Burner

For non-premixed combustion a jet flame is the most common flow configuration. Fuel
that issues from a nozzle mixes with the surrounding air by convection and diffusion to
form a mixture fraction field as already shown in Fig. 5.2 in Lecture 5. Usually the jet
velocity is so large that the jet becomes turbulent and turbulent mixing determines the
mixture fraction field. This will be considered for a round jet in lecture 13. Here we want
to derive a similarity solution for a laminar plane jet issuing from a slot burner. Such a
configuration exists in house-hold appliances for hold water supply. In order to obtain a
similarity solution buoyancy must be neglected (We will consider the effect of buoyancy
separately in the next section). Here we want to extend the classical solution [10.2] for
a constant density plane jet to non-constant density jet flames. The stream line pattern
and the velocity profiles are shown in Fig. 10.3. The jet issues from a small slot within
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Fig. 10.2a: Velocity profiles for the Tsuji geometry

Fig. 10.2b: Mixture fraction and Temperature profiles for the Tsuji geometry
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a wall and by viscosity entraines the surrounding fluid. Thereby the velocity profile and
the maximum velocity decreases. The boundary layer that would develop on the wall will
be neglected for simplicity. Then the entrained fluid enters into the jet from the normal
direction.

We assume the boundary layer assumptions to be valid and the pressure to be constant.
We denote with x the coordinate in jet axis and with y the coordinate normal to it. The
corresponding velocity components are denoted by u and v. The boundary layer equations
are

Continuity

∂(ρu)

∂x
+
∂ρv

∂y
= 0 , (10.23)

Momentum

ρu
∂u

∂x
+ ρv

∂u

∂y
=

∂

∂y

(
ρν
∂u

∂y

)
, (10.24)

Mixture Fraction

ρu
∂Z

∂x
+ ρv

∂Z

∂y
=

∂

∂y

(
ρD

∂Z

∂y

)
. (10.25)

The momentum equation may be combined with the continuity equation and integrated
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Fig. 10.3: A laminar plane jet diffusion flame

from y = 0 to y →∞

∂

∂x

∞∫
0

ρu2 dy +
[
ρuv

]∞
0

=

[
ρν
∂u

∂y

]∞
0

. (10.26)

With the boundary conditions u = 0 and ∂u/∂y = 0 at y = ∞ (conf. Fig. 10.3) and
v = 0 and du/dy = 0 at y = 0 due to symmetry, the last two terms in (10.26) are zero. It
follows that the first integral denoting the jet momentum is independent of x and therefore
constant, equal to the momentum at x = 0. Assuming a constant exit velocity across the
orifice with the half-width b the jet momentum is

∞∫
0

ρu2 dy = ρ0u
2
0b (10.27)

where ρ0 is the density of the fuel stream. The continuity equation is satisfied by the
stream function ψ defined by

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
. (10.28)

We now want to eliminate the x-dependence and introduce a similarity variable of the
form η ∼ y/xm. Requiring that the stream function is of the form ψ ∼ xmf(η) we need
two conditions to determine n and m. These are the momentum balance (10.27) and the
balance between the convective and diffusive terms in (10.24). This leads to m = 1/3 and
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n = 2/3. The approprimate length and velocity scales for a momentum driven viscous jet
are

lν = ν0/u0

uν = u0

(10.29)

where ν0 is the kinematic viscosity of the fuel stream. The similarity coordinates ζ and η
and the non-dimensional stream function f(η) may now be written

η =
1

3 l
1/3
ν ζ2/3

y∫
0

ρ

ρ0
dy =

1

3

(
u0

ν0ζ2

)1/3
y∫

0

ρ

ρ0
dy

ζ = x+ a ,

(10.30)

f(η) =
ψ

ρ0ζ1/3uν l
2/3
ν

=
ψ

ρ0(ν2
0u0ζ)1/3

. (10.31)

Here a is the distance between x = 0 and the apparent origin of the jet. This leads with
(10.28) to the velocities

u =
1

3

(
u2

0ν0
ζ

)1/3

f ′(η)

ρv = −ρ0

3

(
ν2
0u0

ζ2

)1/3

(f − 2ηf ′) .

(10.32)

Here the prime denotes differentiation with respect to η.
A general transformation rule from the x, y to η = η(x, y), ζ = x + a coordinate

system is
∂

∂x
=
∂ζ

∂x

∂

∂ζ
+
∂η

∂x

∂

∂η

∂

∂y
=
∂η

∂y

∂

∂η
.

(10.33)

When this is introduced into the convective term of (10.24) one obtains with (10.30) and
(10.31)

ρu
∂u

∂x
+ ρv

∂u

∂y
=
∂η

∂y

(
∂ψ

∂η

∂u

∂ζ
− ∂ψ

∂ζ

∂u

∂η

)
= −1

9

ρ0ν0u0

ζ

∂η

∂y
(f ′2 + ff ′′) . (10.34)

For the diffusive term it follows

∂

∂y

(
ρν
∂u

∂y

)
=

1

9

ρ0ν0u0

ζ

∂η

∂y

∂

∂η

(
C
∂f ′

∂η

)
(10.35)

where C is again the Chapman-Rubesin parameter

C =
ρ2ν

ρ2
0ν0

. (10.36)
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Combinig these leads to the equation for the non-dimensional stream function

f ′2 + ff ′′ + (Cf ′′)′ = 0 (10.37)

with the boundary conditions

f = 0 , f ′′ = 0 for η = 0

f ′ = 0 for η →∞ .
(10.38)

This equation may be integrated once to yield

ff ′ + Cf ′′ = 0 . (10.39)

This equation remains the same when f divided by and η is multiplied by a constant γ.
For simplicity we assume C = 1 and integrate again by introducing F = f/2γ and ξ = γη

F ′ + F 2 = 1 (10.40)

where the constant of integration has been set equal to unity. A further integration yields

ξ =

F∫
0

dF

1− F 2
=

1

2
ln

1 + F

1− F . (10.41)

The solution may then be written

F = tanh ξ =
1− exp(−2ξ)

1 + exp(−2ξ)
. (10.42)

The constant γ is to be evaluated by using the momentum integral (10.27). With

f ′ = 2γ2 ∂F

∂ξ
= 2γ2(1− tanh2 ξ)

u =
2

3
γ2

(
u2

0ν0
ζ

)1/3

(1− tanh2 ξ)

(10.43)

This is written as

4

3
γ3ρ0u0ν0

∞∫
0

(1− tanh2 ξ)2 dξ = ρ0u
2
0b (10.44)

where the integral with (10.41) and (10.42)

∞∫
0

(1− tanh2 ξ)2dξ =

1∫
0

(1− F 2)dF =
2

3
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This leads to

γ3 =
9

8

u0b

ν0
=

9

8
Re0 (10.45)

where Re0 is the jet exit Reynolds number. The equation for the mixture fraction may
similarly be transformed by introducing the ansatz

Z = α

(
ν0
u0ζ

)1/3

ω (10.46)

with a jet unknown coeffizient α, into (10.34) and (10.35) with u replaced by Z. One then
obtains

f ′ω + fω′ +

(
C

Sc
ω′
)′

= 0 (10.47)

where Sc is the Schmidt number ν/D. This also may be integrated once to

fω +
C

Sc
ω′ = 0 (10.48)

Combing this with (10.39) one finds a coupling between ω and f ′ as

d ln f ′

dη
=

1

Sc

d lnω

dη
(10.49)

which may be integrated for constant Sc as

ω = (f ′)Sc (10.50)

For C = 1 this leads to

Z = α
(
2γ2
)Sc
(
ν0
u0ζ

)1/3

[1− tanh2(γη)]Sc . (10.51)

By integrating the mixture fraction equation (10.25) in a similar way as the momentum
equation one finds that the integrated mass flow rate must be independent of x

∞∫
0

ρuZ dy = ρ0u0b . (10.52)

If (10.45) and (10.51) are introduced this leads to

α
(
2γ2
)Sc

1∫
0

(1− F 2)Sc dF =
4

9
γ2
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from which the coeffizient α in (10.46) can be determined . For Sc = 1 one obtains α = 1/3.
In this case the mixture fraction field is proportional to the velocity field

Z =
u

u0
. (10.53)

Equation (10.51) may be used to determine the flame length L of the plane jet diffusion
flame. By setting Z = Zst and η = 0 in (10.51) one obtains for L = x

L+ a =

(
α
(
2γ2
)Sc

Zst

)3

ν0
u0

=
α3

Z3
st

(
9√
8
Re0

)2Sc
ν0
u0

, (10.54)

where (10.45) has been used. Since Zst is typically small this leads to large values of L in
terms of the diffusive length scale ν0/u0. The distance a of the virtual jet origin from the
exit plane is small compared to L and may therefore be neglected.

10.3 A Buoyancy Driven Planar Diffusion Flame Above a

Vertical Splitter Plate

Since many laminar diffusion flames, for instance the candle flame, are largely influenced by
buoyancy, we want to consider a buoyancy driven flame in, however, an idealized situation
for which again a similarity solution can be obtained. Fig. 10.4 shows a symmetric two-
dimensional flame sheet above a splitter plate, called the ”infinite candle” [10.3] because
the fuel and oxidizer are assumed ininitely large extending to y → −∞ and y → +∞,
respectively, and from z = −∞ to z = +∞.

We assume that the flame sheet is infinitely thin of the Burke-Schumann type and
that the boundary layer approximation is valid. Then the governing equations outside the
flame sheet are

Continuity
∂ρw

∂z
+
∂ρv

∂y
= 0 (10.55)

Momentum in z-direction

ρw
∂w

∂z
+ ρv

∂w

∂y
=

∂

∂y

(
ρν
∂w

∂y

)
+ (ρu − ρ)g (10.56)

Temperature

ρw
∂T

∂z
+ ρv

∂T

∂y
=

∂

∂y

(
ρν

Pr

∂T

∂y

)
+
Q

cp
w . (10.57)

Since the chemistry is assumed infinitely fast, the reaction rate w appearing in the tem-
perature equation may be replaced by a δ-function at the flame surface. Here Pr = ρνcp/λ
is the Prandtl number. In order to obtain a symmetric solution we assume equal density
and temperature in the unburnt fuel and oxidizer far from the splitter plate. Then the
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Fig. 10.4: The symmetric infinite candle

flame surface lies at y = 0. The boundary conditions for the chemically inert flow outside
of the flame surface are

T = Tst , v = 0 ,
∂w

∂y
= 0 for y = 0

ρ = ρu , T = Tu , w = 0 for y → ±∞ .

(10.58)

Introducing a stream function ψ, defined by

ρw =
∂ψ

∂y
, ρv = −∂ψ

∂z
(10.59)

the continuity equation is satisfied. Characteristic length and velocity scales for buoyancy
driven flames are

lg =

(
ν2
stρst

g(ρu − ρst)

)1/3

ug =

(
gνst(ρu − ρst)

ρst

)1/3
(10.60)
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We now introduce the parameter σ = ρu/ρst = Tst/Tu and the similarity coordinate

η =
1

l
3/4
g z1/4

y∫
0

ρ

ρst
dy =

[
g(σ − 1)

ν2
stz

]1/4 y∫
0

ρ

ρst
dy (10.61)

A non-dimensional stream function may be defined

F (η) =
ψ

ρstz3/4

1

l
1/4
g ug

=
ψ

ρst[ν2
stgz

3(σ − 1)]1/4
(10.62)

which is only a function of η. Then it is seen with (10.59) that the velocity w

w = [zg(σ − 1)]1/2
∂F

∂η
(10.63)

increases with the square root of z. Introducing the similarity transformation one obtains
for the convective terms in (10.56)

ρw
∂w

∂z
+ ρv

∂w

∂y
=
∂η

∂y

(
∂ψ

∂η

∂w

∂z
− ∂ψ

∂z

∂w

∂η

)
= ρst[ν

2
stg

3(σ − 1)3z]1/4
∂η

∂y
[
F ′2

2
− 3

4
FF ′′] .

(10.64)
The diffusive term takes the form

∂

∂y

(
ρν
∂w

∂y

)
= ρst[ν

2
stg

3(σ − 1)3z]1/4
∂η

∂y

∂

∂η

(
C
∂2F

∂η2

)
. (10.65)

With these one obtains the momentum equation

(CF ′′)′ +
3

4
FF ′′ − 1

2
F ′2 +H = 0 (10.66)

Here C is the Chapmann-Rubesin parameter C = (ρ2ν)/(ρ2
stνst) and H the density ratio

H =
ρu − ρ
ρ(σ − 1)

. (10.67)

The ideal gas law shows that ρu/ρ = T/Tu and H may be expressed for constant pressure
and mean molecular weight as a temperature ratio

H =
T − Tu
Tst − Tu

(10.68)

With the assumption that the temperature is a function of η only one obtains the temper-
ature equation as (

C

Pr
H ′
)′

+
3

4
FH ′ = 0 . (10.67)
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Fig. 10.5: The velocity and temperature functions defined by similarity solution.

The boundary conditions for (10.65) and (10.67) are

F = 0 , F ′′ = 0 , H = 1 at η = 0

F ′ = 0 , H = 0 at η →∞ .
(10.68)

The solution for F ′ and H was calculated numerically for C = 1, Pr = 0.75 and is
plotted in Fig 10.5. There is a buoyancy induced maximum of the velocity profile at the
flame surface. The similarity solution is valid above the splitter plate for z À lg. For
νst ≈ 3.4 ·10−4m2/sec and a density ratio ρu/ρst ≈ 6 the characteristic length and velocity
scales are

lg = 1.3 mm and ug = 0.24 m/sec

If an imposed forced convective velocity that is larger than this estimate, the flow field is
influenced by both, forced convection and buoyancy. Similarly, buoyancy becomes impor-
tant in a convection dominated flame like the one considered before, when the convective
flow velocity is smaller than ug.
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10.4 Single droplet combustion

In many practical applications fuel liquid fuel is injected into the combustion chamber
resulting in a fuel spray. By the combined action of aerodynamical shear, strain, and
surface tension the liquid spray will decompose into a large number of single droplets of
different diameters. The fuel will then evaporate and a non-homogeneous fuel air mixture
will be formed in the flow field surrounding the droplets. When the spray is ignited, the
droplets will burn either as a cloud surrounded by a enveloping flame or as single droplets,
each being surrounded by its own diffusion flame. The former will the case if the fuel
air mixture between different droplets is fuel rich such that the surface of stoichiometric
mixture will surround the droplet cloud. We will consider here the latter case, where
the surface of stoichiometric mixture surrounds the single droplet. We will furthermore
consider very small droplets which follow the flow very closely and assume that the velocity
difference between the droplet and the surrounding fuel is zero. Therefore we may consider
the case of a spherically symmetric droplet in a quiescent surrounding. We assume the
evaporation and combustion process as quasi-steady and can therefore use the steady state
equations
Continuity

d

dr

(
r2ρv

)
= 0 (10.69)

Mixture fraction

ρv
dZ

dr
=

1

r2
d

dr

(
r2ρD

∂Z

∂r

)
(10.70)

Temperature

ρv
dT

dr
=

1

r2
d

dr

(
r2
λ

cp

∂T

∂r

)
+
Q

cp
w (10.71)

In these equations r is the radial coordinate, and v is the flow velocity in radial direction.
Here again a unity Lewis number leading to λ = ρcpD and a one step reaction with
fast chemistry will be assumed. The reaction rate w is then a δ-function at the flame
surface located at Z = Zst. The expected temperature and mixture fraction profiles
are schematically shown in Fig. 10.6. The boundary conditions for (10.69)–(10.71) at the
droplet surface r = R are obtained by integrating the balance equations once across r = R.

Since temperature and concentration gradients within the droplet are assumed negli-
gible, the convective flux through the surface equals the diffusive flux in the gas phase at
the droplet surface. The convective heat flux through the boundary involves a change of
enthalpy, namely the enthalpy of evaporation hL. Therefore

r = R : λ
dT

dr

∣∣∣∣∣
R

= (ρv)R hL . (10.72)

Here (ρv)R is the convective mass flux through the surface. The mixture fraction of the
convective flux involves the difference between the mixture fraction within the droplet,
which is unity by definition, and that in the gas phase at the droplet surface, where
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Fig. 10.6: Temperature and mixture fraction profiles at the surface and in the surroundings
of a burning spherical droplet.

Z = ZR. This leads to

r = R : ρD
dZ

dr

∣∣∣∣∣
R

= (ρv)R(ZR − 1) . (10.73)

The changes of temperature and mixture fraction at the surface are also shown in Fig. 10.6.
The boundary conditions in the surrounding air are

r →∞ : T = T2 , Z = 0 (10.74)

In addition, we assume that the temperature TL at the droplet surface is equal to the
boiling temperature of the liquid

T = TL . (10.75)

Then the temperature equation must satisfy three boundary conditions. This leads to an
eigenvalue problem for the mass burning rate

ṁ = 4πR2(ρv)R (10.76)

of the droplet which thereby can be determined. Integration of the continuity equation
leads to

ρvr2 = R2 (ρv)R (10.77)
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We will now introduce the nondimensional coordinate

η =

∞∫
r

v

D
exp(−ζ)dr (10.78)

where

ζ =

∞∫
r

v

D
dr =

ṁ

4π

∞∫
r

(ρDr2)−1dr . (10.79)

Between η and ζ there is the relation

dη

dζ
=

dη/dr

dζ/dr
= exp(−ζ) (10.80)

This may be integrated with the boundary conditions at r →∞: ζ = 0, η = 0 to yield

η = 1− exp(−ζ) (10.81)

and at r = R
ηR = 1− exp(−ζR) . (10.82)

Transformation of (10.70)–(10.71) with their boundary conditions leads to

d2Z

dη2
= 0 (10.83)

η = ηR : (ηR − 1)
dZ

dη
= ZR − 1

η → 0 : Z = 0

(10.84)

ρD

(
dη

dr

)2
d2T

dη2
= −Q

cp
w (10.85)

η = ηR : (η − 1)
dT

dη
=
hL
cp

, T2 = TL

η → 0 : T = T2

(10.86)

The solution of the mixture fraction equation with its boundary condition is readily seen
to be

Z = η . (10.87)

If this is introduced into the temperature equation and the scalar dissipation rate for the
present problem is defined as

χ = 2D

(
dZ

dr

)2

= 2D

(
dη

dr

)2

(10.88)
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one obtains

ρ
χ

2

d2T

dZ2
= −Q

cp
w (10.89)

which reduces to (9.7) if the steady state, negligible heat loss, and one-step chemistry was
assumed. We therefore find that the one-dimensional droplet combustion problem satisfies
the laminar flamelet assumptions exactly.

Here we want to consider the Burke-Schumann-solution (1.67). Then, in the fuel rich
region between r = R and r = rF (conf. Fig. 10.6) we have

T (Z) = T2 + Z(T1 − T2) +
QYO2,2

cpν′O2
WO2

(1− Z) (10.90)

Here T1 is by definition the temperature at Z = 1, which does not exist in the present
problem. We know, however, from the boundary conditions (10.86) the slope and the value
at Z = ZR where

TL = T2 + ZR(T1 − T2) +
QYO2,2

cpν′O2
WO2

(1− ZR) . (10.91)

Introducing (10.90) and(10.91) into the first of (10.86) one obtains

T1 = TL −
hL
cp

. (10.92)
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This is a hypothetical temperature corresponding to the fuel if one considers the droplet
as a point source of gaseous fuel. The heat of vaporisation then decreases the temperature
of the liquid fuel by the amount hL/cp. It should be used in flamelet calculations if one
wishes to calculate flamelet profiles in the range 0 < Z < 1 rather than 0 < Z < ZR.
The boundary condition (10.86) may also be used with (10.90) and (10.82) to calculate
the non-dimensional mass burning rate

ζR = ln

(
1 +

cp(T2 − TL) + YO2,2Q/ν
′
O2
WO2

hL

)
. (10.93)

From this, the mass burning rate may be determined using (10.79). We will introduce
radially averaged properties ρD defined by

(
ρD
)−1

= R

∞∫
R

dr

ρDr2
(10.94)

to obtain
ṁ = 4π ρDR ζR . (10.95)

Now it is possible to determine the time needed to burn a droplet with initial radius R0

at time t = 0. The droplet mass is m = 4π ρLR
3/3, where ρL is the density of the liquid.

Its negative time rate of change equals the mass loss due to the mass burning rate

dm

dt
= 4π ρLR

2 dR

dt
= −ṁ . (10.96)

Introducing (10.95) and assuming ρD independent of time one obtains by separation of
variables

dt = − ρL

ζR ρD
R dR , t ∼= R2

0 −R2 . (10.97)

Integrating from R = R0 to R = 0 one obtains the burnout time

t =
ρL

8ζR ρD
d2 (10.98)

where d = 2R0 is the initial droplet diameter. This is called the d2-law of droplet combus-
tion and shown in Fig. 10.8. It represents a very good first approximation for the droplet
combustion time and has often be confirmed by experiments.

Finally, we want to calculate the radial position of the surrounding flame. Evaluating
(10.81) for Z = Zst = ηst one obtains

1− Zst = exp(−ζst) (10.99)

where with (10.77) and (10.79)

ζst =
ṁ

4π ρD νst
. (10.100)
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Fig. 10.8: ???

Here ρD is defined as in (10.94) but averaging by an integration from νst to∞ rather than
from R to∞. If both are assumed equal one may use (10.95) to determine the flame radius
as

rst
R

=
ζR

ln[1/(1− Zst)]
. (10.101)

For sufficiently small values of Zst the denominator of (10.101) may be approximated by
Zst itself showing that ratio rst/R may take quite large values.

Problem 10.1:

Determine the non-dimensional mass burning rate and rst/R for a Diesel fuel where
hL/cp = 160 K, TL = 560 K, T2 = 800 K and Tst − Tu(Zst) = 2000 K, Zst = 0.036.

Solution

Using the Burke-Schumann solution the non-dimensional mass burning rate may be written
as

ζR = ln

[
1 +

T2 − TL + (Tst − Tu(Zst))/(1− Zst)

hL/cp

]
= 2.74 .

The ratio of the flame radius to the droplet radius is then

rst
R
≈ 75 .
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Problem 10.2:

Compare the evaporation rate for the same droplet as in problem 10.1 to that of the mass
burning rate.

Solution

The non-dimensional evaporation rate of a droplet may be obtained in a similar way as
(10.93). It follows from (10.93) in the limit Q = 0, therefore

ζR = ln

(
1 +

T2 − TL
hL/cp

)
= 0.916

The combustion rate is approximately three times faster than the evaporation rate.
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Lecture 11: Turbulent Combustion: Introduction and Overview

A major factor in the progress of understanding turbulent combustion is the identification
of different regimes defined by different time and length scale ratios. From a technical
point of view the interaction between turbulence and chemistry may be classified by two
criteria: premixed or non-premixed combustion, slow or fast chemistry. The first criterion
is relevant with respect to applications: combustion in large furnaces and gas turbines as
well as reactive flows in chemical industry are essentially non-premixed while combustion
in spark ignition engines or in household burners occurs in the premixed regime. Slow
chemistry is not very often of practical interest: there are a few situations like formation
and destruction of pollutants in post-flame regions where chemistry is slow compared to
convection and diffusion. On the other hand, reacting flows with fast chemistry occur
in nearly all the applications mentioned above. The reason is simple: for combustion to
be stable and complete, it must be rapid and therefore the chemical time scales must
be sufficiently short under all circumstances. Therefore engines are designed such that
only at limit conditions, i.e. at very high engine speeds, turbulent time scales may become
comparable to chemical time scales.

11.1 Semi-empirical Models of Turbulence

A classical way to describe turbulent flows is to split all the components of velocity and
also scalar quantities like the temperature and mass fractions measured at a point x into
a mean (denoted by an overbar) and a fluctuation such as

u(x, t) = ū(x, t) + u′(x, t), where ū′ = 0 (11.1)

If the flow is stationary on the average, a time average defines the mean

ū(x) = lim
∆t→∞

 1

∆t

t+∆t∫
t

u(x, t)dt

 . (11.2)

For general, including instationary flows an ensemble average may be defined

ū(x, t) = lim
n→∞

{
n∑
k=1

uk(x, t)/n

}
, (11.3)

where uk(x, t) are instantaneous values measured, for instances at the same time during
a repeated measuring cycle. For flows with large density changes like in combustion it is
often convenient to introduce a density weighted average ũ, called Favre average, defined
by

u(x, t) = ũ(x, t) + u′′(x, t) with ρu′′ = 0 (11.4)
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Multiplying (11.4) by the density ρ and time averaging yields

ũ = ρu/ρ̄ (11.5)

Furthermore the relation between the conventional mean and the Favre mean average is
obtained from

ρu = (ρ̄+ ρ′)(ū+ u′) = ρ̄ū+ ρ′u′ (11.6)

but ρu = ρ̄+ũ showing that a correlation between velocity and density fluctuations appears
in the conventional averaging of the product ρu, but does not appear in Favre averaging.
This is a considerable advantage, when the averaging is applied to the balance equations
of momentum, energy and chemical species, where the convective terms are dominant in
high Reynolds number flows. Since they contain the product of the dependent variable
with the density, they are treated very simply by Favre averaging. Difficulties arising in
the viscous and diffusive transport are of lower importances since these terms are usually
neglected as compared to turbulent diffusion.
In Favre-averaged form the balance equations are written:

Continuity
∂ρ̄

∂t
+
∂(ρ̄ṽα)

∂xα
= 0 (11.7)

Momentum

ρ̄
∂ṽβ
∂t

+ ρ̄ṽα
∂ũβ
∂xα

= − ∂p̄

∂xβ
+
∂τ̄αβ
∂xα

− ∂

∂xα

(
ρ̄ ṽ′′αv

′′
β

)
+ ρ̄gβ (11.8)

Here the mean viscous stress is often neglected compared to the Reynolds stress term
ρ̄ v′′αv

′′
β . Introducing a gradient transport hypothesis, this may be modelled as Reynolds

stress

ρ̄ ṽ′′αv
′′
β =


−ρ̄νt [2

∂ṽα
∂xβ

− 2

3

∂ṽγ
∂xγ

] +
2

3
ρ̄ k̃ , α = β

−ρ̄νt [
∂ṽα
∂xβ

+
∂ṽβ
∂xα

] , α 6= β
(11.9)

where a turbulent viscosity νt is introduced

νt = cD
k̃2

ε̃
, cD ≈ 0.09 (11.10)

The scalar quantities k̃ and ε̃ denote the Favre averaged turbulent kinetic energy and its
dissipation. They may be calculated from modelled equations:

Turbulent kinetic energy k̃ = 1
2 ṽ
′′2
β

ρ̄
∂k̃

∂t
+ ρ̄ṽα

∂k̃

∂xα
=

∂

∂xα

(
νt
∂k̃

∂xα

)
− ρ̄ṽ′′αv′′β

∂ũα
∂xβ

− ρε̃ (11.11)

Turbulent dissipation

ρ̄
∂ε̃

∂t
+ ρṽα

∂ε̃

∂xα
=

∂

∂xα

( νt
σε

∂ε̃

∂xα

) ε̃
k̃

(
−cε1ρ̄ ṽ′′αv′′β

∂ũα
∂xβ

− cε2ρ
ε̃

k̃

)
(11.12)
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In the standard k-ε model the constants σε ≈ 1.3, cε1 ≈ 1.44, cε2 ≈ 1.9 are used.
In non-premixed combustion modelled equations for the mixture fraction and its vari-

ance are also needed. These are
Mixture fraction

ρ̄
∂Z̃

∂t
+ ρ̄ṽα

∂Z̃

∂xα
=

∂

∂xα

(
ρ̄
νt
Sc

∂Z̃

∂xα

)
(11.13)

Mixture fraction variance

ρ̄
∂Z̃ ′′2

∂t
+ ρ̄ṽα

∂Z̃ ′′2

∂xα
=

∂

∂xα

(
ρ̄
νt
Sc

∂Z̃ ′′2

∂xα

)
+ 2ρ̄

νt
Sc

( ∂Z̃
∂xα

)2

− ρ̄χ̃ (11.14)

Here the mean scalar dissipation is modelled as

χ̃ = cχ
ε̃

k̃
Z̃ ′′2. (11.15)

Value s for the turbulent Schmidt number Sc and cχ are typically Sc ≈ 0.7 and cχ ≈ 2.0.

11.2 Turbulent Length, Time, and Velocity Scales

A given turbulent flow field may locally be characterized by the root-mean-square velocity
fluctuation v′ and the turbulent macroscale `, yielding a turbulent time scale τ = `/v′.
If conventionally averaged values of the turbulent kinetic energy and its dissipation are
used, one may relate v′ and ` to k and ε, where k is the turbulent kinetic energy and ε its
dissipation by

v′ = (2k/3)1/2, ` = v′3/ε. (11.16)

The turbulent time is then

τ =
k

ε
. (11.17)

In terms of the kinematic viscosity ν and ε the Kolmogorov length, time and velocity scales
are

η =

(
ν3

ε

)1/4

, tη =
(ν
ε

)1/2

, vη = (νε)1/4. (11.18)

Furthermore, for non-premixed combustion, the non-homogeneous mixture field must be
considered. Fluctuations of the mixture fraction, to be defined below, are characterized by

Z ′ =

√
Z̃ ′′2, (11.19)

where Z̃ ′′2 is the Favre averaged mixture fraction variance.
The Taylor length scale λ as an intermediate scale between the integral and the Kol-

mogorov scale is defined by replacing the average gradient in the definition of the dissipation
by u′/λ. This leads to the definition

ε = ν
(∂uα
∂xβ

)2

= 15ν
v′2

λ2
(11.20)
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Here the factor 15 originates from considerations for isotropic homogeneous turbulence.
Using (11.18) it is seen that

λ = (15ν v′2/ε)1/2 ∼ v′tη (11.21)

is proportional to the product of the turnover velocity of the large eddies and the Kol-
mogorov time. Therefore λ may be interpreted as the distance that a large eddy convects
a Kolmogorov eddy during its turnover time tη.

11.3 Eddy Sizes and Turnover Times in the Inertial Range

According to Kolmogorov’s 1941 theory on the universal range of turbulence, there is a
transfer from the energy containing eddies of characteristic size of the integral length scale
` to smaller and smaller eddies. The energy tranfer per unit turnover time of the large
eddies is equal to the dissipation of energy at the dissipation scale η. Therefore

ε =
v′2

τ
=
v′3

`
. (11.22)

We may define a discrete sequence of eddies within the inertial range by defining

`n =
`

an
≥ η, n = 1, 2, ... (11.23)

where a is an arbitrary number a > 1. Since the energy transfer ε is constant within the
inertial range, dimensional analysis relates the turnover time τn and the velocity difference
vn across the eddy `n to ε as

ε =
v2
n

tn
=
v3
n

`n
(11.24)

This relation includes the integral scales and also holds for the dissipation scales

ε =
v2
η

tη
=
v3
η

η
(11.25)

11.4 Regimes in Turbulent Combustion

Premixed Turbulent Combustion

For scaling purposes it is useful to define a reference viscosity νref as the product of the
laminar burning velocity and the flame thickness

νref = sL `F (11.26)

Then, we may define the turbulent Reynolds number

Re` = v′`/sL`F (11.27)
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the turbulent Damköhler number

Da` = τ/tF = sL`/v
′`F (11.28)

and the turbulent Karlovitz number

Ka = Da−1
η = tF /tη = `2F /η

2 = v2
η/s

2
L. (11.29)

The Karlovitz number is therefore equal to the inverse of a Damköhler number defined
with the Kolmogorov time scale rather than with the integral time scale. These definitions
can be used to derive the following relations between the ratios v′/sL and `/`F in terms
of the three nondimensional numbers Re,Da, and Ka as

v′/sL = Re(`/`F )−1

= Da−1(`/`F ) (11.30)

= Ka2/3(`/`F )1/3

In the following we will discuss Borghi’s diagramm Fig. 11.1 for premixed combustion
(conf. [11.1]) and plot the logarithm of v′/sL over the logarithm of `/`F . In this diagramm,
the lines Re = 1, Da = 1, and Ka = 1 represent boundaries between the different regimes
of premixed turbulent combustion. Another boundary of interest is the line sL = 1, which
separates the wrinkled and corrugated flamelets.

1 5 10

1

5

10

` / `F

v'
sL

Ka =1

Re <1

Re =1

Da =1

well-stirred reactor
Da <1

wrinkled flamelets

corrugated flamelets
Ka <1

distributed reaction zones
Da >1, Ka >1

flamelet
regime

Fig. 11.1: Phase diagram showing different regimes in premixed turbulent combustion
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The regime of laminar flames (Re < 1) in the lower-left corner of the diagramm is not
of interest in the present context. Among the remaining four regimes, the wrinkled and
corrugated flames belong to the flamelet regime, which is characterized by the inequalities
Re > 1 (turbulence), Da > 1 (fast chemistry), and Ka < 1 (sufficiently weak flame
stretch). Considering the boundary to the distributed reaction regime given by Ka = 1,
this boundary represents the condition that the flame thickness is equal to the Kolmogorov
scale (the Klimov-Williams criterion). However, in addition, since viscosity as a molecular
transport process relates Kolmogorov velocity, length, and time scales to each other in
the same way as the velocity, length, and time scales are related for flame propagation.
The flame time is equal to the Kolmogorov time and the burning velocity is equal to the
Kolmogorov velocity. This was used in (11.29).

The disrupted flamelet regime is characterized by Re > 1, Da > 1, and Ka > 1, the
last inequality indicating that flame stretch is strong and that the smallest eddies can enter
into the flame structure since η < `F , thereby broadening the flame structure. The smaller
eddies produce the largest strain rates and may lead to local extinction of the flamelet.
Finally, the well-stirred reactor regime on the upper left of the diagramm is characterized
by Re > 1,Ka > 1, but Da < 1, indicating that the chemistry is slow compared with
turbulence.

We will now enter into a more detailed discussion of the various regimes. The flamelet
regime is subdivided into the regimes of wrinkled, corrugated, and disrupted flamelets. In
the wrinkled flamelet regime, where v′ < sL, since v′ may be interpreted as the turnover
velocity of the large eddies, it follows that even those eddies cannot convolute the flame
front enough to form multiply connected reaction sheets. Flame propagation is dominating
and flame displacement by sL is faster than displacement by turbulence with v′ in this
regime.

The regime of corrugated flamelets is much more difficult to analyze analytically or
numerically. In view of (11.29), we have with Ka < 1

v′ ≥ sL ≥ vη (11.31)

within this regime. Since the velocity of large eddies is larger than the burning velocity,
these eddies will push the flame front around, causing a substantial convolution. Con-
versely, the smallest eddies, having a turnover velocity less than the burning velocity, will
not wrinkle the flame front.

To determine the size of the eddy that interacts locally with the flame front, set the
turnover velocity vn in (11.24) equal to the burning velocity sL. This determines the
Gibson scale

`G = s3L/ε (11.32)

The Gibson scale is the size of the burnt pockets that move into the unburnt mixture.
These pockets try to grow there due to the advance of the flame front normal to itself,
but are reduced in size again by newly arriving eddies of size `G. Therefore, there is
an equilibrium mechanism for the formation of burnt pockets, while unburnt pockets that
penetrate into the burnt gas will be consumed by the flame advancement. It is worth noting
that `G increases with sL if the turbulence properties are kept constant. At sufficiently
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low turbulence levels, the mean thickness of a turbulent flame should be influenced by this
mechanism and, therefore, also increase with sL. Using (11.22), one may also write (11.32)
in the form

`G/`t = (sL/v
′)3 (11.33)

An illustration of the kinematics of the interaction between a premixed flame and a turbu-
lent flowfield may be found in Fig. 9 of Ref. [11.3]. In this numerical study, the character-
istic integral length scale ` was kept constant, while the turbulence intensity was increased,
showing corrugations of smaller and smaller size.

log ln

log vn
v'

sL

vη

η

vn = (εln)1/3

`
G `

Fig. 11.2: Graphical illustration of the Gibson scale `G within the inertial range.

For engines, it also may be argued that the integral length scale is constant and de-
pends only on the geometrical dimensions of the combustion chamber, while the turbulence
intensity increases linearly with engine speed.

A graphical derivation of the Gibson scale LG within the inertial range is shown in
Fig. 11.2. Here the logarithm of the velocity vn is plotted over the logarithm of the length
scale according to (11.24). If one enters on the vertical axis with the burning velocity sL
equal to vn into the diagramm, one obtains `G as the corresponding length scale on the
horizontal axis. This diagramm also illustrates the limiting values of `G: If the burning
velocity is equal to v′, `G is equal to the integral length scale `. This case corresponds
to the borderline between corrugated and wrinkled flamelets in Fig. 11.1. Conversely, if
sL is equal to the Kolmogorov velocity vη, `G is equal to η. This corresponds to the line
Ka = 1 in Fig. 11.1. Therefore, `G may vary between η and ` in the corrugated flamelet
regime. The next regime of interest in Fig. 11.1 is the regime of disrupted flamelets. As
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noted earlier, the small eddies can enter into the flamelet structure and even destroy it,
since η < `F in this regime. Therefore, the notion of a burning velocity as a relevant
velocity scale has no meaning in this regime. Another scale, however, the chemical time
scale tc, remains still meaningful since reactions occur independently of flame propagation.
In addition, since there is an inner reaction zone smaller than the flame thickness, the
quenching of this inner zone by flame stretch is the important physical process. From the
physical point of view, the quench time tq is the more relevant time scale but, at least
for stoichiometric methane flames, the preceding has shown that tq ≈ tF , the latter being
equal to tc. Then, by setting tq = tn in (11.24), one obtains the quench scale [11.3]

`q = (εt3q)
1/2 (11.34)

This scale may be interpreted as the size of the largest eddy within the inertial range
that is still able to quench a thin reaction zone. Smaller eddies up to `q induce a larger
stretch and, thus, will quench the thin reaction layers within the flowfield more readily
and, thereby, try to homogenize the scalar field locally over a distance up to `q. Therefore,
`q may be interpreted as a correlation length for the reactive scalar field or, in physical
terms, as the size of a localized well-stirred reactor. This justifies the characterization
of this regime as the distributed reaction zone regime. It has also been characterized by
Williams as the regime of broken reaction zones, which gives a clear picture of physical
process described earlier.

In the distributed reaction zone regime, the Damköhler number, which is based on
the integral time scale tt and the chemical time scale tc = tF , is large. At the order of
these scales, chemistry is fast, and thin reaction zones may be generated locally. These
zones are quenched by flame stretch such that an equilibrium mechanism exists between
the generation and the destruction of thin reaction zones over a region of thickness `q.

Again, the derivation of `q is illustrated in a diagramm in Fig. 11.3, showing (11.24)
in a log-log plot of tn over `n. If one enters the time axis at tq = tn, the quench scale `q on
the length scale axis is obtained. It should be noted that all eddies having a size between
η and `q have larger stretch than `q and, therefore, are able to quench thin reaction zones
locally. If tq is equal to the Kolmogorov time tη, Fig. 11.3 shows that `q is equal to the
Kolmogorov scale η. In this case, setting tq = tF , one obtains `q = `F at the border
between the disrupted flamelet regime and the corrugated flamelet regime. Similarly, from
Fig. 11.3, if the quench time tq is equal to the integral time τ , the quench scale is equal to
the integral length scale. This would correspond to Da = 1 in Fig. 11.1 and delineates the
borderline between the disrupted flamelet regime and the well-stirred reactor regime.

As a final remark related to the disrupted flamelet regime, it may be noted that
turbulence in real systems is not homogeneous and ε is not a local constant but has a dis-
tribution. This refinement of Kolmogorov’s theory has lead to the notion of intermittency,
or “spottiness”, of the activity of turbulence in a flow field. This may have important
consequences on the physical appearance of turbulent flames at sufficiently large Reynolds
numbers. One may expect that the flame front shows manifestations of local quenching
events as well as of regions where corrugated flamelets appear. The regimes discussed
earlier may well overlap each other in an experimentally observed turbulent flame.

In the well-stirred reactor regime, chemistry is slow, as noted earlier. Now all eddies
up to ` can quench the flame structure, since Da ≤ 1. Turbulence homogenizes the scalar
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`

Fig. 11.3: Graphical illustration of the quench scale δq within the inertial range.

field by rapid mixing, leaving the slow chemistry to be the rate-determining process. No
specific interaction between turbulence and combustion can occur in this regime, and no
specific interaction scale is to be defined.

Non-Premixed Turbulent Combustion

In order to construct a phase diagram for non-premixed turbulent combustion, it is nec-
essary to identify the relevant quantities that influence the flame structure. In a non-
homogeneous mixture field the reaction zone is attached to the high temperature region
close to stoichiometric mixture and is advected and diffused with the mixture field. Differ-
ently from premixed combustion, there is no burning velocity, which would move it relative
to its previous position. There is a time scale, the chemical reaction time, but since there
is no physically meaningful velocity scale there is no meaningful length scale such as the
flame thickness for diffusion flames. Therefore the velocity fluctuation v′ defined in (11.16)
is not the relevant parameter in defining regimes in non-premixed turbulent combustion.
Since the mixture field fixes the flame position, mixture fraction fluctuations Z ′ defined in
(11.19) are responsible for corrugations of the flame surface. These fluctuations should be
considered in defining different regimes in turbulent diffusion flames.

In a non-homogeneous turbulent mixture field mean reaction rates are large where the
mean mixture fraction corresponds to the stoichiometric value. Now consider fluctuations
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around that mean value. For small mixture fraction variances, which may be due either to
intense mixing or to partial premixing, a situation arises where reactions are sufficiently
fast everywhere and the reaction zones are connected. Combustion in such a situation
corresponds to partially premixed rather than to non-premixed combustion. If, on the other
hand, mixture fraction fluctuations are sufficiently large, diffusion flame structures are
separated. Therefore a criterion must be derived, that distinguishes between the partially
premixed and the separated flamelet regimes. This criterion will be based on the flame
thickness in mixture fraction space (∆Z)F . If mixture fraction fluctuations are larger than
(∆Z)F one has separated flamelets, otherwise connected reaction zones. In the limit of
very large Damköhler numbers, when the flamelet structure approaches local equilibrium,
the distinction between separated and connected zones becomes irrelevant, since there is
chemical equilibrium everywhere.

The second criterion, based on time scales, should as in premixed combustion, consider
the ratio of the Kolmogorov to the chemical time. The Kolmogorov time tη = (ν/ε̃)1/2 is
the turnover time of the smallest eddies and therefore the shortest characteristic time of
turbulence. If combustion is fast with respect to this time scale, it may be considered as
quasi-steady and the diffusion flamelet concept is valid. If however, the Kolmogorov time
is of the same order or shorter than the chemical time, the flamelet regime breaks down
and regions of intense mixing and reaction will appear. As in premixed combustion, we
will call this regime the distributed reaction zones regime (conf. [11.4]).

1
2

- 
log(Z')

(∆Z)F

1 log(tη/tc)

Connected reaction Zones

Flamelet Regime

Distributed

Reaction


Zones

Fig. 11.4: Regimes in non-premixed turbulent combustion

Figure 11.4 shows the three regimes of non-premixed turbulent combustion in a phase
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diagram in terms of the mixture fraction fluctuation and the time scale ratio. Local
conditions of a non-premixed turbulent jet diffusion flame would range from the distributed
reaction zone regime close to the nozzle into the flamelet regime further downstream. Close
to the flame tip where typically Z ′ ≈ 0.3Z̃ = 0.3Zst < (∆Z)F it enters into the connected
reaction zones regime. Since Z ′ decreases as x−1 and the characteristic times of turbulence
increase as x2 in a jet flame, where x is the distance from the nozzle local conditions follow
a line with slope −1/2 in the double-logarithmic plot in Fig. 11.4.
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Lecture 12: Laminar Flamelet Models for Non-Premixed

Turbulent Combustion

12.1. Introduction

The flamelet concept for non-premixed combustion has been presented in previous reviews
[12.1], [11.1] , as a non-equilibrium version of the classical Burke-Schumann limit. It ap-
proaches this limit asymptotically in the limit of a one-step reaction with a large Damköhler
number. The scalar dissipation rate was in lecture 9 identified as a characteristic quantity
to describe the departure from the large Damköhler number limit. An asymptotic analysis
of the flamelet structure for quasi-steady unity Lewis number flames suggests that, to lead-
ing order, the scalar dissipation rate should account for non-equilibrium effects caused by
both, convection and diffusion. It follows, from the same reasoning, that rapid unsteady
changes, large local differences between convection and diffusion time scales, flamelet cur-
vature, strong variations of the scalar dissipation within the flamelet structure and effects
caused by non-unity Lewis numbers and multi-step chemistry require a more detailled
analysis. It also may happen that, if any of these effects are too strong, they must be in-
cluded into the leading order analysis and thereby add to the complexity of the parametric
description.

The transition from the point Q to the lower state corresponds to the unsteady tran-
sition. Auto-ignition, which would correspond to an unsteady transition from the point I
to the upper curve, is unlikely to occur in open diffusion flames, since the required very
large residence times (very small values of χst) are not reached.

An example for auto-ignition in non-premixed systems is combustion in a Diesel en-
gine. Here interdiffusion of the fuel from the Diesel spray with the surrounding hot air leads
to continuously decreasing mixture fraction grradients and therefore to decreasing mixture
fraction gradients and therefore to decreasing scalar dissipation rates. This corresponds to
a shift on the lower branch of the S-shaped curve up to the point I of ignition.

12.2 Diffusion Flamelets in Turbulent Combustion

The flamelet concept views a turbulent diffusion flame as an ensemble of laminar diffusion
flamelets. Once the flamelet structure has been resolved as a function of prescribed param-
eters and is available in form of a flamelet library, all scalars are known functions of these
parameters. The main advantage of the flamelet concept is the fact that chemical time
and length scales need not be resolved in calculating the turbulent flame. In turbulent
non-premixed combustion it has become common practise to use Favre (density weighted)
averaged equations. In addition to the continuity and momentum equations, and equations
describing turbulence quantities like k̃ and ε̃ and thereby the turbulent length and time
scales, we need the balance equations for the mixture fraction (11.13) and the mixture
fraction variance (11.14).
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In previous presentations [12.1] the enthalpy has been related to the mixture fraction
by (5.54). For a general formulation, however, it is preferable to modify this analysis by
including the enthalpy as a additional variable

ρ
∂h̃

∂t
+ ρ ṽα

∂h̃

∂xα
=

∂

∂xα

(
ρ
νt
Pr

∂h̃

∂xα

)

+
∂p

∂t
+ ũ

∂p

∂xα
+ ũ′′α

∂p

∂xα
+ u′′α

∂p′

∂xα
− qR .

(12.1)

Here Pr is a turbulent Prandtl number. The terms containing the mean spatial pressure
gradient and its fluctuations must be retained if gasdynamic effects are to be described.
These terms may be neglected in the limit of zero Mach number, when fast acoustic waves
are rapidly homogenizing the pressure field. The term describing temporal mean pressure
changes ∂p/∂t is important in internal combustion engines operating under non-premixed
conditions, such as the Diesel engine. Finally the mean volumetric heat loss term must be
retained if radiative heat exchange focusses influence on the local enthalpy balance. This
may well be the case in large furnaces where it influences the prediction of NOx formation
which is very sensitive to temperature.

By substracting from h̃ the part that is due to mixing and related to the mean mixture
fraction, one may define an enthalpy defect

(4̃h) = h̃− h2 − Z̃ (h2 − h1) (12.2)

which is caused by heat loss and pressure gradient effects. This enthalpy defect will lower
the enthalpy, which is locally available. It therefore represents an additional parameter
imposed on the flamelet.

No equation for enthalpy fluctuations has been written here. Fluctuations of the
enthalpy are mainly due to mixture fraction fluctuations and are described by those. Ad-
ditional effects due to non-unity Lewis numbers, fluctuations of pressure and volumetric
heat losses are difficult to quantify and will be neglected here.

In Eqs. (12.6), (12.7) and (12.8) diffusive terms containing molecular diffusivities have
been neglected as small compared to the turbulent transport terms in the large Reynolds
number limit. Diffusive effects have only be retained in the mean scalar dissipation χ̃
which is modelled by (11.15).

We assume that profiles of any reactive scalar of interest are available from a flamelet
library. Parameters of the library are the mixture fraction coordinate Z, the enthalpy,
and the strain rate a, the latter representing the inverse of the flow. Conceptually, one
could define partially premixed flamelets [12.2], [12.3] by moving the boundary conditions
towards the reaction zone while keeping the strain rate constant and therefore the scalar
dissipation rate in the combustion zone fixed. At the new boundary conditions burnt gas
partially mixed with fuel or oxidizer are imposed. If the boundary conditions are moved
inwards on the fuel side, only, the profiles in the reaction zone and even the extinction strain
rate are not expected to change much in the case of hydrogen or hydrocarbon combustion in
air. This is due to the fact that Zst is small in these cases and that heat loss is predominant
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towards the oxidizer side. In the turbulent flow, however, the corresponding reduction in
mixture fraction variation accross the flamelet, expressed in terms of mixture fraction
fluctuations would decrease the mean scalar dissipation rate. Equation (11.15) may, in
fact, be interpreted as representing two effects: the influence of time scale represented by
ε̃/k̃ and the influence of scalar fluctuations. Chemistry, however, responds to a change
of strain rate only, not to the change of mixture fraction fluctuations as long as these do
not enter into the reaction zone. We therefore propose to use the strain rate a imposed
on the flamelet as the appropriate time scale for the flamelet library. Its mean should be
proportional to the inverse of the turbulent time scale

a = c1
ε̃

k̃
. (12.3)

The constant c1 can be estimated by equating production and dissipation in the turbulent
energy equation. With (11.9)–(11.11) one then obtains for boundary layer flows a = ∂ũ/∂y

and c1 = c
−1/2
D = 3.33. Using the relation between χ and a, (9.32) and taking its turbulent

mean, one may define the corresponding mean scalar dissipation rate acting upon the
flamelets as

χF = 2a (4Z)2F = 8c1
ε̃

k̃
Z2

st , (12.4)

where (4Z)F = 2Zst has been used. When this expression is compared to Eq. (12.18) it is
seen that it corresponds to a fixed mixture fraction fluctuation, namely the flame thickness
in mixture fraction space.

12.3. Mean Values and Variances of Scalars in a Turbulent Flow Field

Local conditions of the turbulent scalar field are characterized by the mean mixture fraction

Z̃(xα, t), its variance Z̃ ′′2(xα, t), the mean strain rate a(xα, t) = ε̃(xα, t)/k̃(xα, t) and the

mean enthalpy defect ˜(∆h)(xα, t). The parameters determining the structure of a steady

state flamelet to be used locally are then a = ā and the enthalpy defect (4h) = ˜(4h). In
order to calculate a flamelet with the desired enthalpy defect, it is neceessary to vary the
heat loss term qR, keeping the strain rate and, if present, ∂p/∂t fixed or simply lowering
the available enthalpy. This will lead to lower mean temperatures and will alter the heat
exchange and extinction condition.

Fluctuations of the mixture fraction are taken into account by introducing a pre-
assumed probability density function (pdf). A generally accepted form for the mixture
fraction pdf is the beta function pdf

P̃ (Z) = Zα−1 (1− Z)β−1 Γ(γ)

Γ(α) Γ(β)
(12.5)

where

γ =
Z̃(1− Z̃)

Z̃ ′′2
− 1

α = Z̃ γ , β = (1− Z̃) γ .

(12.6)
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Fig. 12.1: Shapes of the beta-function distribution

Shapes of the beta function for various parameters are shown in Fig. 12.1. For small

variances, i.e. large values of Z̃ ′′2, it approaches a Gaussian.

Equations for the mean and the variance of the temperature T or the mass fractions
Yi are then

T̃ (xα, t) =

∫ 1

0

T (Z) P̃ (Z) dZ

Ỹi(xα, t) =

∫ 1

0

Yi(Z) P̃ (Z) dZ

T̃ ′′2(xα, t) =

∫ 1

0

(T (Z)− T̃ )2 P̃ (Z) dZ

Ỹ ′′2i (xα, t) =

∫ 1

0

(Yi(Z)− Ỹi)2 P̃ (Z) dZ.

(12.7)

For the solution of the modelled equations, the mean density ρ is needed. As an initial
guess, ρ may be approximated by the Burke-Schumann solution which is independent of
strain rate and relating the enthalpy to the mixture fraction. Using the definition of the
Favre mean pdf P̃ = ρP/ρ one obtains for the mean density

1

ρ
=

1∫
0

1

ρ(Z)
P̃ (Z) dZ . (12.8)
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12.4 Experimental Data Showing Non-Equilibrium Effects in

Jet Diffusion Flames

While the flame length may be calculated on the basis of the mixture fraction field only,
more details on scalars are needed if one wants to determine chemical effects and pollutant
formation in jet flames. Chemical extinction effects leading to lift-off were already con-
sidered in Chapter 12. Here we want to discuss as an example data taken locally in a jet
flame. They were obtained by Raman-scattering and laser-induced fluorescence in diluted
hydrogen-air diffusion flames by Barlow et al. [12.4]. The fuel stream consisted of a mix-
ture of 78 mole % H2, 22 mole % argon, the nozzle inner diameter d was 5.2 mm and the
co-flow air velocity was 9.2 m/s. The resulting flame length was approximately L = 60 d.
Two cases of nozzle exit velocities were analysed but only the case B, u0 = 150m/s will be
considered here.

The stable species H2, O2, N2, and H2O were measured using Raman-scattering with
light from a flash-lamp pumped dye laser. In addition quantitative OH radical concen-
trations from LIF measurements were obtained by using the instantaneous local Raman
data to calculate quenching corrections for each laser shot. The correction factor was close
to unity for stoichiometric and moderately lean conditions but increased rapidly for very
lean and moderately rich mixtures. The temperature was calculated for each laser shot
by adding number densities of the major species and using the perfect gas law for this
atmospheric pressure flame. The mixture fraction was calculated similarly from the stable
species concentrations. An ensemble of one-point, one-time Raman-scattering measure-
ments of major species and temperature are plotted over mixture fraction in Fig. 12.2.
They were taken at s/d = 30, r/d = 2 in the case B flame. Also shown are calculations
based on the assumption of chemical equilibrium.

The over-all agreement between the experimental data and the equilibrium solution is
quite good. This is often observed for hydrogen flames where the chemistry is very fast. On
the contrary, hydrocarbon flames at high strain rates are likely to exhibit local quenching
effects and non-equilibrium effects due to slow conversion of CO to CO2. Fig. 12.3 shows
temperature profiles versus mixture fraction calculated for counter flow diffusion flames
at different strain rates. These flamelet profiles display a characteristic decrease of the
maximum temperature with increasing strain rates as shown schematically by the upper
branch of the S-shaped curve in Fig. 12.2.

The strain rates vary here between a = 100/s which is close to chemical equilibrium
and a = 1000/s. For comparison, the mean strain rate in the jet flame, defined here as
ā = u(s)/b(s) may be estimated as ā = 12.15/s at s/d = 30 based on (13.17).

Data of OH-concentrations are shown in Fig. 12.4. They are to be compared to flamelet
calculations in Fig. 12.5 for the different strain rates mentioned before. It is evident from
Fig. 12.4 that the local OH-concentrations exceed those of the equilibrium profile by a
factor 2 to 3. The flamelet calculations show an increase of the maximum values by a
factor of 3 already at the low strain rates a = 100/s and a = 1000/s, while the OH-profile
over mixture fraction decreases and broadens for the maximum value a = 10000/s. This
value is close to extinction for the diluted flamelet considered here.

It should be mentioned that also Monte-Carlo simulations to solve a pdf-transport
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Fig. 12.2: Ensemble of Raman scattering measurements of major species concentrations
and temperatures at s/d = 30, r/D = 2. The solid curves show equilibrium conditions.
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Fig. 12.3: Temperature profiles from flamelet calculations at different strain rates.
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Fig. 12.4: Ensemble of LIF measurements of OH concentrations at s/d = 30, r/D = 2.
The solid curve shows equilibrium solution.
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Fig. 12.5: OH mole fractions from flamelet calculations at different strain rates.
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equation were performed of this experimental configuration. Since the prediction of chem-
ically reacting flows by pdf-transport equations suffers from limitations of the turbulent
mixing model, we will not discuss these results here.

In summary, it may be concluded that one-point, one-time experimental data for
hydrogen flames when plotted as a function of mixture fraction, show qualitatively similar
tendencies as flamelet profiles. Non-equilibrium effects are evident in both cases and lead
to an increase of radical concentrations and a decrease of temperatures. This will be of
importance for the discussion on NOx formation in turbulent diffusion flames.

12.5. Application to Lifted Jet Diffusion Flames

If the nozzle exit velocity of the fuel in a jet diffusion flame exceeds a characteristic value,
the flame is abruptly detached from the nozzle. It now acquires a new configuration of
stabilization in which combustion begins a number of nozzle diameters downstream. The
liftoff height is the centerline distance from the nozzle to the plane of flame stabilization.
A further increase in the exit velocity increases the liftoff height without significantly
modifying the turbulent flame length. The flame height will be calculated in the next
paragraph.

Fig. 12.6: Schematic presentation of a lifted jet diffusion flame

The liftoff-height was identified in the past [12.5] as the position where too many
flamelets are quenched, so that flame propagation from the bulk of the turbulent flame
towards the nozzle cannot proceed. This flame propagation would preferably take place
along the instantaneous surface of stoichiometric mixture. It has been noted above that the
scalar dissipation rate at quenching corresponds to the inverse of flame time of a premixed
flame. Therefore flame propagation along the surface of stoichiometric mixture should also
scale with χ−1

q as the characteristic laminar time scale.
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Lift-off should therefore occur, where the mean turbulent scalar dissipation rate is
equal to χq

χF = χq. (12.9)

Here, different from previous formulations, where χ̃, Eq. (11.15), was used, we take χF

from Eq. (12.4) which does not decrease with Z̃ ′′2. Eq. (12.9) is in view of Eq. (9.32) also
equivalent to equating the turbulent strain rate to the strain rate of the diffusion flamelet
at quenching

c1
ε̃

k̃
= aq. (12.10)

This new formulation has been used to re-analyse liftoff data of methane flames obtained
by Donnerhack and Peters [12.6] for different dilutions. In Fig. 12.7 non-dimensional sta-
bilization heights of undiluted methane flames are plotted as a function of the nozzle
exit velocity u0 for different nozzle diameters. Similar data were obtained for methane
in diluted air. The scalar dissipation rate at quenching χq taken from laminar flamelet
measurements was multiplied with d/u0 to obtain χ∗q . These data are plotted as a function
of H/d and are compared in Fig. 12.8 with

χ∗F =
χF d

u0
= 2c1

(
ε̃

k̃

)
Z̃=Zst

(4Z)2F
d

u0
, (12.11)

the non-dimensional turbulent dissipation rate at Z̃ = Zst, where (4Z)F = 2Zst and
where (ε̃/k̃) was calculated using a k̃-ε̃ turbulence model for a methane jet where it was
evaluated at Z̃ = Zst. The slope of the curve follows the experimental data for the different
dilutions quite well while the previous formulation, denoted by

χ∗st =
χ̃std

u0
= cχ

(
ε̃

k̃
Z̃ ′′2

)
Z̃=Zst

d

u0
, (12.12)

does not. This gives some support for using (12.9) rather than equating the mean scalar
dissipation rate χ̃ with χq in diffusion flamelet modeling for jet flames.
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Fig. 12.8: Lifted flames: Different non-dimensional scalar dissipation formulations as a
function of the non dimensional liftoff height. Experimental data for different dilutions,
where XO2,2 is the mole fraction of O2 in the oxidizer stream.
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Lecture 13: Turbulent Diffusion Flames: Experiments and

Modeling Aspects

Introduction

Turbulent diffusion flames owe their name to the rate determining mechanism that controls
the combustion in many applications: namely diffusion. In technical furnaces, but also in
gas turbine combustion chambers fuel and oxidizer are injected seperately. Mixing then
occurs by turbulent and eventually molecular diffusion. Only when fuel and oxidizer are
mixed at the molecular scales, combustion can take place.
In many applications the fuel is issued as a turbulent jet, with or without swirl. To provide
an understanding of the basic properties of jet diffusion flames, we will consider here at
first the easiest case, the round jet flame into still air with or without buoyancy, for which
we can obtain approximate analytical solutions. We want to determine the flame length of
jet diffusion flames. We consider a fuel jet issuing from a round nozzle with diameter d and
exit velocity u0 into a surrounding air stream which may have a constant co-flow velocity
of u∞ < u0. The indices 0 and ∞ denote conditions at the nozzle and in the ambient air,
respectively. When buoyancy is included we restrict the analysis to a vertical jet without
co-flow. The flame length is then defined as the distance from the nozzle on the centerline
of the flame where the mean mixture fraction is equal to the stoichiometric value Zst.

13.1 Non-buoyant Turbulent Jet Diffusion Flames into Still Air

The flow configuration and the flame contour of a vertical jet diffusion flame is shown in
Fig. 13.1.

With the previous assumptions this leads to a two-dimensional axi-symmetric problem
governed by equations (11.7), (11.8), and (11.13) written in the following form:

∂

∂s
(ρ̄ũr) +

∂

∂r
(ρ̄ṽr) = 0 (13.1)

Momentum in s-direction:

ρ̄ũr
∂ũ

∂s
+ ρ̄ṽr

∂ũ

∂r
=

∂

∂r

(
ρ̄νtr

∂ũ

∂r

)
+ r (ρ∞ − ρ̄) g (13.2)

ρ̄ũr
∂Z̃

∂s
+ ρ̄ṽr

∂Z̃

∂r
=

∂

∂r

(
ρ̄νtr

σZ

∂Z̃

∂r

)
(13.3)

Here we have introduced the boundary layer assumption and neglected the viscous stress
as compared to the Reynolds stress component which was modelled as

−ρ̄ũ′′v′′ = ρ̄νt
∂ũ

∂v
. (13.4)
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Fig. 13.1: Schematic representation of a vertical jet flame with co-flowing air
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In addition, we have used the relation for the static pressure in the surrounding air

∂p

∂s
= gρ̄∞ . (13.5)

For the case of a non-buoyant jet into still air this system of equations may be solved
approximately by introducing a similarity transformation (Peters and Donnerhack, [13.1])

η =
r̄

ζ
, r̄2 = 2

∫ r

0

ρ̄

ρ∞
r dr , ζ = s+ s0 , (13.6)

which contains a density transformation leading to the density weighted radial coordinate
r̄. The new axial coordinate ζ starts from the virtual origin of the jet located at s = −s0.
The basic assumption introduced here is that the Chapman-Rubesin parameter

C =
ρ̄2νtr

2

ρ2
∞νtr r̄

2
=

(ρ0ρst)
1/2

ρ∞
(13.7)

is a constant in the entire jet. Here the eddy viscosity νtr is that of a jet with constant
density. It is adjusted to fit experimental data leading to (conf. Schlichting, [11.1])

νtr =
u0d

70
. (13.8)

The second equality in (13.7) was derived by adjusting flame length data (conf. below).
The axial velocity profile is then given by

ũ

u0
=

6.56 d

s+ s0

(
ρ0

ρst

)1/2
(

1 +
(γη)

2

4

)−2

(13.9)

where the jet spreading parameter is

γ = 15.1

(
ρ∞
ρst

)1/2

. (13.10)

The mixture fraction profile is

Z̃ =
2.19 (1 + 2σZ) d

s+ s0

(
ρ0

ρst

)1/2(
1 +

γη2

4

)−2σZ

. (13.11)

Choosing the turbulent Prandtl number σZ as 0.71 and C as in (13.7) where ρst is the
density at the stoichiometric mixture, one obtains for the flame length by setting L = s at
r = 0 and Z̃ = Zst ,

L+ s0
d

=
5.3

Zst

(
ρ0

ρst

)1/2

(13.12)
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which corresponds to the experimental data of Hawthorne, Weddel, and Hottel [13.2]. The
distance of the virtual origin from s = 0 may be estimated by setting ũ = u0 at s = 0, r = 0
in (13.9) so that

s0 = 6.56 d

(
ρ0

ρst

)1/2

. (13.13)

Since at the stoichiometric mixture the molecular weight is approximately that of nitrogen,
the density ratio ρ0/ρst may be estimated as

ρ0

ρst
=

W0

WN2

Tst

T0
. (13.14)

This takes for methane and with the estimate Tst ∼ 2000 K the value ρ0/ρst = 3.8. The
flame length may then be calculated with Zst = 0.055 as L = 200 d.

13.2 Turbulent Jet Diffusion Flames with Co-flowing Air and Vertical Flames

with Buoyancy Effects

For flames with co-flow and with buoyancy effects a closed form solution of the governing
equations cannot be derived. Here we seek an estimate by replacing the velocity and
mixture fraction profile by top hat profiles (Peters, Göttgens, [13.3])

ũ, Z̃ =

{
û, Ẑ for r ≤ b(s)
0 for r > b(s)

(13.15)

where b(s) is the half-width of the jet (conf. Fig. 13.1). If the profiles are known, b(s), û(s),
and Ẑ(s) can be obtained from the area averages

ρ∞û
2b2 = 2

∫ ∞
0

ρ̄ũ2r dr

ρ∞ûb
2 = 2

∫ ∞
0

ρ̄ũr dr (13.16)

ρ∞Ẑb
2 = 2

∫ ∞
0

ρ̄Z̃r dr .

This leads for the non-buoyant jet flame into still air to

û

u0
= Ẑ = 2.19

d

s+ s0

(
ρ0

ρst

)1/2

b(s) = 0.23 s

(
ρst

ρ∞

)1/2

.

(13.17)

For the more general cases of a jet flame with co-flow or a vertical flame with buoyancy
we may integrate (13.1)–(13.2) over r from r = 0 to r = ∞ to obtain an integrated form
of the continuity and momentum equation

d

ds

[
ûb2
]
+ 2 lim

r→∞
(ṽr) = 0

d

ds

[
û2b2

]
− u∞

d

ds

[
ûb2
]

= 2g

∫ r

0

(
1− ρ̄

ρ∞

)
r dr

(13.18)
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Here the first two definitions of (13.16) have been used. The integrated continuity equation
has been introduced into the momentum equation to replace the integral over the second
convective term.

Similarly, the integrated mixture fraction equation may be written

d

ds

[
ûẐb2

]
= 0 . (13.19)

Applying the initial condition Ẑ = 1 at the nozzle, where b = d/2 and ρ̄ = ρ0 = constant
such that the right-hand side of (13.16)3 is ρ0u0d

2/4, the integrated form of (13.19) is

ûẐb2 =
d2

4

ρ0

ρ∞
u0 . (13.20)

This allows the effective exit diameter to be defined as

deff = d

(
ρ0

ρ∞

)1/2

. (13.21)

For a non-buoyant jet flame (13.18)2 can be integrated analytically with respect to s

û (û− u∞) b2 =
d2

4

ρ0

ρ∞
u0 (u0 − u∞) . (13.22)

In the following we relate all velocities to the jet exit velocity and all lengths to the effective
diameter. Then, with u∗ = û/u0, u

∗
∞ = u∞/u0, b

∗ = b/deff , the velocity u∗ may be written
in terms of b∗ as

u∗ =
1

2
u∗∞ +

1

2

(
u∗2∞ +

1− u∗∞
b∗2

)1/2

. (13.23)

The next step is to evaluate the half-width b(s). Following Schlichting [11.1], chapter 24,
we note that the spreading of free shear flows is due to velocity fluctuations normal to the
main axis. The substantial change is proportional to

Db

Dt
∼ v′ . (13.24)

Relating v′ to the mixing length l and the velocity gradient dũ/dr, the latter being pro-
portional to (umax − umin) /b, where b is again proportional to the mixing length, we can
write

Db

Dt
∼ (umax − umin) . (13.25)

Replacing for a stationary flow Db/Dt by û db/ds and umax − umin by û− u∞, we obtain
the relation

û
db

ds
= β (û− u∞) , (13.26)
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where β is a proportionality constant. For a non-buoyant flame without co-flow it follows

from (13.17)2 that β = 0.23 (ρst/ρ∞)
1/2

. For the general case, combining (13.23) and
(13.26), with s∗ = s/deff , one obtains

[
u∗∞ +

(
u∗2∞ +

1− u∗∞
b∗2

)1/2
]2

b∗2
db∗

ds∗
= β (1− u∗∞) . (13.27)

This may be written in terms of y = b∗u∗∞/ (1− u∗∞)
1/2

as∫ y

0

(
y +

√
y2 + 1

)2

dy =
βu∗∞

(1− u∗∞)
1/2

∫ s

0

ds∗ . (13.28)

Integration yields

y +
2

3

((
y2 + 1

)3/2 − 1
)

+
2

3
y3 =

βu∗∞

(1− u∗∞)
1/2

s∗ . (13.29)

For small values of u∗∞ the variable y is small, and the left-hand side of (13.28) may be
expanded to second order as y + y2 such that the half-width develops as

b = βs− u∞
u0

β2 s
2

deff
, (13.30)

showing linear spreading b = βs for small values of s, but slower spreading for large s,
since the velocity difference û− u∞ as the driving force for the spreading is diminishing.

The flame length is defined by the location where Z̃ on the centerline is equal to Zst.
The area-averaged value Ẑ is smaller than the centerline value, as û is smaller than the
centerline velocity. Therefore, rather than using Zst we use Ẑ = Zst/α1, where α1 is a
correction factor for the mixing over the jet area. In order to determine the value of α1

we consider again a jet into still air. From (13.17) we obtain

L+ s0
d

= 2.19α1
1

Zst

(
ρ0

ρst

)1/2

, (13.31)

which is identical to (13.12), if α1 is set equal to 2.42. We adopt this value in the following.
(13.20)–(13.22) and (13.29) can be used to evaluate the flame length for non-buoyant flames
with co-flowing air.
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13.3 Effects of Buoyancy on Vertical Flames

Buoyancy becomes important in flames due to the density differences that combustion
generates. The density decreases from ρ0 at the nozzle to ρst at the flame length. The
integral on the r.h.s. of (13.18) may be approximated by

2

∫ ∞
0

(
1− ρ̄

ρ∞

)
r dr = b2α2

(
1− ρst

ρ∞

)
, (13.32)

where α2 is an empirical coefficient that takes the variable density into account. Introduc-
ing a modified Froude number

Fr∗ =
u2

0

gdeff

ρ∞
α2 (ρ∞ − ρst)

= Fr

√
ρ0

ρ∞

ρ∞
α2 (ρ∞ − ρst)

, (13.33)

where Fr = u2
0/gd, we may replace (13.18) for u∞ = 0 by

d

ds∗

[
u∗2b∗2

]
=
b∗2

Fr∗
. (13.34)

With b = βs this leads to

du∗2

db∗
+

2u∗2

b∗
=

1

βFr∗
, (13.35)

which is a linear first-order differential equation for u∗2 and may therefore be solved ana-
lytically. One obtains

u∗2 =
c0

b∗2
+

b∗

3βFr∗
, c0 =

1

4
− 1

24βFr∗
, (13.36)

with the initial condition u∗ = 1/2. The first term describes the momentum-dominated
part of the vertical flame which reduces to u∗ = 1/(2b∗) for large Froude numbers. The
second term, which increases with b∗, describes the influence of buoyancy. Using only this
term the flame length L is obtained with 4u∗Ẑb∗2 = 1 from (13.20) and Ẑ = Zst/α1 as

L

deff
=

1

β

(
3βα2

1

16Z2
st

Fr∗
)1/5

, (13.37)

This shows the 1/5-exponential dependence of the flame length on the Froude number. A
comparison with experimental data reported in Sønju and Hustad [13.4] allows determi-
nation of the yet unknown empirical constant α2 as α2 = 1. A general equation for the
flame length is obtained by combining (13.20) and (13.35) as(

3

4
βFr∗ − 1

8

)(
βL

deff

)2

+

(
βL

deff

)5

=
3βα2

1

16Z2
st

Fr∗ , (13.38)

205



10

100

1000

L / d

100 10
4

10
6

10
8

1/5

Fr = u
0

2
 / gd

Experiments (Sønju, Hustad)

present model

1000 10
5

10
7

Fig. 13.2: Dimensionless flame length, L/d, versus Froude number, Fr, for propane and
comparison with experimental data of Sønju and Hustad [13.4]

which reduces for sufficiently large values of L to (13.37) and for large Froude numbers to
the momentum-dominated flame described by (13.12). Equation (13.38) has been evaluated
for propane with ρst/ρ∞ ≈ T∞/Tst and compared with experimental data in Fig. 13.2.

The buoyancy-dominated regime is valid for Froude numbers Fr < 105 showing a 0.2-
slope in this range, whereas the Froude number independent solution is approached for
Fr > 106. For lower Froude numbers there is excellent agreement between the predictions
of (13.38) and the experimental data.
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13.4 Nitric Oxide Formation in Turbulent Jet Diffusion Flames

One of the major pollutants formed in furnaces and many other combustion devices is NO
which is easily oxidized to NO2. The sum of NO and NO2 is often called NOx. Here we
want to estimate the formation of NO in turbulent jet diffusion using some of the approxi-
mations introduced above. It has been recognized that there are essentially two paths that
lead to NO formation in flames: The thermal NO formed through the Zeldovich mecha-
nism, and the “prompt NO” mechnism wherein hydrocarbon fragments attack bimolecular
nitrogen, producing atomic nitrogen, cyanides, and amines, which subsequently oxidize to
nitric oxide. Which one of these mechanisms predominates depends mainly on the flame
temperature. Prompt NO is not very sensitive to temperature, it contributes between ten
to thirty ppm to the total NO production in hydrocarbon flames, while thermal NO may
contribute up to several hundred ppm. It is clear that the high NO levels that occur in
practical systems can only be reduced by reducing thermal NO formation. We will there-
fore consider the thermal NO production only. The subsquent analysis follows Peters and
Donnerhack [13.1]. Since in the Zeldovich mechanism

O + N2 → NO + N (N1)

N + O2 → NO + O (N2)

the intermediate N-radical may be assumed in steady state, the rate of formation of NO
is determined by taking the first reaction twice

ẇNO = 2KN1(T )[N2][O] (13.39)

For an order of magnitude analysis we will assume that the O-radical is in partial equilib-
rium with O2. Using the equilibrium constant for O2-dissociation, [O] may be related to
[O2] at 1 atm by

[O]

[O2]1/2
= 4.1 exp

(
−29150

T

)(
mol/cm3

)1/2
(13.40)

With the rate KN1 = 7 · 1013 exp (-37750/T ) one obtains

SNO ≡
ẇNO

ρ
= BNOMNO

YN2

MN2

(
ρYO2

MO2

)1/2

exp

(
−ENO

T

)
BNO = 5.74 · 1014(cm3/mol)1/2/s, ENO = 66900K

(13.41)

It will be assumed that the combustion reactions are locally in chemically equilibrium
and that the only kinetically controlled process is the production of NO. Then, since
the temperature and concentrations are a function of the mixture fraction the local NO
production rate is a function of mixture fraction only. The turbulent mean production
rate is then

¯̇wNO = ρ̄Ŝ = ρ̄

∫ 1

0

SNO(Z)P̃ (Z) dZ (13.42)
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Fig. 13.3: NO-reaction rate and pdf for a hydrogen-air mixture.

where P̃ (Z) is the Favre pdf of Z. In Fig. 13.3 SNO(Z) and P̃ (Z) are plotted as a function
of Z for a hydrogen-air flame.

The production rate SNO(Z) has a very sharp peak at the mixture fraction Zb which
corresponds to the maximum temperature Tb. Since Tb occurs close to the stoichiometric
mixture fraction one may assume Zb ≈ Zst. The asymptotic analysis in Peters and Don-
nerhack [13.1] shows that SNO may be replaced by a Gaussian with a small width of order
ε defined by

ε =
Tb
Zb

(
− 2

ENO (d2T/dZ2)b

)1/2

. (13.43)
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This indicates that the width of SNO is small for a large activation energy ENO, provided
that the temperature profile in mixture fraction space drops sufficiently rapidly towards
both sides around the maximum value. The latter is parameterized by the second derivative
of the temperature profile

(
d2T/dZ2

)
b
. If, on the other hand, P̃ (Z) does not change too

much in the vicinity of Zb, it may be replaced by P̃ (Zb) and the integral may be expressed
as

ẇNO = ρ̄P̃ (Zb)

∫ 1

0

SNO(Z) dZ , (13.44)

which was evaluated as

ẇNO = ρ̄ SNO(Zb) P̃ (Zb) ε Zb π
1/2 (13.45)

The total NO-production rate GNO in a jet diffusion flame is the integral over the entire
flame volume

GNO = 2π

∫ L

0

∫ ∞
0

ẇNO r dr ds

= 2πρ∞

∫ L

s0

ζ2

∫ ∞
0

S̃NO(η) η dη dζ

(13.46)

where (13.6) was used. With (13.11) the integral over η may be expressed as∫ ∞
0

S̃NO η dη =
SNO(Zb)επ

1/2(ζ/L)−1/2σZ

σZγ2
H(Z̃, Z̃ ′′2) (13.47)

where the function H(Z̃, Z̃ ′′2) represents an integral over P̃ (Zb). In the limit of small

variances Z̃ ′′2 the function H approaches unity. It remains of that order of magnitude

for typical values of Z̃ ′′2 and may therefore be replaced by the constant value H = 1 for
simplicity. Then (13.46) may be evaluated in the limit s0 → 0 as

GNO =
4π3/2 ρ∞ SNO(Zb)εL

3

(6σZ − 1)γ2
= 0.03 ρstSNO(Zb)εL

3 (13.48)

This shows that the NO-production rate is proportional to the cube of the flame
length, since the flame width scales with the flame length.

We now want to estimate the NO-production of buoyant jet diffusion flames of propane
in air by using (13.48) to calculate the emission index E refered to NO2 in g NO2/ kg fuel
defined as

ENO2 =
WNO2

WNO

GNO2

G0
103

where G0 = πρ0d
2u0/4 is the fuel mass flow rate from the jet nozzle and wNO2 and wNO are

the molecular weights of NO2 and NO. For propane SNO(Zb) ·103 are 10.8/s and ε = 0.109
according to Peters and Donnerhack and L may be calculated from (13.37) as

L

d
= 22 Fr1/5 .
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in air. Experimental data from [13.5]

This leads for E u0/d with ρ0/ρst = 3/20 to

E u0/d = 27.2 Fr3/5
[

g NO2

kg fuel sec

]
This value overestimates somewhat the data taken from Røkke et al. [13.5] shown in
Fig. 13.4.
This may have several reasons:

1. The assumption of local chemical equilibrium overestimates the temperature but un-
derestimates the O-radical concentration in the calculation of SNO(Zb). These ef-
fects tend to compensate each other for small strain rates, as may be estimated from
Figs. 13.4 and 13.6, if one assumes a similar non-equilibrium increase for O as for
OH. For large strain rates, however, the temperature decrease in (13.39) dominates,
leading to lower values of SNO.

2. Radiative heat loss which is most effective at the maximum temperature will decrease
the temperature and thereby the thermal SNO.

3. Prompt NO, which is not taken into account here, will decrease the total NO-produc-
tion. Its contribution was estimated in Røkke et al. [13.5] to be of the order of 30%
for the buoyant jet flames considered here.
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Lecture 14. Laminar Flamelet Models for Premixed Turbulent
Combustion

At first sight, premixed combustion would appear easier to analyse than non-premixed
combustion, since mixture fraction variations do not need to be considered. The flamelet
concept for premixed combustion is, however, not yet as well developed. For non-premixed
combustion it was derived from first principles by a local coordinate transformation to the
governing equations. Then, by considering an equation for the mixture fraction, which
fixes the instantaneous location of the flamelets around Z(x, t) = Zst in the turbulent flow
the chemical source terms could be removed from the calculations of the turbulent flow and
mixture field. A similar approach for premixed combustion would also require an equation
that describes the location of the flamelets but does not contain the chemical source terms
per se. This equation should also be derived from first principles and would have to be
modelled in a similar way as the mixture fraction equation. It is the field equation for the
scalar G(x, t) that has been derived in Lecture 8. When strain and curvature is included
it reads

ρ
DG

Dt
= (ρs◦L) |∇G| − (ρDL)κ|∇G|︸ ︷︷ ︸

flame curvature

+ (ρL)n · ∇v · n|∇G|︸ ︷︷ ︸
flame stretch

(14.1)

where the curvature κ is defined

κ = ∇ · n = ∇ ·
(
− ∇G|∇G|

)
. (14.2)

The iso-scalar level surface G(x, t) = G0 represents the instanteneous flame location. This
is shown schematically in Fig. 14.1.

14.1 Derivation of a Field Equation for the Mean Flame Location and its
Variance

As noted earlier, it is necessary to specify (14.1) consistently in terms either of unburnt
mixture properties or of burnt gas properties. It is convenient to choose unburnt gas
quantities and then ρ = ρu, s

◦
L is the burning velocity in terms of these properties and L is

the corresponding Markstein length. Because the flame is asymptotically thin compared
with flow field length scales it appears as a discontinuity across which density suddenly
changes from ρu to ρb. From the point of view of (14.1) we need be interested only in the
flame position defined by G(x, t) = G0, and in the flow immediately upstream of it, i.e.
G(x, t)−G0,= O− where ρ = ρu, that is, a constant density nonreacting flow.

It follows that ρ may be cancelled from (14.1). Mean and fluctuating components of
G are then Reynolds rather than Favre averages and we write

G(x, t) = Ḡ(x) +G′(x, t) .
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Fig. 14.1 Burnt and unburnt gas regions separated by a thin flame surface at G(x, t) = G0

Note that the mean value Ḡ will in general include contributions from the burnt gas where
G(x, t) > G0 so ρ = ρb rather than ρu. However, values of G simply represent levels
of displacement from the flame surface at G(x, t) = G0. The velocity v in (14.1) is the
velocity in the unburnt gas ahead of the flame. That is, the component in direction xα is

vα(x, t) = v̄αu(x, t) + v′αu(x, t); G(x, t)−G0 = 0− (14.3)

where as usual subscript u denotes unburnt reactants. The velocity field in the burnt gas
downstream of the flame does not enter the equation and does not contribute to the mean.

In the following the modulus of ∇G will be denoted by

σ ≡ |∇G| =
[
(∇G)2

]1/2
. (14.4)

The mean of (14.1) is then

∂Ḡ

∂t
+ vαu

∂Ḡ

∂xα
+

∂

∂xα

(
v′αuG

′
)

= s◦Lσ −DLκ|∇G|+ L n · ∇vu · n|∇G| (14.5)

where, in view of (14.4), σ̄ is not equal to |∇Ḡ|.
The equation for the variance is obtained by multiplying the equation for the fluctu-

ation G′ by 2G′ and averaging

∂G′2

∂t
+ vαu

∂G′2

∂xα
= − ∂

∂xα

(
v′αuG

′2
)
− 2 v′αuG

′ ∂Ḡ

∂xα
− ω̄ − χL − Σ̄L . (14.6)

Here the first term on the r.h.s. denotes the turbulent transport of the scalar variance and
the second its production by turbulent fluctuations. The last three terms are specific for
the present problem and are defined [8.1] as
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Kinematic Restoration
ω̄ = −2s◦LG

′σ′ (14.7)

Scalar Dissipation

χL = −2 DLG′ (κ|∇G|)′ (14.8)

Scalar-Strain Co-Variance

Σ̄L = 2 LG′ (n · ∇vu · n|∇G|)′ . (14.9)

The kinematic restoration represents the co-variance of the scalar fluctuation with the
first source term in (14.1). This co-variance is expected to be negative. It accounts for the
smoothing of the scalar field and thereby of the flame surface by laminar flame propagation.
Scalar fluctuations produced by turbulence are reduced or restored by this kinematic effect,
which is most effective at the Gibson length scale LG. Since LG represents the cut-off scale
of the inertial range for the G-equation, the kinematic restoration will play a dominating
role in removing scalar fluctuations.

The scalar dissipation incorporates the co-variance between G′ and fluctuations of the
curvature. It is called scalar dissipation since it contains the diffusivity. It is therefore
expected to be positive and the co-variance negative. It can be shown to be most effective
at a Corrsin length scale

LC =
(
D3
L/ε
)1/4

= L
1/4
G L3/4 (14.10)

based on the Markstein diffusivity DL. Finally, the scalar-strain co-variance accounts for
the reduction of scalar variance due to strain. As the straining motion of the turbulent
flow field acts on flame surface preferentially by stretching it (rather than by compressing
it), this term smooths the flame front further and thereby reduces the remaining scalar
fluctuations. It is therefore expected to be positive and the co-variance negative. It is
most effective at the Markstein length L.

14.2 Closure of the Mean Field Equations in the Limit v′/s◦L →∞
Closure of (14.5) and (14.6) is proposed following [8.1] and [8.2]. Time and length scales of
the velocity field are obtained from k̄− ε̄ equations as k̄/ε̄ and k̄3/2/ε̄, respectively; strictly
these should be conditional quantities in the unburned gas. For homogeneous isotropic
turbulence two point-scalar correlations have been considered and a spectral closure has
been introduced which shows that the kinematic restoration in the variance (14.6) can be
modelled in the limit v′/s◦L →∞ as

ω̄ = cω
ε̄

k̄
G′2 (14.11)

where cω is assumed to be a constant of order unity. It has been estimated as 1.62 (cf.
[8.1]), but for finite values of s◦L/v

′ it depends weakly on s◦L/v
′ and on the ratio L/LG.

Since the scalar dissipation and the scalar-strain co-variance are effective at scales lower
than the Gibson scale, a spectral theory based on dimensional analysis cannot provide
definite equations for these quantities.
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We will refer to direct simulations by Ashurst [8.3] below. Furthermore, dimensional
analysis in the limit v′/s◦L → ∞ suggests that the main source term in (14.5) should be
independent of s◦L and should be modelled as

s◦Lσ = a1

(
ω̄
ε̄

k̄

)1/2

. (14.12)

It is consistent with standard arguments in turbulence modelling to consider the limit
where production equals the sum of the kinematic restoration, scalar dissipation, and the
scalar strain terms in the variance equation (14.6). Such arguments lead to Prandtl’s mix-
ing length theory in turbulent shear flows and to the eddy break-up limit, where the mean
reaction rate is proportional to the scalar dissipation rate, in progress variable descrip-
tions of premixed turbulent combustion. Assuming a gradient flux approximation in the
production term

−v′αuG′ = DT
∂Ḡ

∂xα
(14.13)

where the turbulent diffusivity is
DT = c1k̄

2/ε̄ (14.14)

and c1 is a constant, this limit yields

2DT |∇Ḡ|2 = ω̄ + χL + ΣL . (14.15)

Let us at first consider the limit L → 0 so that the last two terms in (14.15) can be
neglected. Then from (14.14) and (14.15) we obtain

ω̄ = 2c1k̄
2|∇Ḡ|2/ε̄ . (14.16)

Substituting this, together with (14.12) into (14.5) we find in the limit v′/s◦L →∞

∂Ḡ

∂t
+ vαu

∂Ḡ

∂xα
+

∂

∂xα

(
v′αuG

′
)

=

a1(3c1)
1/2v′|∇Ḡ| − DLκ|∇G|+ Ln · ∇vu · n|∇G| .

(14.17)

The first term on the right-hand side of (14.17) is exactly analogous to that in (14.1) ex-
cept that s◦L is replaced by a constant times the turbulence intensity v′. In a homogeneous
turbulent flow field the mean contour of a turbulent premixed flame could then be calcu-
lated in a similar way as a laminar flame with the laminar burning velocity replaced by v′.
This is consistent with renormalisation arguments (Yakhot, [8.4]). Since the field equa-
tion (14.1) is a Hamilton-Jacobi equation with a parabolic curvature term, its turbulent
counterpart, again following renormalisation arguments, should have the same character
in order to be consistent with the boundary and initial conditions. This suggests that the
terms in (14.17), which represent turbulent transport and Markstein diffusion, should be
combined and modelled as a curvature term

− ∂

∂xα
(v′αuG

′) − DLκ|∇G| = − DT,Ḡκ̄|∇Ḡ| . (14.18)
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Here κ̄ is the mean curvature defined as in (14.2) but with Ḡ instead of G. The diffusion
coefficient DT,Ḡ should be of the order of DT defined in (14.13).

14.3 Results of Recent Direct Numerical Simulations of the G-Equation

Recently, Ashurst [8.3] has re-analysed numerical results obtained from a numerical simu-
lation of (14.1) on a 32×32×32 mesh. These simulations are based on the constant density
three-dimensional Navier-Stokes equations, where the large-scale strain rate was adjusted
to achieve constant energy turbulence. These simulations were performed for small values
of v′/s◦L equal to 0.5, 1.0, 2.0 and 4.0 and are therefore complementary to the spectral
modelling results in the limit of v′/s◦L → ∞ considered above. The turbulence intensity
was unity by definition and the dissipation, based on the length scale of the box and a
normalized viscosity of 0.002, was ε = 1.88. Using (11.16) this leads to an integral length
scale of 0.2. The Markstein length based on unit length of the box was varied between
0.05, 0.025 and 0.0125. The results show an increase of ω̄ and χ̄L/DL with G′2 essentially
independent of the Markstein length. Also, the scalar-strain correlation Σ̄L was found to
be very small and shows no correlation with G′2 or L. This leads to the scaling of the
source terms in (14.6) as

ω̄ + χ̄L + ΣL = cω
ε̄

k̄
G′2

(
1 + α

s◦LL
ν

)
(14.19)

where cω was found as cω = 1.2 and α = 0.2. For the source terms in (14.5) it was found
that s◦Lσ increases approximately as

s◦Lσ = s◦L + 0.8 (s◦Lv
′)

1/2
. (14.20)

Also, the mean curvature term DLκ|∇G| is very small for all values of v′/SoL and L.
This is consistent with an analysis (Bray and Cant, [8.5]) of direct numerical simulations
of premixed turbulent combustion which show the mean flamelet curvature to be zero.
Finally, the correlation n · xu · n|∇G| in the last term of (14.5), representing the effect
of strain in the mean equation is always negative. When this term, divided by the first
source term s◦Lσ is plotted in Fig. 14.2 over v′/s◦L for the different values of the Markstein
length it is seen that the ratio is linear in v′/s◦L and independent of L.

This gives rise to the scaling

s◦Lσ + Ln · ∇xu · n|∇G| =
[
s◦L + b2 (s◦Lv

′)
1/2
](

1− b3
L
`t

v′

s◦L

)
(14.21)

where b2 = 0.8 and b3 = 1.4 were obtained based on these numerical simulations.
If the scaling relations obtained from the direct numerical simulations covering the

range of small v′/s◦L are combined with the results from the turbulence modelling in the
limit of large v′/s◦L, one obtains finally

DḠ

Dt
=
[
s◦L + b2 (s◦Lv

′)
1/2

+ b1v
′
](

1− b3
L
`t

v′

s◦L

)
|∇Ḡ| −DT,Ḡκ̄|∇Ḡ| (14.22)
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Fig.14.2 Results of numerical simulation of the strain rate term

where b1 = a1 (3c1)
1/2

should be of order unity.
If (14.15) together with (14.19) instead of (14.16) had been used, it would follow that

b1 decreases with an increasing Markstein length. In addition b1 may well depend on the
density ratio ρu/ρb due to gas expansion effects and possibly on the pressure gradient
across the flame.

One may solve (14.22) for a plane steady turbulent flame normal to the x-direction.
The solution Ḡ = x then leads to a turbulent burning velocity given by

sT =
[
s◦L + b2 (s◦Lv

′)
1/2

+ b1v
′
](

1− b3
L
`t

v′

s◦L

)
(14.23)

In a graph of sT /s
◦
L plotted against v′/s◦L comparison with previous correlations by Bray

[8.6] and Gu̇lder [8.7] is shown in Fig. 14.3 for `F /` = 0.02 and assuming L/`F = 4.0 such
that L/` = 0.08.

According to (14.18) and (14.22) the Ḡ field is unaffected by turbulent diffusion in
the absence of curvature of the turbulent flame brush, i.e. when κ̄ = 0. Some preliminary
experimental evidence from a turbulent Bunsen flame (Armstrong, [8.8]) supports this con-
clusion. Armstrong reports simultaneous two dimensional image measurements of velocity
by particle image velocimetry and of wrinkled flame location by Mie scattering from the
added seed particles. His data from this flame whose mean shape is essentially without
curvature in the plane of the measurements, clearly resolves the countergradient turbulent
diffusion of the progress variable (Bray et al. [8.9]). However within the accuracy of the
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Fig.14.3 Comparison of different correlations for the ratio of the turbulent and the laminar
burning velocity as a function of v′/s◦L for `F /` = 0.02

experiments the turbulent fluxes G′u′u across the flame and G′v′u along the flame are both
zero.

14.4 Taylor Microscale of G Field

We can gain some insight into the physical meaning of these closure expressions by using
them to calculate a characteristic length scale of the scalar field. The analysis in [8.1] and
[8.2] assumes a homogeneous isotropic field. We can then define a Taylor microscale λG
for the G field in analogy to (11.20) to represent the inverse of the average gradient of the
G field by (

∂G

∂xα

)2

=
G′2

λ2
G

(14.24)

Now (14.12) models the left-hand side of this expression leading to(
∂G

∂xα

)2

≈ σ̄2 =
a2
1

s2L
ω̄
ε̄

k̄
(14.25)

while (14.11) relates G′ 2 to ω̄ and ε̄/k̄. From using (11.17) for the integral length scale of
the turbulence we find that

λG
`t

= cL
s◦L
v′

(14.26)

where cL = 3/(2a1cdcω) 1/2 is a constant.
Because (14.24) defines the root-mean-square gradient of G, we see that 2λG is the

mean distance between excursions of G from its mean value which, in turn, is the mean
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separation between one flamelet and the next. This separation is inversively proportional
to the mean number of flamelet crossings per unit distance and scales with the length scale
L̂y proposed by Bray [8.6]. It may be shown that

λG = L̂y . (14.27)

If this is substituted into (14.26) we recover the expression proposed by Bray [8.6] for the
length L̂y.

14.5 Relationship to Bray-Moss-Libby Model

The model proposed originally by Bray, Moss, and Libby [8.9] is based on a progress
variable c where c = 0 represents the unburnt mixture and c = 1 the fully burnt mixture.
The pdf of c is written

P (c,x) = α(x)δ(c) + β(x)δ(1− c) + γ(x)f(c,x) (14.28)

where α, β, and γ are the probabilities of finding unburnt, fully burnt and burning mixture,
respectively, at station x, δ is the Dirac delta function and f(c,x) is the pdf of the burning
mode. In the flamelet regime the limit γ → 0 leads to a two-delta function description of
the pdf with

α(x) + β(x) = 1 (14.29)

and the Reynolds mean progress variable

c̄ =

∫ 1

0

c P (c,x) dc = β(x) . (14.30)

In the thin flamelet limit the progress variable c of BML is

c = H (G−G0) =

{
0 for G < G0

1 for G > G0
(14.31)

where H is the Heaviside function. Then

c̄(x) =

∫ ∞
−∞

cP (G;x) dG =

∫ ∞
G0

P (G;x) dG . (14.32)

Here we have introduced the pdf P (G;x). For a planar turbulent flame we may consider
the thin wrinkled flame shown in Fig. 14.4 whose mean position lies in the plane x = 0. It
is then possible to define G(x, t) such that

G(x, t)−G0 = x+ F (y, z, t) (14.33)

where F (y, z, t) is the displacement of the flame surface from its mean position towards
the unburnt gas. Then G − G0 is simply the x-distance between the flame and the given
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Fig.14.4 Relationship between the flame displacement F (y, z, t) and the scalar field variable
G(x). The flame is represented by the surface G(x) = G0.

level surface. More generally G − G0 defines a localised spatial coordinate at the flame
surface.

For a planar turbulent flame the pdf of the spatial displacement F of the flamelet from
its mean position is typically a nearly Gaussian function; see for example the experiments
of Armstrong [8.8]. Since the flame front is fixed at G = G0 in this case the pdf of the
displacement corresponds to the conditional pdf P (G0;x). Furthermore, for the planar
turbulent flame brush we may write Ḡ(x) − G0 = x and from translational invariance of
the mean turbulent flame it follows that the pdf of G− Ḡ is independent of x, leading to

P (G;x) = P (G− Ḡ) = P (G−G0 − x) = P (F ) . (14.34)

Therefore P (G−Ḡ) at fixed x has the same form as the pdf of the displacement P (G0;x) =
P (−x).

Other mean properties are evaluated similarly. For example, the mean of the density
which is defined in the thin flamelet limit as ρ = ρu + c(ρb − ρu) is calculated as

ρ̄(x) =

∫ ∞
−∞

ρ P (G;x) dG

=

∫ ∞
−∞

[ρu +H (G−G0) (ρb − ρu)] P (G;x) dG

= ρu + c̄(x) [ρb − ρu]

(14.35)

In order to proceed further we need an expression for P (G;x) which may be obtained
in the form of a pdf transport equation (O’Brien, [8.10]). For this purpose assume sL to
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be a constant, equal to s◦L, and consider (14.1) for L → 0 for a planar turbulent flame

in a random field. Let P
(
Ĝ;x

)
be the “fine grained density” whose ensemble average is

the pdf P (Ĝ;x) where Ĝ is the independent variable corresponding to G(x, t). Then by
analogy with [8.10] we write

0 =
∂P
∂t

+ v · ∇P + s◦L
∂

∂Ĝ
[< |∇G |G > P] (14.36)

where < |∇G|G > is the conditional ensemble average of |∇G|. Since G0 is arbitrary, level
surfaces G(x, t) = G0 are statistically independent and the conditioning is unnecessary
here. Introducing the model

< v · ∇P > = v̄ · ∇P (14.37)

we obtain
∂P

∂t
+ v̄ · ∇P = −s◦L

∂

∂Ĝ
[< |∇G| > P ] . (14.38)

An equation for c̄(x) may now be derived from (14.38). Define ĉ = H(Ĝ − G) = 0 for
Ĝ < G0 and ĉ = 1 for Ĝ > G0. Multiply (14.38) by ĉ and integrate from Ĝ = −∞ to
Ĝ =∞. Noting that ∂ĉ/∂Ĝ = δ(G−G0) we obtain

∂c̄

∂t
+ v̄u · ∇c̄ = s◦L

∫ ∞
−∞

δ(G−G0) < |∇G| > P (G) dG

= s◦L < |∇G| > P (G0;x) .

(14.39)

A transport equation for the instanteneous progress variable, when it is interpreted as a
product concentration, for instance may be written as

∂

∂t
(ρc) +

∂

∂xα
(ρvαc) =

∂

∂xα

(
ρD

∂c

∂xα

)
+ ω̇ . (14.40)

Here ω̇ is interpreted as a chemical source term. Straightforward averaging of the instan-
taneous transport equation for 1− c(x, t), neglecting molecular transport terms, yields

∂

∂t
ρ(1− c) +

∂

∂xα
ρvα(1− c) = − ¯̇ω . (14.41)

Using the joint pdf of Equation (14.28) together with (14.31) we find that

ρ(1− c) = (1− c̄)ρu
ρvα(1− c) = (1− c̄)ρu v̄αu

(14.42)

so that the equation for c̄ becomes

∂c̄

∂t
+ v̄u · ∇c̄ = ¯̇ω/ρu . (14.43)
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Note that in this form, in terms of the conditional velocity v̄u, no turbulent transport flux
appears in (14.43). Comparing this equation with (14.39) we find that the mean chemical
source term for c̄ is

ω̄ = ρus
◦
L < |∇G| > P (G0;x) . (14.44)

This expression is readily interpreted. The ensemble average < |∇G| > corresponds to σ̄
in (14.5). For the case of a planar steady flame with Ḡ − G0 = x it is a constant which
may be interpreted as the flame surface per unit volume and in the limit L → 0 considered
here the solution of (14.5) leads to

sT = s◦L < |∇G| > (14.45)

The displacement pdf P (G0;x) in (14.44), on the other hand, represents the spatial vari-
ation of the source term in (14.43).

Finally, the expressions derived above will be used to estimate the shape of the pdf
P (G;x). We again consider the case of a planar turbulent flame brush for which Equation
(14.39) may be written

Dc̄

Dx
= K1P (G0;x) (14.46)

where K1 = s◦L < |∇G| > /sT .
Integrating (14.46) from x = −∞ where c̄ = 0 to x = +∞ where c̄ = 1 with the

condition ∫ ∞
−∞

P (G0;x)dx = 1 (14.47)

leads to the requirement that K1 = 1 as anticipated by (14.45).
We assume

P (G0;x) = a c̄(x) [1− c̄(x)] (14.48)

from which it follows that
dc̄

dx
= ac̄(1− c̄) . (14.49)

Integrating and imposing the boundary condition that c̄ = 1/2 where x = 0 it is readily
found that

c̄(x) =
1

1 + e−ax
. (14.50)

Equation (14.48) then becomes

P (G0;x) =
a e−ax

(1 + e−ax)
2 =

a

(2 + cax + e−ax)
. (14.51)

The flame brush thickness may be defined as twice the variance of the pdf of the
spatial displacement for a plane turbulent flame

`2F,t = 4

∫ +∞

−∞
F 2P (F ) dF (14.52)
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With Equation (14.34) this is equivalent to

`2F,t = 4

∫ +∞

−∞
G′2P (G;x) dG = 4G′2 . (14.53)

For a plane flame with general orientation in physical space a more general definition may
be

`F,t = 2

√
G′2

|∇G| . (14.54)

which reduces to the previous one for the plane turbulent flame travelling in x-direction
where G = x+G0. In that case G′2 is independent of x and (14.6) reduces with (14.13)
to (14.15). With (14.19) and (14.14) and G′2 may then be calculated as

G′2 =
2

cω

c1k̄
3

ε̄2

(
1 + α

s◦LL
ν

)−1

. (14.55)

eq. (14.51)

0 a(G - G) 

P(G - G) / agaussian

Fig. 14.5: The probability density function P (G− Ḡ)

Introducing (11.16) this leads to

`F,t = c2`t

((
1 + α

s◦LL
ν

))−1/2

(14.52)

where c2 =
(
27c1/cwc

2
d

)1/2
. This shows that the flame brush thickness is proportional to

the integral length scale but should decrease with increasing values of the Markstein length,
which increases with Lewis number. This corresponds to a reduction of the flame surface
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due to the smoothing effect of flame curvature, which has been observed experimentally
by Wu et al. [8.11].

In view of the fact, noted earlier, that P (G − Ḡ) is independent of x, we may now
write Equation (14.51) as

P (G− Ḡ) =
a exp

(
+a(G− Ḡ)

)[
1 + exp

(
+a(G− Ḡ)

)]2 (14.53)

at any location in the flame. Fig. 14.5 shows this function to be symmetric and to have a
shape similar to that of a Gaussian. Evaluating the second moment according to Equation
(14.53) relates `F,t to a as

`F,t = 2
(
G′2
)1/2

=
2π

a
√

3
(14.54)

Use of Equations (14.32) also allows us to obtain c̄ explicitly in terms of Ḡ−G0 as

c̄ =

∫ ∞
G0

P
(
G− Ḡ

)
dG =

1

1 + exp
[
−a(Ḡ−G0)

] (14.55)

which will be recognised as a restatement of (14.50) with x replaced by Ḡ−G0. Fig. 14.6
illustrates properties of the planar flame solution.

1

0

c

P(G0, a x) / a

a x−π√
3

π√
3

Fig. 14.6: Properties of the planar flame brush
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As for non-premixed flamelets a flamelet library may be constructed by plotting all
scalars that have been calculated for laminar premixed flames over G − G0 = x. Due to
translational invariance the origin x = 0 may be chosen appropriately. Such a library of
unstrained premixed flamelets can be used to calculate the mean and the variance of any
scalar Y available in the library according to

Ȳ =

∫ +∞

−∞
Y P (G) dG

Y ′′2 =

∫ +∞

−∞

(
Y − Ȳ

)2
P (G) dG

(14.56)

This procedure can also be extended to strained premixed flamelets in a similar way as for
non-premixed combustion.
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Lecture 15. Turbulent Burning Velocities: Experiments and
Correlation of Data

The turbulent burning velocity sT introduced in (14.23) may be defined in analogy to
the laminar burning velocity as the speed of advancement of the turbulent flame relative
to the flow. Focussing on the turbulent burning velocity alone, however, leaves many
other important aspects aside. It assumes that the interaction between turbulence and
combustion is determined by local properties of the flow and that this interaction is locally
in a steady state.

15.1 Experiments in Premixed Turbulent Combustion

An Idealized Normal Flame

Consider a steady turbulent flow with constant mean velocity v̄ and uniform turbulence
properties characterized by the turbulent intensity

v′ = (2/3k̄)1/2 (15.1)

and the integral length scale
` = cd v

′3/ε . (15.2)

Then a plane turbulent flame should propagate in opposite direction to the flow. A steady
flame is obtained if the turbulent burning velocity is equal to the turbulent flow velocity

sT = v̄ (15.3)

This is the basis of the turbulent burning velocity formula (14.23) in lecture 14. This
formula also shows how the burning velocity should depend on laminar kinetic parameters
such as the laminar burning velocity, the laminar flame thickness or the Markstein length
due to the effect of the flame stretch. Other parameters like the density ratio or heat loss
are not even accounted for in this formula.

An idealized normal flame as shown in Fig. 15.1 has not yet been realized experimen-
tally. Due to inhomogeneities in the turbulent flow and a very dynamic response of the
flame thereon, a plane turbulent flame can only be established when additional measures
are taken to stabilize it. These will be discussed below, when flames in a divergent or
swirling flow are discussed.

The definition of a turbulent burning velocity goes back to Damköhler [15.1] who also
introduced the concept of an instanteneous wrinkled turbulent flame surface, which for
constant turbulence and combustion properties should have reached statistically a steady
state. He equated the mass flux ṁ of unburnt gas with the laminar burning velocity sL
through the turbulent flame surface area FT to the mass flux through the cross sectional
area F with the turbulent burning velocity sT (conf. Fig. 15.1)

ṁ = ρu sL FT = ρu sT F . (15.4)
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unburnt

mixture u

sL

Ft

burnt

gas bv = sT

F

Fig. 15.1: An idealized normal premixed flame in a duct with constant flow velocity

This leads to
sT
sL

=
FT
F

(15.5)

Using the geometrical analogy with a Bunsen flame, Damköhler assumed that the area
increase of the wrinkled flame surface area relative to the cross sectional area is proportional
to the increase of flow velocity over the laminar burning velocity

FT
F

=
sL + v′

sL
. (15.6)

Here v′ is the velocity increase which finally is identified as the turbulence intensity v′.
Combining (15.5) and (15.6) leads to

sT
sL

= 1 +
v′

sL
(15.7)

or in the limit v′ À sL

sT ∼ v′ (15.8)

which is Damköhler’s result. It states that the turbulent burning velocity should be inde-
pendent of any laminar velocity, length and time scale of combustion. Therefore chemistry
should not affect the process of turbulent flame propagation. This is inconsistent with
experimental data which show a dependence of sT /sL on fuel composition, turbulent and
laminar length scales and in general a non-linear dependence on the ratio v′/sL. Therefore
a generalisation of (15.7) has been proposed

sT
sL

= 1 + c

(
v′

sL

)n
(15.9)

where n is called the “bending exponent” and c is a fuel dependent parameter which
contains influences of the length scale ratio and/or the turbulent Reynolds number. Ex-
perimentally derived values of n typically vary between n = 0.5 and n = 1.0 and c between
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Fig. 15.2 a–b:

1.0 and 4.0. Recent data from Trautwein [15.2] that were obtained in a square piston single
stroke compression-expansion machine are shown in Fig. 15.2 a–c.
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Fig. 15.2 c: Non-dimensional turbulent burning velocity sT /sL vs. non-dimensional turbu-
lence intensity v′/sL for three fuel-air mixtures. The dashed curve represents the best least-
square fit for the experimental data according to the relationship sT /sL = 1 + c(v′/sL)n.

The Turbulent Bunsen Flame

The most classical experiment to determine turbulent burning velocities uses the Bunsen
burner. The only difference to the laminar Bunsen burner experiment is that the flow is
turbulent rather than laminar. This may be achieved by running the experiment with a
large enough diameter and velocity to exceed the critical Reynolds number in the pipe of
the Bunsen burner or by adding a turbulence grid at the exit of the burner. The second
arrangement has the advantage that the turbulence length and velocity scales may be
controlled independently while in the case of a turbulent pipe flow they vary in radial
direction and depend on whether the pipe flow is fully developed or not. In Fig. 15.3
the turbulent Bunsen cone is shown schematically as a collection of instanteneous flame
contours and as a long-time exposure of the fluctuating flame front.

The second picture corresponds to a time-average description and shows the mean
flame contour and the flame brush thickness which increases with downstream distances.
Also, a mean stream line is shown. Due to thermal expansion in the flame the stream lines
are deflected as in a laminar Bunsen flame. As in a laminar Bunsen flame the turbulent
burning velocity may be determined by measuring the angle of the mean flame contour
with respect to the flow. Since this angle is not constant such a measurement gives only
an estimate.
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Fig. 15.3. Instantaneous and time averaged Bunsen flames

The advantages of this experiment are the following:

• The mass flow rate through the Bunsen cone in known.

• There is an easy optical access to the flame.

The disadvantages are:

• The flow field is not uniform in the case of a fully developed pipe flow.

• On the inner and outer side walls of the Bunsen pipe boundary layers develop and
create non-uniformities of the flow.

• If the flame is slender parts of the flame surface may interact with each other and
with the oncoming flow due to heat expansion.
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Fig. 15.4. Instantaneous and time averaged V-shaped flames

The V-Shaped Flame

Another classical experiment in premixed turbulent combustion is the V-shaped flame
attached to a flame holder in a turbulent flow behind a turbulence grid. An instanteneous
and a time average flow contour are shown in Fig. 15.4.

Again a mean stream line and also an instantaneous stream line are shown. Due to
the expansion in the flame the pressure in the burnt gas region between the two flame
contours is higher than in the unburnt gas outside. This leads to a deflection of the stream
lines in the unburnt gas and consequently also of the mean flow contours. Therefore the
angle at which the unburnt gas enters into the flame is not known in advance.

The advantages of this configuration are the following:

• Due to the turbulence grid the flow and turbulence properties can be controlled and
made uniform normal to the flow direction.

• In flow direction the turbulence may be characterized as spatially decaying.

The disadvantages are:

• There is a strong deflection of the stream lines of the oncoming flow due to the higher
pressure in the burnt gas.

• Effects of the flame holder and the wake developing behind it on the flow and the
flame immediate down-stream of it may be considerable.
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Turbulent Counterflow Premixed Flames

In the both preceeding flame configurations the flame enters with an angle into the flame.
A normal flame that corresponds the closest to the idealized flame discussed above may
be established in a divergent axi-symmetric flow between two opposed ducts. In Fig. 15.5
such a flow configuration is shown schematically.

turbulence

grid

u

u

burnt

gas

Fig. 15.5. Two turbulent counterflow premixed flames

As in laminar counterflow flames, the flow velocity in axial direction is approximately
constant, while the normal velocity increases with radial distance from the centerline.
Therefore the two mean flame contours would be approximately normal to the flow, if
the turbulence properties were also constant in each plane normal to the flow. This is
not necessarily the case because the production of turbulence depends on mean velocity
gradients which change with distance from the centerline.

The advantage of this configuration is the following:

• Plane steady flames in fully developed turbulence can be stabilized.

The disadvantages are:

• The flow-field is non-uniform with mean strain.

• The two flame fronts may interact with each other.
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Unsteady Flames Homogeneous Isotropic Turbulence

In order to avoid the influence of non-homogeneities in studying turbulent burning ve-
locities, it is useful to consider unsteady flames. An isotropic turbulence field may, for
instance, be established in a fan-stirred combustion bomb shown in Fig. 15.6.

high speed

fan

quartz glass

window

electric

spark

Fig. 15.6: A fan-stirred combustion bomb for premixed turbulent combustion studies

Such a device has been used extensively by D. Bradley and co-workers. Four to six
mutually opposed high speed fans create in the center region of the bomb a nearly isotropic
homogeneous turbulence field with low mean velocity. A flame kernel is initiated by an
electrical spark and propagates radially outwards. It can be observed through quartz glass
windows. A similar other device is the single stroke compression maschine with a square
piston and a turbulence grid that is pulled through the combustion chamber before ignition.
Such a configuration was used by Adomeit and co-workers.

During the flame kernel development the instantaneous flame front interacts with all
sizes of turbulent eddies. Therefore, there is a time period during the early flame kernel
development, where the interaction of the flame with the turbulent flow field is not fully
established. An estimate of this time period will be given below.

The advantage of these configurations is the following:

• A nearly isotrop homogeneous turbulence field with high turbulence intensity is es-
tablished.

The disadvantages are:

• The experiment is unsteady and the early flame development must be taken into
account.
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• The optical access through quartz glass windows is more difficult than in open flames.

15.2 Fractal Analysis of the Turbulent Flame Surface Area

An alternative way to determine the turbulent burning velocity is to use (15.5) and to mea-
sure the turbulent flame surface area FT . The instantaneous flame front can be visualized
by using the laser sheet technique. This is shown for the V-shaped flame in Fig. 15.7.

Cylindrical lens

Laser

Flame stabilizer

Turbulence grid

premixed gas seeded

with oil droplets


Fig. 15.7: Experimental set-up to visualize the flame surface

The beam of a laser is widened by a cylindrical lens. The premixed gas from the
burner is seeded by oil particles and passes through a turbulence grid. The V-shaped flame
is stabilized by a rod normal to the flow. The laser light is scattered by the oil droplets
which vaporize very rapidly in the flame front. Therefore the instantaneous flame contour
is then visualized as the interface between the bright shining region of the unburnt gas and
the dark region of burnt gas. It may be recorded either by high speed cinematography or
by a CCD camera and may then be processed and digitalized.

The length of the flame contour squared is proportional to the flame surface. The
length can be measured by following the contour down to the smallest scales. Since the
smallest scales are not always resolved, fractal analysis can be used. The flame length L(r)
is then measured by following it with decreasing measuring scales r. The log of L(r) is
plotted over the log of r. This is shown in Fig. 15.8.

At measuring scales larger than the integral length the flame contour remains nearly
constant. With decreasing measuring scales more and more of the fine structure is resolved
and the measured length L(r) increases as r decreses. It reaches a constant value when all
scales are resolved for small values of r.
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Fig. 15.8: Log-logplot of a measured flame contour and theoretically predicted curve

The diagram in Fig. 15.8 may be idealized by assuming a constant slope region between
that integral scale ` and the lower cut-off scale which should be the Gibson scale `G. In
such a region with constant slope equal to 1 − D1, the turbulent flame contour would
behave as a fractal where the fractal dimension of a line is D1. This is larger than the
Euklidian dimension d = 1, leading to 1−D1 < 0 and therefore to an increase of L(r) for
smaller measuring scales r. A fractal plot of a surface rather than a line would have the
slope 2−D2 where D2 = D1 +1. From this relation the ratio between the turbulent flame
surface area and the cross sectional area are may be calculated as

FT
F

=
F (`G)

F (`)
=

(
`G
`

)2−D2

. (15.10)

Introducing here the relation between the Gibson scale and the integral length scale from
(11.33) one obtains with (15.5)

sT
sL

=

(
v′

sL

)3(D2−2)

. (15.11)

One may now derive a limiting value for the fractal dimension of the flame surface by
considering the mass flux through the flame surface

ṁ = ρu sL F (`G)

= ρu sL F (`G/`)
2−D2 (15.12)

= ρu F v′ (v′/sL)(3D2−7)
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For very large values of (v′/sL) the mass flow should be independent of sL. This leads to

D2 = 7/3 (15.13)

and with (15.11) to
sT
sL

=
v′

sL
. (15.14)

This is again Damköhlers’s result and is in agreement with the arguments that lead to
(14.12) and the first term on the right-hand side of (14.17) in that limit.

15.3 Unsteady Effects During the Increase of the Flame Surface

If an electrical spark ignitiates a flame in a premixed turbulent flow field, the development
of the flame surface and therefore the burning velocity needs some time to reach a steady
state value. The initial flame kernel grows during this time from values lower than the
Gibson scale to values larger than the integral scale. Only when the flame kernel is typically
larger than the integral scale, a steady turbulent burning velocity will be reached. Evidents
of unsteady effects are found in the data from Trautwein [15.2] shown in Fig. 15.9 where
the ratio of the turbulent to the laminar burning velocity is plotted over v′/sL with the
fraction of burnt volume in the chamber as a parameter. As the time and therefore yb
increases, the turbulent burning velocity increases. This increase is more rapid for C2H2

which has a much larger laminar burning velocity than C3H8 and C2H4 and therefore
reaches the steady burning velocity earlier. Values for n and c in (15.9) are shown as a
function of yb in Fig.15.10.
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Fig. 15.9: Best least-square fit making use of equation sT /sL = 1 + c(v′/sL)n
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15.4 An Estimate of Unsteady Flame Kernel Development

If the size of a developing flame kernel is smaller than the integral length scale, the cor-
rugation of its surface can only be caused by eddies of the same or a smaller scale in the
spectrum. Since according to (15.5) the turbulent burning velocity depends on the flame
surface area, it must be lower than the value of a fully developed turbulent flame. In order
to estimate the time needed for a turbulent flame to develop from a flame kernel, we will
assume that the increase of the length scale of the flame surface per unit time is essentially
due to the straining action of the large eddies. This increase is reduced by the turnover
of the eddies of the size than the flame kernel, because this is the largest eddy with which
the flame kernel can interact. This is schematically shown in Fig. 15.11.

v'

`

`fk

original

flame kernel

`fk+

d`fk

stretching

 by large eddies

`fk

vfk

reduction 

by eddies of size `fk




Fig. 15.11: Schematic illustration of the straining and reduction of the size of a flame
kernel

This leads to the balance for the temporal change of the size of the flame kernel length
scale `fk

d`fk
dt

= α v′ − β vfk (15.15)

where the turnover-velocity of the eddies of the size of the flame kernel is set equal to

vfk = vn = (ε `n)
1/3 = (ε `fk)

1/3. (15.16)

Normalizing (15.15) with the integral length ` = cd v
′3/ε, it may be written in terms of

x = (cd β
3/α3)`fk/`, τ = (β3/α2) t v′/` as

dx

dτ
= 1− x1/3 (15.17)
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which has the solution

τ = 3

[
− ln(1− x1/3)− x1/3 − 1

2
x2/3

]
. (15.18)

This function is plotted in Fig. 15.12 in terms of x over τ . It shows that x increases
proportionally to τ for small values of τ when the first term of the r.h.s. of (15.18) is
dominating. For large values of τ the limit x→ 1 is approached asymptotically. Since τ is
proportional to the ratio of the time divided by the turnover time of the large eddies and
x proportional to the length scale of the flame front divided by the integral length scale, it
follows that the flame surface approaches a value that scales with the integral scale during
a time period proportional to the large eddy turnover time. Since the turbulent burning
velocity is proportional to the flame surface one obtains a fully developed turbulent flame
with a turbulent burning velocity that scales with v′ only after this time delay.

Fig. 15.12. Solution of (15.18)
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