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Lecture 1

Turbulent Combustion:
Introduction and Overview

Technical processes in turbulent combustion are in general subdivided into two
classes: premixed or non-premixed combustion. For example, combustion in
homogeneous charge, spark-ignition engines occurs under premixed conditions.
On the other hand, combustion in a Diesel engine or in furnaces essentially taakes
place under non-premixed conditions.

In the spark-ignition engine fuel and oxidizer are being mixed by turbulence
during a sufficiently long time down to the molecular level before combustion is
initiated by a spark. The deposition of energy from the spark generates a flame
kernel that grows at first by laminar, then by turbulent flame propagation. The tur-
bulent burning velocity is therefore a very important quantity in premixed turbulent
combustion.

In the Diesel engine a liquid fuel spray is injected into hot compressed air, the
fuel evaporates and mixes partially with the air until auto-ignition occurs. The auto-
ignition process is very rapid and the partially premixed gas is rapidly consumed.
The final phase of burnout then occurs under non-premixed conditions.

Similarly, in furnaces jets of gaseous, liquid or solid fuels are injected into
air which may be preheated or partially diluted by exhaust gases. Once the jet is
ignited, the flame propagates towards the nozzle until it stabilizes at a distance,
called the lift-off height downstream of the nozzle. Partial premixing then occurs
within the region between the nozzle and the lift-off height, and determines the
stabilization of the turbulent flame. Further downstream, combustion again occurs
under non-premixed conditions.

It is clear, that in addition to premixed and non-premixed combustion, par-
tially premixed combustion plays, at least locally, an important role in technical
applications. An important example are modern gas turbine combustion chambers
where fuel rich regions are used for flame stabilization but, in order to minimize
NOx formation, most of the combustion occurs under premixed fuel lean condi-
tions. Similarly, combustion in direct injection or stratified charge spark-ignition
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premixed
partially and

non-premixed

fast
chemistry

slow
chemistry

spark-ignition engines

Diesel engines

NOx formation
in post-flame regions low NOx-burners

gas turbine engines

combustion in furnaces

Table 1.1: Classification of combustion applications.

engines occurs under partially premixed conditions.
Another criterion to classify turbulent combustion is related to the ratio of

turbulent to chemical time scales. If turbulence is very intense the turbulent time
is likely to be short. Chemical time scales become short if the temperature is high
and they become long with decreasing temperature. The case of short turbulent
and long chemical time scales is simply called slow chemistry while the case of a
comparatively long turbulent and short chemical time scale is called fast chemistry.

Slow chemistry is not very often of practical interest: there are a few situations
like low NOx burners which operate with strong exhaust gas recirculation and
therefore lower temperature where the chemistry is slow compared to turbulent
mixing. Also, in the post-flame region of a spark ignition engine NOx production
is slow while the temperature field is nearly homogeneous. On the other hand,
reacting flows with fast chemistry occur in nearly all the applications mentioned
above. The reason is simple: for combustion to be stable and efficient, the tem-
perature must be high and therefore the chemical time scales are short. Therefore
engines are designed such that only at limit conditions, i.e. at very high engine
speeds, turbulent time scales may become comparable to chemical time scales.

Table 1.1 shows a diagram where combustion applications are classified with
respect to both criteria mentioned above.

The four lectures on turbulent combustion are therefore organized as follows:
In this lecture an overview of current modeling approaches for turbulent flows
with combustion will be given. Regimes in premixed and non-premixed turbulent
combustion will be defined in terms of velocity, length, time and mixing scales.

In the next lecture, treating premixed turbulent combustion, models based on
the progress variablec and the distance functionG will be presented. Damk¨ohler’s
regimes of large scale and small scale turbulence will be associated with the cor-
rugated flamelet regime and the thin reaction zones regime, respectively. Finally,
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based on an equation for the total flame surface density, an expression for the
burning velocity that is valid in both regimes, will be derived.

In the third lecture flamelet modeling for non-premixed combustion will be
addressed. The unsteady flamelet equations will be derived and solutions will be
presented. Coupling with solutions of the turbulent mixing field will be discussed.
Finally, approximate solutions for the round turbulent jet and the influence of
buoyancy on the flame length will be presented.

The last lecture is concerned with partially premixed combustion. The key
element here is the triple flame, which will be discussed in detail. The distance
function approach for premixed combustion and the flamelet approach for non-
premixed combustion will be combined to obtain an expression for the turbulent
burning velocity in partially premixed systems. This expression is used to calculate
flame propagation in diffusion flames and to determine the lift-off height.

1.1 Moment Methods in Modeling Turbulence with
Combustion

A classical way to describe turbulent flows is to split the three components of
velocity and the scalar quantities like the temperature and mass fractions measured
at a pointx into a mean (denoted by an overbar) and a fluctuation, for exampleu

u(x, t) = ū(x, t)+ u′(x, t), where ū′(x, t) = 0 . (1.1)

If the flow is stationary on the average, the mean is defined by the time average

ū(x) = lim
∆t→∞

 1

∆t

t+∆t∫
t

u(x, t)dt

 (1.2)

and the fluctuation is obtained by subtracting the mean from the instantaneous
value. For instationary flows the time-dependent mean value may be obtained by
low-pass filtering the signal. This requires that the mean velocity changes on a
time scale that is significantly longer than the time scale of turbulent fluctuations.
These two cases are shown in Fig. 1.1.

For flows with large density changes like in combustion it is often convenient
to introduce a density weighted averageũ, called the Favre average, by splitting
u(x, t) into ũ(x, t) andu′′(x, t) as

u(x, t) = ũ(x, t)+ u′′(x, t) . (1.3)

This averaging procedure is defined by requiring that the average of the product of
u′′ with the densityρ (rather thanu′′(x, t) itself) vanishes

ρu′′ = 0 . (1.4)
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low pass filtered
signal

instationary flow

stationary flowu (x,t) u'

t

Figure 1.1: Mean and fluctuation of a velocity signal as a function of time for
stationary and instationary flows.

The definition forũ may then be derived by multiplying (1.3) by the densityρ and
averaging

ρu = ρũ+ ρu′′ = ρ̄ũ . (1.5)

Here the average of the productρũ is equal to the product of the averagesρ̄ũ, since
ũ is already an average defined by

ũ = ρu/ρ̄ . (1.6)

It can be calculated if simultaneous measurements ofρ(x, t) andu(x, t) are avail-
able by taking the average of the productρ(x, t)u(x, t) and dividing it by the
average ofρ(x, t). While such measurements are often difficult to obtain, Favre
averaging has considerable advantages for the mathematical development. In the
balance equations of momentum, energy and chemical species, the convective
terms are dominant in high Reynolds number flows. Since these contain the prod-
uct of the dependent variable and the density, they are treated very simply by Favre
averaging. For instance the average of the product of the densityρ with the velocity
componentsvα andvβ would lead with conventional averages to

ρvαvβ = ρ̄vα vβ + ρ̄v′αv′β + ρ ′v′αvβ + ρ ′v′βvα + ρ ′v′αv′β . (1.7)

Using Favre averages one writes

˜ρuαuβ = ρ(ũα + ũ′′α)(ũβ + u′′β)

= ρũαũβ + ρu′′αũβ + ρu′′β ũα + ρu′′αu
′′
β .

(1.8)
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Here fluctuations of the density do not appear. Taking the average leads to

ρuαuβ = ρ̄ũαũβ + ρ̄ũ′′αu
′′
β (1.9)

where (1.4) and (1.6) have been applied. This expression is much simpler than
(1.7) and has formally the same structure as the conventional average ofuαuβ for
constant density flows

uαuβ = uα uβ + u′αu
′
β . (1.10)

Difficulties arising in the viscous and diffusive transport are of lower importance
since these terms are usually neglected as compared to turbulent diffusion.

In Favre-averaged form the balance equations are written

Continuity
∂ρ̄

∂t
+ ∂(ρ̄ṽα)

∂xα
= 0 (1.11)

Momentum

ρ̄
∂ṽβ

∂t
+ρ̄ṽα ∂ṽβ

∂xα
= − ∂ p̄

∂xβ
+ ∂τ̄αβ
∂xα
− ∂

∂xα

(
ρ̄ ṽ′′αv

′′
β

)
+ρ̄gβ , β = 1, 2, 3 . (1.12)

Here the l.h.s represents the local rate of change and convection, the first term on
the r.h.s the pressure gradient, the second term molecular transport due to viscosity,
the third term turbulent transport resulting from the decomposition in (1.9) and the
last term forces due to buoyancy. Greek indices used twice indicate a summation
over the three coordinate directions.

The mean viscous stress tensorτ̄αβ is often neglected compared to the Reynolds
stress tensor̄ρ ṽ′′αv

′′
β . Balance equations for the components of the Reynolds stress

tensor can be derived and closure assumptions have been proposed [1.1]. This
is called second moment closure or Reynolds stress equation modeling. It leads
to a number of additional terms that must be modelled, in particular the velocity-
pressure gradient correlation and the dissipation tensor. Here we will introduce
the eddy viscosity approach using a gradient transport hypothesis

ρ̄ ṽ′′αv
′′
β =


−ρ̄ν̃t

[
2
∂ṽα

∂xβ
− 2

3

∂ṽγ

∂xγ

]
+ 2

3
ρ̄ k̃ , α = β

−ρ̄ν̃t

[
∂ṽα

∂xβ
+ ∂ṽβ
∂xα

]
, α 6= β .

(1.13)

The eddy viscositỹνt is related to a Favre averaged turbulent kinetic energyk̃ =
ṽ′′β

2
/2 and its dissipatioñε by

ν̃t = cµ
k̃2

ε̃
, cµ = 0.09 . (1.14)
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The k̃-ε̃-model leads to equations where the turbulent transport is diffusive and
therefore is more easily handled by numerical methods than the modelled Reynolds
stress equations. This is probably the most important reason for its wide use in
many industrial codes. Equations fork̃ and ε̃ must be modelled using empirical
information. These equations are

turbulent kinetic energy

ρ̄
∂ k̃

∂t
+ ρ̄ṽα ∂ k̃

∂xα
= ∂

∂xα

(
ρ̄ν̃t

∂ k̃

∂xα

)
− ρ̄ṽ′′αv′′β

∂ũα
∂xβ
− ρ̄ε̃ − ν̃t

∂ ln ρ̄

∂xα

∂ p̄

∂xα
, (1.15)

Turbulent dissipation

ρ̄ ∂ε̃
∂t + ρ̄ṽα

∂ε̃
∂xα
= ∂
∂xα

(
ρ̄
νt
σε
∂ε̃
∂xα

)
− cε1ρ̄

ε̃

k̃
ṽ′′αv
′′
β

∂ũα
∂xβ
− cε2ρ̄

ε̃2

k̃

− cε3ν̃t
ε̃

k̃

∂ ln ρ̄

∂xα

∂ p̄

∂xα
.

(1.16)

In these equations the two terms on the l.h.s represent the local rate of change and
convection, respectively, the first term on the r.h.s represents the turbulent transport,
the second one turbulent production and the third one turbulent dissipation. The last
term accounts for the effect of pressure gradients which is absent in constant density
flows [1.2]. As in the standardk-ε model, the constantsσε = 1.3, cε1 = 1.44,
cε2 = 1.92 may be used. Forcε3 a value ofcε3 = 1.0 has been proposed [1.1].

Favre averaged equations for the temperature and the mass fractions of then
chemical species are written as

Temperature

cp

(
ρ̄
∂ T̃

∂t
+ ρ̄ṽα ∂ T̃

∂xα

)
= − ∂

∂xα
JT,α − cp

∂

∂xα
(ρ̄ṽ′′αT ′′)+ ∂ p̄

∂t
−

n∑
i=1

hi ṁi − qR ,

(1.17)
Mass fraction

ρ̄
∂Ỹi

∂t
+ ρ̄ṽα ∂Ỹi

∂xα
= − ∂

∂xα
Ji,α − ∂

∂xα
(ρ̄ṽ′′αY

′′
i )+ ṁi , i = 1, 2, . . . ,n . (1.18)

In these equations the terms on the l.h.s represent the local rate of change and
convection, the first terms on the r.h.s molecular transport and the second terms
turbulent transport resulting from a decomposition of the convective terms similar
to (1.9). In the equation for the temperature a constant heat capacitycp has been
assumed for simplicity. The molecular heat flux is denoted by JT,α and the diffusion
flux by Ji,α. In addition, the small Mach number limit has been introduced such
that spatial gradients of the pressure vanish in the temperature equations and only
the unsteady change of pressure, which is important for reciprocating engines,
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remains. The last two terms in the temperature equation represent the chemical
heat release and the heat loss by radiation. The last term in the species equation
is the chemical source term. The molecular transport terms in these equations can
often be neglected compared to turbulent transport, which may be modelled using
the gradient transport hypothesis as

− ρ̄ṽ′′αT ′′ = ρ̄
ν̃t

σT

∂ T̃

∂xα
, (1.19)

− ρ̄ṽ′′αY′′i = ρ̄
ν̃t

σi

∂Ỹi

∂xα
. (1.20)

HereσT andσi are the turbulent Prandtl and Schmidt numbers, respectively. This
kind of modeling is based on the assumption that the instantaneous fields of temper-
ature and species concentrations are smoothly varying which requires that chem-
istry is slow compared to turbulent mixing. This is hardly ever the case in practical
applications.

In addition, the chemical source terms
∑n

i=1 hi ṁi andṁi appearing in (1.17)
and (1.18) need to be modelled. Since these terms are highly non-linear and
strongly dependent on temperature and species concentrations, a moment closure
approach is inadequate. Therefore the modeling of the chemical source terms has
often been considered as the main problem in turbulent combustion. An early
attempt to solve this problem is due to Spalding [1.3] who realized that turbulent
mixing may be viewed as a cascade process from large to small scales and that
small scale mixing down to the molecular scales controls the chemical reactions.
Then mixing rather than reaction is the rate determining process. This model
was called the Eddy-Break-Up model (EBU). The turbulent mean reaction rate of
products was expressed as

ṁpr = min

{
ṁpr , cEBUρ̄

ε̃

k̃

(
Ỹ′′pr

2
)1/2

}
(1.21)

whereỸ′′pr
2 is the Favre variance of the product mass fraction andcEBU = 0.35

is the Eddy-Break-Up constant. The formulation in (1.21) takes into account that
chemistry may be rate determining in cold regions of the flow or when chemical
equilibrium in a homogeneous mixture has been reached.

The Eddy-Break-Up model marks an important step in the development of
models for premixed turbulent combustion. For non-premixed combustion, how-
ever, it fails to recognize that the simultaneous mixing of fuel and air during the
combustion poses an additional limitation. This limitation may be expressed as
the probability of finding stoichiometric mixture at a positionx. For this case an
expression for the mean turbulent reaction rate was derived in a rigorous way by
Bilger [1.4] who showed that in the fast chemistry limit the mean consumption rate
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of fuel may be expressed as

ṁF = −1

2
ρ̄

YF,1

1− Zst
χ̃stP̃(Z|Z = Zst) . (1.22)

HereYF,1 is the mass fraction of fuel in the fuel stream,χ̃st is the scalar dissipation
rate of the mixture fractionZ andP̃(Z|Z = Zst) is the probability density function
of Z, both conditioned at stoichiometric mixture fractionZ = Zst.

This expression introduces the probability density function (pdf) as an impor-
tant concept in turbulent combustion.

1.2 Probability Methods

If the pdf of all reactive scalars was known, the turbulent mean reaction rate of
speciesi could be expressed as

ṁi ≡ ρ̄ S̃i = ρ̄
∫

T

∫
Y

Si (T,Y)P̃(T,Y) dT dY . (1.23)

HereSi is defined asSi = ṁi /ρ and P̃(T,Y) is the multi-dimensional Favre pdf
of the temperatureT and the mass fractionsYi of the reactive species. Since there
aren reactive species, they are denoted by the setY = (Yi ,Y2, . . . ,Yn). P̃(T,Y)
is defined as the probability of finding at pointx and timet the temperatureT and
the reactive scalars within a range ofT ± dT andYi ± dYi . Therefore the pdf
covers a space ofn+ 1 dimensions. In the pdf formulation, the quantitiesT and
Y are independent variables on which the pdf depends. They are considered as
random variables since their balance equations cannot be solved exactly for high
Reynolds number turbulent flows. In order to solve the problem of the turbulent
reaction rate based on (1.23) transport equations for the joint pdf of temperature
and the reactive scalars have been proposed (cf. [1.5]).

There are several ways proposed to derive this transport equation. We refer to
a presentation in [1.1] and present the final result as

ρ̄ ∂ P̃
∂t + ρ̄ṽα

∂ P̃
∂xα

+ ρ̄

n∑
i=1

∂

∂ψi

{
ṁi (ψ)P̃

}
= − ∂

∂xα

{
ρ̄u′′α|ψ P̃

}
+

n∑
i=1

∂

∂ψi

{
∂Ji

∂xα

∣∣∣ψ P̃

}
.

(1.24)

Hereψ is the setY including the temperature as additional variable. Similarly
the set Ji includes all diffusive fluxes of species and the heat flux. The first two
terms on the l.h.s of (1.24) are the local rate of change and convection in physical
space. The third term is the chemical source term inψ space. On the r.h.s the first
term represents turbulent transport in physical space and the last term molecular
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transport inψ space. These two terms contain the velocity fluctuationu′′α and
the gradient of molecular fluxes, respectively, both conditioned on the setψ and
therefore need to be modelled.

In spite of the high dimensionality (1.24) is often thought be superior to other
formulations, because the chemical source term is exact. However, when chemistry
is fast compared to turbulent mixing, chemistry takes place in thin layers where
molecular transport and the chemical source term are the leading terms and balance
each other. This will result in steep local gradients of the reacting scalars, which
makes most closure assumptions applied to the molecular mixing term question-
able. For the same reason the gradient transport approximation cannot be applied
to the turbulent transport term in physical space.

In the case of fast chemistry, the pre-assumed pdf approach is widely used. It
relies on the assumption that within the thin layers, but also in their vicinity, the
profiles of temperature and the reactive species concentrations may be expressed
as functions of the mixture fractionZ (for non-premixed combustion) the distance
functionG (for premixed combustion) or both (for partially premixed combustion).
Then only the pdf of the independent variablesZ andG must be known. Since
these quantities are described by differential equations that do not contain chemical
source terms, the main problem in turbulent combustion is circumvented. These
equations and the modeling of the corresponding equations for calculating their
mean and variance will be discussed in the lectures that follow. Once the Favre
mean and variance are known at positionx and timet , one may construct the entire
pdf by assuming that it depends on two parameters only. Thereby the functional
form of the pdf is “pre-assumed” and its local shape may be calculated by expressing
the two parameters in terms of the known values of the mean and the variance.

For the distance functionG, for instance, a Gaussian pdf has been shown to be
appropriate. Then the Favre pdf ofG is given by

P̃(G, x, t) = 1√
2π G̃′′2

exp

(
−(G− G̃)2

2 G̃′′2

)
(1.25)

where the Favre meañG(x, t)and the variancẽG′′2(x, t)are presumed to be known.
For the mixture fractionZ, which varies betweenZ = 0 andZ = 1, the beta

function pdf is widely used

P̃(Z, x, t) = Zα−1(1− Z)β−1

Γ (α + β) Γ (α)Γ (β) . (1.26)

This function is shown in Fig. 1.2. HereΓ is the gamma function. The two
parametersα andβ are related to the Favre meañZ(x, t) and variancẽZ′′2(x, t)
by

γ = Z̃(1− Z̃)

Z̃′′2
− 1≥ 0 ,

α = Z̃γ , β = (1− Z̃)γ .
(1.27)
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Figure 1.2: Shapes of the beta-function distribution.

When both, the profiles of the scalars and the pdf of the independent variables,
are known, means and variances of any quantity depending on the reactive scalars
may be calculated. In the case of non-premixed combustion, for instance, the mean
temperature, its variance and the heat release rate may be obtained from

T̃(x, t) =
∫ 1

0
T(Z)P̃(Z, x, t) d Z , (1.28)

T̃ ′′2 =
∫ 1

0
(T(Z)− T̃)2P̃(Z, x, t) d Z , (1.29)

−
n∑

i=1

hi ṁi = ρ̄ S̃T = ρ̄
∫ 1

0
ST(Z)P̃(Z, x, t) d Z . (1.30)

whereST = −
∑n

i=1 hi ṁi /ρ.
A further quantity of interest is the mean densityρ̄. Here, in using Favre

averages, one must consider the Favre average ofρ−1, which for non-premixed
combustion would be

ρ̃−1 = 1

ρ̄
=
∫ 1

0

1

ρ
P̃(Z) d Z . (1.31)

The profiles of the reactive scalars may not only be a function of the independent
variable, but also of additional parameters. An example in non-premixed combus-
tion is the dependence on the scalar dissipation rateχ (cf. lecture 3 below). If that
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parameter is assumed to be a random variable and the joint pdf (ofZ andχ in this
example) is assumed to be known, then the means could be obtained by integrating
over both variables. This approach, however, has turned out to be impracticable
in many cases. Therefore the additional parameters are usually replaced by mean
values.

1.3 Turbulent Length, Time and Velocity Scales

In order to be able to estimate whether chemistry is fast or slow compared to
turbulent mixing, it is useful to define laminar and turbulent time, length and
velocity scales.

A given turbulent flow field may locally be characterized by the root-mean-
square velocity fluctuationv′ and the turbulent macroscale`, yielding a turbulent
time scaleτ = `/v′. If the Favre averaged turbulent kinetic energy and its dissi-
pation are used, one may relatev′ and` to k̃ andε̃ by

v′ = (2k̃/3)1/2, ` = v′3/ε̃ . (1.32)

The turbulent time is then

τ = k̃

ε̃
. (1.33)

In terms of the kinematic viscosityν and ε̃ the Kolmogorov length, time and
velocity scales are

η =
(
ν3

ε̃

)1/4

, tη =
(ν
ε̃

)1/2
, vη = (νε̃)1/4 . (1.34)

Furthermore, for non-premixed combustion, the non-homogeneous mixture field
must be considered. Fluctuations of the mixture fraction are characterized by

Z′ =
√

Z̃′′2 , (1.35)

whereZ̃′′2 is the Favre averaged mixture fraction variance. The time scale of the
flow may be expressed by the inverse of the scalar dissipation rate at stoichiometric
mixtureχ̃st which was already used in (1.22).

The Taylor length scaleλ as an intermediate scale between the integral and the
Kolmogorov scale is defined by replacing the average gradient in the definition of
the dissipation byu′/λ. This leads to the definition

ε̃ = ν
˜(∂uα
∂xβ

)2
= 15ν

v′2

λ2
. (1.36)
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Here the factor 15 originates from considerations for isotropic homogeneous tur-
bulence. Using (1.34) it is seen thatλ is proportional to the product of the turnover
velocity of the large eddies and the Kolmogorov time

λ = (15ν v′2/ε̃)1/2 ∼ v′tη . (1.37)

Thereforeλ may be interpreted as the distance that a large eddy convects a Kol-
mogorov eddy during its turnover timetη. As a somewhat artificially defined
intermediate scale it has no direct physical significance in turbulent combustion.

According to Kolmogorov’s 1941 theory on the universal range of turbulence,
there is a transfer from the energy containing eddies of characteristic size of the
integral length scalè to smaller and smaller eddies. The energy transfer per
unit turnover time of the large eddies is equal to the dissipation of energy at the
dissipation scaleη. Therefore

ε̃ = v′2

τ
= v′3

`
. (1.38)

We may define a discrete sequence of eddies within the inertial range by defining

`n = `

2n
≥ η, n = 1, 2, ... . (1.39)

Since the energy transferε̃ is constant within the inertial range, dimensional anal-
ysis relates the turnover timetn and the velocity differencevn across the eddỳn

to ε̃ in that range as

ε̃ = v2
n

tn
= v3

n

`n
= `2

n

t3
n

. (1.40)

This relation includes the integral scales and also holds for the dissipation scales

ε̃ = v2
η

tη
= v3

η

η
. (1.41)

1.4 Regimes in Premixed Turbulent Combustion

For scaling purposes it is useful to assume a Schmidt number Sc= ν/D of unity
and to define the flame thickness`F as the ratio of the diffusivityD and the laminar
burning velocitysL

`F = D

sL
. (1.42)

Then, we may define the turbulent Reynolds number

Re= v′`/sL`F (1.43)
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the turbulent Damk¨ohler number

Dà = τ/tF = sL`/v
′`F (1.44)

and the turbulent Karlovitz number

Ka= Da−1
η = tF/tη = `2

F/η
2 = v2

η/s
2
L . (1.45)

The Karlovitz number is therefore equal to the inverse of a Damk¨ohler number
defined with the Kolmogorov time scale rather than with the integral time scale.
Since the interaction between chemistry and turbulence occurs at the smallest scale
only, the Damk¨ohler number defined by (1.44) has no direct physical significance
as far as the interaction between turbulence and chemistry is concerned. It will be
shown, however, that the condition Da` = 1 corresponds to the largest value of a
mixing length scale that will be introduced below. The definitions can be used to
derive the following relations between the ratiosv′/sL and`/`F in terms of the
two non-dimensional numbers Re and Ka as

v′/sL = Re(`/`F)
−1

= Ka2/3(`/`F)
1/3 .

(1.46)

In the following we will discuss a regime diagram, Fig. 1.3, for premixed turbulent
combustion where the logarithm ofv′/sL is plotted over the logarithm of̀/`F . In
this diagram, the lines Re= 1, Ka= 1 and Kaδ = 1 represent boundaries between
the different regimes of premixed turbulent combustion. Another boundary of
interest is the linev′/sL = 1, which separates the wrinkled and corrugated flamelets
and the line denoted by Kaδ = 1, which separates thin reaction zones from broken
reaction zones.
The line Re= 1 separates all turbulent flame regimes characterized by Re> 1
from the regime of laminar flames, which is situated in the lower-left corner of the
diagram. Among the remaining four regimes, the wrinkled and corrugated flames
belong to the flamelet regime, which is characterized by the inequalities Re> 1
(turbulence) and Ka< 1 (fast chemistry). The boundary to the thin reaction
zones regime is given by Ka= 1, which, according to (1.45), is equivalent to the
condition that the flame thickness is equal to the Kolmogorov scale (the Klimov-
Williams criterion). However, in addition, since viscosity as a molecular transport
process relates Kolmogorov velocity, length, and time scales to each other in the
same way as the velocity, length, and time scales are related in a laminar flame the
flame time is equal to the Kolmogorov time and the burning velocity is equal to
the Kolmogorov velocity. This is also apparent from (1.45).

The thin reaction zones regime is characterized by Re> 1, Kaδ < 1 and
Ka > 1, the last inequality indicating that the smallest eddies can enter into the
flame structure sinceη < `F . The smallest eddies of sizeη are still larger than the
inner layer thickness

`δ = δ`F (1.47)
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Figure 1.3: Regime diagram for premixed turbulent combustion.

and can therefore not penetrate into that layer. The non-dimensional thicknessδ of
the inner layer in a premixed flame is typically one tenth such that`δ is one tenth of
the preheat zone thickness (cf. [1.6]), which is of the order of the flame thickness
`F . We may therefore introduce a Karlovitz number based on the thickness of the
inner layer

Kaδ = `2
δ/η

2 = δ2Ka . (1.48)

Therefore, ifδ = 0.1 the value Kaδ = 1 corresponds to Ka= 100.
We will now enter into a more detailed discussion of the various regimes.

The flamelet regime is subdivided into the regimes of wrinkled and corrugated
flamelets. In the wrinkled flamelet regime, wherev′ < sL , v′ may be interpreted
as the turnover velocity of the large eddies. It follows that even those eddies
cannot convolute the flame front enough to form multiple connected reaction sheets.
Laminar flame propagation is dominating over turbulent flame propagation in this
regime.

In the regime of corrugated flamelets there is an interaction between turbulent
and laminar flame propagation. In view of (1.45), we have with Ka< 1

v′ ≥ sL ≥ vη (1.49)

within this regime. Since the velocity of large eddies is larger than the burning
velocity, these eddies will push the flame front around, causing a substantial cor-
rugation. Conversely, the smallest eddies, having a turnover velocity less than the
burning velocity, will not wrinkle the flame front.
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Figure 1.4: Kinematic interaction between a propagating flame front and an eddy
of the sizè n = `G. The dashed line marks the thickness of the preheat zone.

To determine the size of the eddy that interacts locally with the flame front,
we set the turnover velocityvn in (1.40) equal to the burning velocitysL . This
determines the Gibson scale [1.7]

`G = s3
L/ε . (1.50)

The Gibson scale is the size of burnt pockets that move into the unburnt mixture
with velocity sL . These pockets try to grow there due to the advance of the flame
front normal to itself, but are reduced in size again by newly arriving eddies of
size`G with turnover velocityvn = sL . Therefore, there is kinematic equilibrium
mechanism for the formation of burnt pockets, while unburnt pockets that penetrate
into the burnt gas will be consumed by flame advancement. This is illustrated in
Fig. 1.4. It is worth noting that̀G increases withsL if the turbulence properties
are kept constant. Using (1.32)2, one may also write (1.50) in the form

`G/` = (sL/v
′)3 . (1.51)

A graphical derivation of the Gibson scale`G within the inertial range is shown
in Fig. 1.5. Here the logarithm of the velocityvn is plotted over the logarithm of
the length scale according to (1.40). We assumev′ and` and therebyε, and alsoν
and therebyvη andη to be fixed. If one enters on the vertical axis with the burning
velocitysL equal tovn into the diagram, one obtains`G as the corresponding length
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Figure 1.5: Graphical illustration of the Gibson scale`G within the inertial range.

scale on the horizontal axis. The laminar flame thickness`F , which is of the order
of the Markstein lengthL (which will be defined in lecture 2) but is smaller than
η in the corrugated flamelet regime is also shown. This diagram also illustrates
the limiting values of̀ G: If the burning velocity is equal tov′, `G is equal to the
integral length scalè. This case corresponds to the borderline between corrugated
and wrinkled flamelets in Fig. 1.3. Conversely, ifsL is equal to the Kolmogorov
velocity vη, `G is equal toη. This corresponds to the line Ka= 1 in Fig. 1.3.
Therefore,̀ G may vary betweenη and` in the corrugated flamelet regime.

The next regime of interest in Fig. 1.3 is the regime of thin reaction zones. As
noted earlier, sinceη < `F , in this regime small eddies can enter into the preheat
zone and increase the scalar mixing, but they cannot penetrate into the inner layer
sinceη > `δ. The burning velocity cannot be defined as a property of the mixture
anymore, but since the reaction zone also moves normal to itself due to reactive
and normal diffusion, there is a displacement speed of the reaction zone which is
of the same order of magnitude as the burning velocitysL . The burning velocity is
smaller than the Kolmogorov velocity in this regime which would lead to a Gibson
scale that is smaller thanη. Therefore the Gibson scale has no meaning in this
regime. Another characteristic scale, however, can be defined since Ka> 1 and
according to (1.45) the flame time is larger than the Kolmogorov time and therefore
within the inertial range. For laminar flames the flame time may be defined as the
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time that a flame needs to propagate across its own thickness

tF = `F

sL
. (1.52)

If we use (1.42) it may also be related to the diffusivity indicating that it is the time
needed for diffusion of heat or chemical species across the distance`F

tF = `2
F

D
. (1.53)

Then, by settingtF = tn in (1.40), one obtains the length scale

`m = (ε̃t3
F)

1/2 . (1.54)

This scale may be interpreted as a mixing length scale. It is defined as the size of an
eddy within the inertial range which has a turnover time equal to the time needed
to diffuse heat over a distance equal to the thickness`F . During half its turnover
time an eddy of sizèm will interact with the advancing reaction front and will
be able to transport preheated fluid from a region of thickness`F in front of the
reaction zone over a distance corresponding to its own size. This is schematically
shown in Fig. 1.6. Much smaller eddies will also do this but since their size is
smaller, their action will be masked by eddies of size`m. Much larger eddies have
a longer turn-over time and would therefore be able to transport thicker structures
than those of thickness̀F , namely of the thickness̀m across their own width.
They will therefore corrugate the broadened flame structure at scales larger than
`m. The physical interpretation of̀m is therefore that of the maximum distance
that preheated fluid can be transported ahead of the flame.

Again, the derivation of̀m is illustrated in a diagram in Fig. 1.7, showing (1.40)
in a log-log plot oftn over`n. If one enters the time axis attF = tn, the scalè m

on the length scale axis is obtained. It should be noted that all eddies having a size
betweenη and`m have a shorter turnover time than`m and therefore are able to
mix the scalar fields in front of the thin reaction zones more rapidly. IftF is equal
to the Kolmogorov timetη, Fig. 1.7 shows that̀m is equal to the Kolmogorov scale
η. In this case, one obtains̀m = `F at the border between the thin reaction zones
regime and the corrugated flamelet regime. Similarly, from Fig. 1.7, if the flame
time tF is equal to the integral timeτ , `m is equal to the integral length scale. This
corresponds to Da` = 1 which previously [1.7] was interpreted as the borderline
between two regimes in turbulent combustion. Here, it turns out to merely set a
limit for the mixing scalè m which cannot increase beyond the integral scale`.
The line`m = ` is also shown in Fig. 1.3.

In Fig. 1.7 also the flame thickness`F and the Gibson scalèG are shown. The
Gibson scale is smaller than the Kolmogorov scale and`F lies betweenη and`m.
It may also be noted that, since we have assumedν = D, the Kolmogorov length
is equal to the Obukhov-Corrsin scale

`C = (D3/ε̃)1/4 (1.55)
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Figure 1.6: Transport of preheat gas from a region of thickness`F by an eddy of
size`n = `m during half a turnover timetn = tF .

which will be used in the next lecture.
As a final remark related to the thin reaction zones regime, it is important to

realize that turbulence in real systems is not homogeneous andε̃ is not a local
constant but has a statistical distribution. This refinement of Kolmogorov’s theory
has led to the notion of intermittency, or “spottiness”, of the activity of turbulence
in a flow field. This may have important consequences on the physical appearance
of turbulent flames at sufficiently large Reynolds numbers. One may expect that
the flame front shows manifestations of strong local mixing by small eddies as well
as of rather smooth regions where corrugated flamelets appear. The two regimes
discussed above may well both be apparent in an experimentally observed turbulent
flame.

Beyond the line Kaδ = 1 there is a regime where Kolmogorov eddies are smaller
than the reaction zone thickness`δ. They may therefore enter into these zones and
perturb them until the reactions break down locally due to loss of radicals. This
regime is called the broken reaction zones regime and corresponds to what has
been called slow chemistry in the introduction.
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Figure 1.7: Graphical illustration of the mixing scale`m within the inertial range.

1.5 Regimes in Non-Premixed and
Partially Premixed Turbulent Combustion

In order to analyze partially premixed and non-premixed turbulent combustion, it
is necessary to identify the relevant quantities that influence the flame structure.
In a non-homogeneous mixture field the reaction zone is attached to the high
temperature region close to stoichiometric mixture and is advected and diffused
with the mixture field. In contrast to premixed combustion, there is no burning
velocity, which would move the combustion front relative to its previous position.
There is a characteristic time scale, however, the chemical time which we relate to
the inverse of the scalar dissipation rateχq. This value corresponds to the condition
where heat loss by diffusion out of the reaction zone cannot be balanced by the heat
release from the chemical reaction and therefore the flamelet is quenched. The
scalar dissipation rateχq is an eigenvalue of the laminar diffusion flame problem
similarly assL is an eigenvalue for the premixed laminar flame. Since it has the
dimension of sec−1 it may be considered as the inverse of a characteristic chemical
time. Since there is no physically meaningful velocity scale in diffusion flames no
meaningful length scale can be defined. Because the mixture field fixes the flame
position, mixture fraction space rather than physical space should be considered.
Therefore one must define a flame thickness in mixture fraction space.

For a strained laminar diffusion flame, one may use the strain ratea and the
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diffusion coefficientD to define a diffusion length scale

`D =
√

D

a
. (1.56)

Herea corresponds to a velocity gradient and may be interpreted as the inverse
of the characteristic flow time. The mixture fraction profile across the diffusion
flame may be used to define the mixture fraction gradient normal to the reaction
layer at stoichiometric mixture as(d Z/dxn)st. Then the flame thickness in mixture
fraction space may be defined as

(∆Z)F =
(

d Z

dxn

)
st

`D . (1.57)

This thickness contains the diffusive layers surrounding the reaction zone and
therefore corresponds to the preheat zone thickness of orderO(`F) in premixed
flames.

The instantaneous value of the scalar dissipation rate is defined as

χ = 2D(∇Z)2 . (1.58)

Conditioningχ at Z = Zst leads to

χst = 2D

(
d Z

dxn

)2

st

, (1.59)

since gradients in tangential direction on the isolineZ = Zst are zero. Therefore
one may combine (1.56), (1.57) and (1.59) to obtain

(∆Z)F =
(χst

2a

)1/2
. (1.60)

For strained laminar diffusion flames of hydrogen or hydrocarbon-air mixturesZst

is small and(∆ZF) may be estimated as

(∆Z)F ∼ 2 Zst . (1.61)

In the regime diagram for partially premixed and non-premixed turbulent com-
bustion shown in Fig. 1.8 the ratiõZ′′2/(∆Z)2F is plotted over the time scale ratio
χq/χ̃ . Let us consider mixture fraction fluctuations around stoichiometric mixture.
For large mixture fraction variances̃Z′′2 > (∆Z)2F , mixture fraction fluctuations
extend to sufficiently lean and rich mixtures such that the diffusion layers sur-
rounding the reaction zones are separated. For small mixture fraction variances
Z̃′′2 < (∆Z)2F , which may either be due to intense mixing or to partial premix-
ing, a situation arises where diffusion layers surrounding the reaction zones are
connected. Therefore the criterion ˜Z′′2/(∆Z)F = 1 distinguishes between two
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regimes. If mixture fraction fluctuations are larger than(∆Z)F one has separated
flamelets, otherwise connected flame zones.

However, wheñχst > χq laminar flamelets can not exist in a diffusion flame.
This corresponds to the regime denoted as flame extinction in Fig. 1.8.

Fig. 1.8 also shows schematically how local conditions on the centerline of
a lifted jet diffusion flame would fit into these three regimes of non-premixed
turbulent combustion. Since the flame is lifted, they would correspond to flame
extinction close to the nozzle and enter into the flamelet regime at the lift-off height.
Close to the flame tip where the variance has decayed to values of the order of
(∆Z)2F one enters into the connected flame zones regime. SinceZ̃′′2 decreases as
x−2 andχ̃ asx−4 on the centerline in a jet flame, wherex is the distance from the
nozzle, local conditions follow a line with a slope−1/2 in the double-logarithmic
plot in Fig. 1.8. When the fuel exiting from the nozzle is partially premixed
the position of the centerline shown in Fig. 1.8 would shift to lower values of
Z̃′′2/(∆Z)2F and therefore move more into the regime of connected flame zones.
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Figure 1.8: Regimes in non-premixed turbulent combustion.
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Lecture 2

Premixed Turbulent Combustion

It was noted in lecture 1 that the most important application for premixed turbulent
combustion are spark-ignition engines. In homogeneous charge spark-ignition
engines fuel is injected into the intake manifold and mixes with the intake air.
When this mixture enters into the cylinder it mixes further with the remaining burnt
gas from the previous cycle during the subsequent compression. At approximately
40–20 degrees before top dead center (TDC) the mixture is nearly homogeneous. It
is ignited by a spark forming at first a laminar flame kernel, which rapidly becomes
turbulent. This kernel develops into a turbulent flame which grows spherically until
it reaches the combustion chamber walls at the piston, the cylinder and the cylinder
head. Fig. 2.1 shows Schlieren photographs of flame propagation in a dish shaped
combustion chamber of a 1.6 liter transparent engine at 2000 rpm. The piston is
equipped with a quartz window which allows to observe the combustion process.
In this series of pictures, ignition occurred at approximately 40 degrees before
TDC. At 22 degrees before TDC the flame kernel has grown to a few millimeters.
It then develops further until at 14 degrees before TDC large turbulent structures
become visible. The corrugated flame front is located within the bright regions
where large density gradients occur. At 4 degrees before TDC there appears a dark
region behind the front which corresponds to the burnt gas region. At TDC the
flame has traveled across most of the visible part of the combustion chamber.

As the burnout of the charge must be completed within a crank angle range
up to 40 degrees after TDC, it is clear that in spark ignition engines the turbulent
burning velocity is a very important quantity that needs to be known. In this lecture
we will focus on models for the turbulent burning velocity.

2.1 Experimental Devices

The most classical experiment to determine turbulent burning velocities uses the
Bunsen burner. The only difference to the laminar Bunsen burner experiment is
that the flow is turbulent rather than laminar. This may be achieved by running

24



22 degrees BTDC 14 degrees BTDC

4 degrees BTDC TDC

Figure 2.1: Schlieren photographs of flame propagation in a transparent engine.
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Figure 2.2: Instantaneous and time averaged Bunsen flames.

the experiment with a large enough diameter and velocity to exceed the critical
Reynolds number in the pipe of the Bunsen burner or by adding a turbulence
grid at the exit of the burner. The second arrangement has the advantage that the
turbulence length and velocity scales may be controlled independently while in the
case of a turbulent pipe flow they vary in radial direction and depend on whether the
pipe flow is fully developed or not. In Fig. 2.2 the turbulent Bunsen cone is shown
schematically as a collection of instantaneous flame contours and as a long-time
exposure of the fluctuating flame front.

The second picture corresponds to a time-average description and shows the
mean flame contour and the flame brush thickness which increases with down-
stream distances. Also, a mean stream line is shown. Due to thermal expansion
in the flame the stream lines are deflected as in a laminar Bunsen flame. As in a
laminar case the turbulent burning velocity may be determined by measuring the
angleα of the mean flame contour with respect to the flow. Since this angle is
not constant along the mean flame contour such a measurement provides only an
estimate.

Theadvantagesof the turbulent Bunsen flame experiment are the following:

• The mass flow rate through the Bunsen cone in known.

• There is an easy optical access to the flame.

Thedisadvantagesare:
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Figure 2.3: The weak swirl burner [2.1] with a freely stabilized premixed flame
normal to the mean flow.

• The flow field is not uniform in the case of a fully developed pipe flow.

• Even if a turbulence grid is used within the pipe, shear layers develop outside
of the tube and create non-uniformities of the flow.

• The mixing with the surrounding air will dilute the fuel-air mixture and
generate mixture fraction non-uniformities.

In order to avoid the influence of non-homogeneities in studying turbulent
burning velocities, it is useful to consider flames generated by a weak swirl burner
[2.1]. Such a device is shown schematically in Fig. 2.3. It consists, as the Bunsen
flame, of a flame tube which in addition to the main premixed flow has four tan-
gential air inlets that generate a circumferential velocity component. This velocity
component, however, is restricted only to a small portion of the outlet flow at the
perimeter of the premixture close to the burner rim but leaves the center core flow
undisturbed. The weak swirl generates a slightly diverging flow that stabilizes
the premixed downward propagating flame at the vertical position where the mean
flow velocity equals the turbulent burning velocity.
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Figure 2.4: A fan-stirred combustion bomb for premixed turbulent combustion
studies.

Theadvantagesof the weak swirl flame experiment are:

• It is possible to generate a freely stabilized flame which has a one-dimen-
sional steady structure in the mean.

• There is an easy optical access to the flame.

Thedisadvantageis:

• The mass flow rate through the flame is not known.

Since the main application of premixed turbulent combustion is in engines, it
is important to study also unsteady flames. An isotropic turbulence field may, for
instance, be established in a fan-stirred combustion bomb [2.21] shown in Fig. 2.4.

Such a device has been used extensively by D. Bradley and co-workers (cf.
[2.3]). Four mutually opposed high speed fans create a nearly isotropic homoge-
neous turbulence field with a low mean velocity in the center region of the bomb.
One or two flame kernels are initiated by electrical sparks and propagate either
radially outwards or towards each other. They can be observed through quartz
glass windows. Another device for measuring unsteady flame propagation is the
single stroke compression machine with a square piston and a turbulence grid that
is pulled through the combustion chamber before ignition. Such a configuration
was used by Adomeit and co-workers [2.4].
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During the flame kernel development the instantaneous flame front interacts
with all sizes of turbulent eddies. Therefore, there is a time period during the early
flame kernel development, where the interaction of the flame with the turbulent
flow field is not fully established. An estimate of this time period will be given
below.

Theadvantageof these configurations is the following:

• A nearly isotropic homogeneous turbulence field with high turbulence in-
tensity is established.

Thedisadvantagesare:

• The experiment is unsteady and the early flame development must be taken
into account.

• The optical access through quartz glass windows is more difficult than in
open flames.

2.2 Scaling Laws for the Turbulent Burning Velocity

Damköhler [2.5] was the first to present theoretical expressions for the turbulent
burning velocity. He identified two different regimes which he called large scale
and small scale turbulence, respectively. For large scale turbulence he assumed
that the interaction between a wrinkled flame front and the turbulent flow field is
purely kinematic and therefore independent of length scales. This corresponds to
the corrugated flamelet regime that has been discussed in lecture 1. In the limit of
a large ratio of the rms turbulent velocityv′ to the laminar burning velocitysL the
turbulent burning velocitysT is then proportional tov′

sT ∼ v′ for v′ >> sL . (2.1)

In order to derive this result consider a steady turbulent flow with constant mean ve-
locity v̄ and uniform turbulence properties characterized by the turbulent intensity
v′ and the integral length scale`. Then a plane turbulent flame should propagate in
opposite direction to the flow. A steady flame is obtained if the turbulent burning
velocitysT is equal to the turbulent mean flow velocityv

sT = v . (2.2)

This idealized one-dimensional steady flame as shown is very difficult to realize
experimentally. If one reduces, for example, the flow velocity in a Bunsen flame the
cone angle increases but the flame propagates into the tube rather than stabilizing
at the exit of the burner when the mean velocity is equal to the burning velocity.
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Figure 2.5: An idealized steady premixed flame in a duct with constant flow
velocity.

This is due to inhomogeneities in the turbulent flow and the very dynamic response
of the flame thereon. Therefore a plane turbulent flame can only be established if
additional measures are taken to stabilize it. These will be discussed below, when
flames in a divergent or swirling flow are discussed.

The definition of a turbulent burning velocity goes back to Damk¨ohler who also
introduced the concept of an instantaneous wrinkled turbulent flame surface, which
for constant turbulence and combustion properties should have reached statistically
a steady state. He equated the mass fluxṁ of unburnt gas with the laminar burning
velocity sL through the turbulent flame surface areaFT to the mass flux through
the cross sectional areaF with the turbulent burning velocitysT (cf. Fig. 2.5)

ṁ= ρu sL FT = ρu sT F . (2.3)

Hereρu is the density of the unburnt mixture. The burning velocitiessL andsT are
also defined with respect to the conditions in the unburnt mixture. This leads to

sT

sL
= FT

F
. (2.4)

Using the geometrical analogy with a Bunsen flame, Damk¨ohler assumed that the
area increase of the wrinkled flame surface area relative to the cross sectional area
is proportional to the increase of flow velocity over the laminar burning velocity

FT

F
= sL + v′

sL
. (2.5)

Herev′ is the velocity increase which finally is identified as the turbulence intensity
v′. Combining (2.4) and (2.5) leads to

sT

sL
= 1+ v′

sL
(2.6)

or in the limit v′ À sL to the law given by (2.1). It states that in the case of
large scale turbulence the turbulent burning velocity should be independent of any
laminar velocity, length and time scale of combustion. Therefore chemistry should
not affect the process of turbulent flame propagation.
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For small scale turbulence Damk¨ohler argued that turbulence modifies the
transport between the reaction zone and what he called the “preparation zone”. He
used the scaling relation for the laminar burning velocity

sL ∼
√

D/tc (2.7)

wheretc is the chemical time scale and replaced the laminar diffusivityD by a
turbulent diffusivityDt to obtain

sT ∼
√

Dt/tc (2.8)

and therefore the ratio
sT

sL
=
√

Dt

D
(2.9)

where it is implicitly assumed that the chemical time scale is not affected by
turbulence. Since the turbulent diffusivity is proportional to the productv′` and
the laminar diffusivity is proportional to the product of the laminar burning velocity
sL and the flame thickness̀F (cf. (1.42)) one may write (2.9) as

sT

sL
∼
√
v′

sL

`

`F
(2.10)

showing that in the small scale turbulence regime the ratio of the turbulent to the
laminar burning velocity not only depends on the velocity ratiov′/sL but also on
the length scale ratiò/`F .

There were many attempts to modify Damk¨ohler’s analysis and to derive ex-
pressions that would reproduce the large amount of experiment data on turbulent
burning velocities. Expressions of the form

sT

sL
= 1+ C

(
v′

sL

)n

(2.11)

have been proposed that contain (2.1) and (2.10) as limiting cases. When the
ratio sT/sL is plotted as a function ofv′/sL which is called the turbulent velocity
diagram, the exponent is found to be in the vicinity of 0.7 or 0.75 [2.6]. Attempts
to justify a single exponent on the basis of dimensional analysis, however, fall
short even of Damk¨ohler’s pioneering work who had recognized the existence of
two different regimes in premixed turbulent combustion.

The deviation from the straight line of the large scale turbulence limit is called
the bending of the turbulent burning velocity. In Fig. 2.6 two empirical approx-
imations are plotted in the turbulent velocity diagram for a length scale ratio of
`/`F = 50 showing the bending effect. The reason for this bending is not fully
understood. This is often considered to be the most important unresolved problem
in premixed turbulent combustion. We will discuss this question in the context of
combustion regimes that were presented in Fig. 1.3. It will be shown below that
Damköhler’s case of large scale turbulence falls into the corrugated flamelet regime
while his small scale turbulence case falls into the thin reaction zones regime.
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2.3 The Bray-Moss-Libby Model

This widely used concept in premixed turbulent combustion (cf. [2.7], [2.8]) as-
sumes that chemical reactions are localized in a thin surface which may be repre-
sented as a sheet separating unburnt mixture from burnt gas. This approximation
clearly places the BML model within the flamelet regime in Fig. 1.3. The formu-
lation is based on introducing a progress variable which, by definition isc = 0
in the unburnt mixture andc = 1 in the burnt gas. The progress variable can
be interpreted in the context of a one-step reaction either as a non-dimensional
temperature

c = T − Tu

Tb − Tu
(2.12)

or as a non-dimensional product mass fraction. This interpretation is somewhat
misleading, since the basic assumption of the model states that reaction is infinitely
thin and no intermediate values of temperature betweenTu andTb can be resolved.
The progress variable is better interpreted as a step function that separates unburnt
mixture and burnt gas in a given flow field. It is therefore related to the spatial
structure of the flame front and its statistics rather than to a reacting scalar such as
the temperature or the reactants and products. This property ofc becomes more
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evident when the pdf ofc at a given locationx is considered. It is introduced as

P(c, x) = α(x)δ(c)+ β(x)δ(1− c)+ γ (x) f (c, x) (2.13)

whereα, β andγ are the probabilities of finding unburnt, fully burnt and burning
mixture, respectively, at locationx, δ is the Dirac function andf (c, x) is the pdf
of finding values betweenc = 0 andc = 1. Due to the basic assumption of an
infinitely thin sheet the limitγ = 0 is taken which leads to a two-delta function
description of the pdf with

α(x)+ β(x) = 1 . (2.14)

Hereα(x) corresponds to the probability of finding unburnt mixture,β(x) to that
of finding burnt gas at the locationx. Then the mean progress variable is calculated
as

c =
∫ 1

0
c P(c, x)dc= β(x) (2.15)

indicatingc(x) is nothing else than the probability of finding burnt gas at location
x.

Assuming constant pressure and a constant mean molecular weight the density
ratio is inversely proportional to the temperature ratio. Then, using (2.12) one may
also express the density as a function of the progress variable

ρ

ρu
= Tu

T
= 1

1+ τc
(2.16)

whereτ = (Tb−Tu)/Tu. Then the ratio of the mean density toρu can be calculated
from the pdf by taking only the entries atc = 0 andc = 1 into account

ρ(x)
ρu
=
∫ 1

0
ρ P(c)dc= α(x)+ β(x)

1+ τ = 1− β(x)+ β(x)
1+ τ (2.17)

where (2.14) has been used. The Favre averaged progress variablec̃ may be
obtained by using its definition as

c̃(x) ≡ ρc

ρ̄
= ρu

ρ̄

∫ 1

0

c

1+ τc
P(c)dc= ρu

ρ̄

β(x)
1+ τ . (2.18)

Combining (2.17) and (2.18) one may expressβ(x) and thereforec(x) as a function
of c̃(x)

c(x) = β(x) = (1+ τ)c̃(x)
1+ τ c̃(x)

. (2.19)

This also yields a simple expression for the density ratio in terms ofc̃

ρ̄(x)
ρu
= 1

1+ τ c̃(x)
(2.20)

33



which shows an interesting analogy to (2.16).
The BML model has been extended to express higher moments of the progress

variable and also correlations between the velocity and the progress variable in
terms of mean quantities. These results illustrate the consequences of the bi-
modal form of the pdf in (2.13) but they unfortunately do not lead to a closure of
the unknown terms in the balance equations.

2.4 The Level-Set Approach for the Kinematic
G-Equation

If chemistry is sufficiently fast it occurs in layers that are thin compared to the length
scales of the flow. All the chemistry is then confined to these thin layers and the
chemical source term in the equations for the reacting scalars could be represented
by a delta function rather than a continuous smooth function in physical space.
In order to circumvent the difficulty of modelling series of delta functions, it is
useful to formulate the problem of premixed turbulent combustion in terms of a
field equation that does not explicitly contain a chemical source term. Such an
equation may be derived from a kinematic balance between the flow velocityv,
the burning velocity normal to the frontsLn and the resulting propagation velocity
dx/dt of the front

dx
dt
= v+ n sL (2.21)

Bby defining the normal vector as

n = − ∇G

|∇G| (2.22)

and considering an arbitrary iso-scalar surface

G(x, t) = G0 . (2.23)

This surface divides the flow field into two regions whereG > G0 is the region
of burnt gas andG < G0 that of the unburnt mixture (Fig. 2.7). This is called the
level-set approach. If one differentiates (2.23) with respect tot

dG

dt
+∇G · dx

dt

∣∣∣
G=G0

= 0 (2.24)

and introduces (2.21) one obtains

dG

dt
+ v · ∇G = sL |∇G| (2.25)

which will be called kinematicG-equation in the following. It contains a local and
a convective term on the l.h.s, the Eikonal term with the burning velocitysL on the
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r.h.s but no diffusion term. It is valid in the corrugated flamelet regime where the
flame thickness is smaller than the Kolmogorov scale. AlthoughG represents an
arbitrary scalar, it is convenient to interpret it as the distance from the flame front
by imposing the condition|∇G| = 1 for G 6= G0 numerically. This numerical
procedure is called re-initialization [2.9]. ThenG has the dimension of a length.
It will be called the distance function in the following. This use of the level-set
approach is by no means compulsory. In fact (2.25) also satisfies any variable
that is a unique function ofG. This is immediately evident for a linear function
Ĝ = aG+ b, but also, for example, for the progress variablec(G). If we define

c = H(G− G0) =
{

0, for G < G0

1, for G > G0
(2.26)

whereH is the Heaviside function, the derivative ofc is

dc= δ(G− G0) dG (2.27)

and therefore the normal vector is also

n = − ∇c

|∇c| . (2.28)

Introducing (2.27) into (2.25) leads to

dc

dt
+ v · ∇c = sL |∇c| (2.29)

since the delta function cancels.
The burning velocitysL appearing in (2.25) is defined with respect to the

unburnt mixture. It may be modified to account for the effect of flame curvature
and flame strain. In asymptotic analyses employing the limit of a large ratio of
the fluid dynamic length scale to the flame thickness resulting in a quasi-steady
structure of the preheat zone, first order corrections to the burning velocity due to
curvatureκ and straining of the flame may be derived [2.10]–[2.12] yielding

sL = s0
L − s0

LL κ + L n · ∇v · n . (2.30)

Heres0
L is the burning velocity of the unstretched flame andL is the Markstein

length. The ratio of the Markstein length to the flame thickness is called the
Markstein number and depends on the density ratio between the burnt and the
unburnt gas, the Lewis number and the Zeldovich number. For the case of a one-
step large activation energy reaction and a constant thermal conductivity, dynamic
viscosity and heat capacitycp, the ratio ofL to the flame thickness̀F is

L
`F
= 1

γ
ln

1

1− γ +
Ze(Le− 1)

2

(1− γ )
γ

γ/(1−γ )∫
0

ln(1+ x)

x
dx . (2.31)
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This expression was first derived by Clavin and Williams [2.13]. Hereγ = (Tb−
Tu)/Tb whereTb and Tu are the temperatures in the burnt and the unburnt gas,
respectively, Ze= E(Tb − Tu)/RT2

b is the Zeldovich number, whereE is the
activation energy and R the universal gas constant, and Le= λ/ρ cp D is the
Lewis number of the reactant.

The flame curvatureκ in (2.30) is defined as

κ = ∇ · n = ∇ ·
(
− ∇G

|∇G|
)
= −∇

2G− n · ∇(n · ∇G)

|∇G| . (2.32)

If (2.30) is introduced into (2.25) the kinematicG-equation may be written as

∂G

∂t
+ v · ∇G = s0

Lσ − DL κσ + L n · ∇v · nσ , (2.33)

whereDL = s0
LL is the Markstein diffusivity and

σ = |∇G| (2.34)

is the absolute value of the gradient of the distance functionG.
The curvature term adds a second order derivative to the kinematicG-equation.

This avoids the formation of cusps and non-unique solutions that would result from
(2.25) with a constant value ofsL . The mathematical nature of (2.33) is that of
a Hamilton-Jacobi equation with a parabolic second order differential operator
coming from the curvature term. It is easily shown that the progress variable also
satisfies (2.33).

The properties of theG-equation for turbulent flow fields have been investigated
in a number of papers. In particular, Kerstein et al. [2.14] have performed direct
numerical simulations for the constant density (passive)G-equation in a cubic box
and have shown that for larger times the mean absolute gradient ofG may be
interpreted as the total flame surface density of the front equal to the ratio of the
turbulent to the laminar burning velocity

σ̄ = |∇G| = sT

sL
. (2.35)

In view of (2.4) this may also be interpreted as the ratio of the turbulent flame
surface areaFt to the cross sectional areaF .

In [2.15] Reynolds-averaged equations for the meanG and the varianceG′2

have been derived. A constant density was assumed andG, σ and the velocity
componentvα were split into a mean and a fluctuation

G = G+ G′ , σ = σ̄ + σ ′ , vα = vα + v′α . (2.36)

The equation for the meanG is simply

∂G

∂t
+ v · ∇G+∇ · v′G′ = s0

L σ̄ − DL κσ + L n · ∇v · n σ . (2.37)
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Figure 2.7: A schematic representation of the flame front as an iso-scalar surface
of G(x, t).

The conditionG = G0 now defines the location of the mean flame front, while
the varianceG′2 accounts for flame front fluctuations and thereby is a measure
of the flame brush thickness. An equation forG′2 may be derived by subtracting
(2.37) from (2.33) to obtain an equation forG′. After multiplying this by 2G′ and
averaging one obtains the equation

∂G′2

∂t
+ v · ∇G′2+∇ · (v′G′2) = −2v′G′ · ∇G− ω − χL −ΣL . (2.38)

Here, the local and convection term and the turbulent transport term on the l.h.s as
well as the production term 2v′G′ ·∇G on the r.h.s result from local and convective
terms in (2.33). The second term on the r.h.s of (2.38) results from the Eikonal
terms0

Lσ in (2.33) and is defined as

ω = −2s0
Lσ
′G′ . (2.39)

This term was called kinematic restoration in order to emphasize the kinematic
effect of local laminar flame propagation. It accounts for the smoothing effect of
theG-field and thereby the flame surface by flame advancement with the laminar
burning velocity. Flame front corrugations produced by turbulence are restored by
this kinematic effect. The third term on the r.h.s of (2.38) results from the second
term on the r.h.s in (2.33) and is defined as

χL = 2 DLG′κσ . (2.40)

Since it contains the Markstein diffusivity it is called the Markstein dissipation. The
last term in (2.38) results from the last term in (2.33) and is called the scalar-strain
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co-variance
ΣL = −2L G′n · ∇v · nσ . (2.41)

2.5 Closure of the KinematicG-Equation

The kinematic restorationω is the most important destruction term in (2.38). It
counterbalances the production term and thereby limits the variance and therefore
flame front fluctuations in the corrugated flamelet regime. In [2.15] a closure
of this term was achieved by deriving a scalar spectrum function for two-point
correlations ofG.

The scalar spectrum function is schematically shown in Fig. 2.8. It contains an
inertial range with slope -5/3 between the integral length scale and the Gibson scale
`G and a range with slope -2 between the Gibson scale and the Obukhov-Corrsin
scalè C.

In [2.15] it was shown that kinematic restoration is active at the Gibson scale

`G = s0
L

ε̄
(2.42)

since`G represents the first cut-off from the inertial range in the scalar spectrum
function and therefore is responsible for removing scalar fluctuations. It was
already shown in Fig. 1.5 that in the corrugated flamelet regime the Gibson scale
is larger than the Obukhov-Corrsin scale`C and the Markstein lengthL. From the
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analysis in [2.15] results an expression which relatesω to the varianceG′2 and the
turbulent timeτ = k̄/ε̄

ω = cω
ε̄

k̄
G′2 (2.43)

with cω = 1.62. This expression shows that the kinematic restoration plays a
similar role for fluctuations of the flame front as the scalar dissipation plays for
concentration fluctuations of diffusive scalars.

The scalar dissipation is active at the Obukhov-Corrsin scale and the scalar-
strain co-variance is active at the Markstein length which is of the order of the
flame thickness. Therefore both are smaller than the kinematic restoration in the
corrugated flamelet regime. WhileΣL can probably be neglected in all practical
applications,χL should be included for cases close to the Klimov-Williams line
Ka= 1 in Fig. 1.4 wherè G approachesη.

In order to derive a more consistent closure formulation we may split the
productG′κσ that appears in (2.40) into two terms

2G′κσ = −∇ ·
(

2
G′∇G

|∇G|
)
+ 2∇G′∇G . (2.44)

After averaging one may replace products likeG G′ and∇G′∇G by G′2 and
∇G′∇G′, respectively, such that

− 2G′κσ = −κ ′′ − 2∇G′∇G′ (2.45)

whereκ ′′ is a curvature-like term defined by

κ ′′ = ∇ ·
(
−∇G′2

|∇G|
)
. (2.46)

The last term in (2.45) contains the product of scalar gradients. IfG was a diffusive
scalar, the product 2Dσ ′2 would be modelled in a similar way asω in (2.43). This
will be shown for the thin reaction zones regime where this term will be the most
important destruction term that limits reaction zone fluctuations. In [2.16] an
approximation for the sum of both destruction terms is derived which is valid in
both the corrugated flamelet regime and the thin reaction zones regime

ω + χL = cs
ε̄

k̄
G′2 (2.47)

wherecs = 2.0.
The last terms on the l.h.s of (2.37) and (2.38) are turbulent transport terms

that also need to be modelled. A classical gradient transport approximation cannot
be used for these terms, because this would lead to elliptic equations forG and
G′2. If one wants to obtain an equation forG that is consistent with the parabolic
form of the equation forG the term∇ · v′G′′2 in (2.38) should be modelled as a
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curvature term. In fact, a transformation similar to (2.32) shows that the second
order elliptic operator, that would result from a gradient flux approximation, can
be split into a second order normal derivative and a curvature term

∇(Dt∇G) = n · ∇(Dtn · ∇G)− Dt κ̄(G)|∇G| . (2.48)

Here Dt is the turbulent diffusivity and̄κ(G) is defined as in (2.32) but with
G instead ofG. Since diffusion normal to theG-isoline is not present in the
instantaneousG-equation, it cannot appear in the equation forG. In a model for
high intensity turbulence, the curvature term in (2.37) may therefore be combined
with the turbulent transport term as

−DL κσ −∇ · v′G′ = −(DL + Dt)κ̄(G)|∇G| . (2.49)

The inclusion of this term in the equation forG avoids the formation of cusps of
the mean flame front.

The turbulent transport term in the variance equation must also be modelled
as a curvature term. Equation (2.45) suggests that there is also a contribution
proportional toDL. Therefore, combining these two curvature terms in a similar
way as in (2.49) one obtains

−DL κ ′′|∇G| − ∇ · (v′G′′2) = −(DL + Dt)κ̄(G′2)|∇G′2| (2.50)

whereκ̄(G′2) is defined as in (2.32) but with the varianceG′2 instead ofG. For
the turbulent production term classical gradient transport modelling is appropriate
since second order derivatives are not involved

− v′G′ · ∇G = Dt (∇G)2 . (2.51)

Finally, the last term in (2.37), presenting the effect of local strain on the flame
surface may be interpreted as a stretch term. Numerical simulations by Ashurst
[2.17] show that the strain is statistically independent ofσ and that the mean strain
n · ∇v · n on the flame surface is always negative. When this term, divided bys0

L σ̄

is plotted overv′/s0
L it is seen to be linear and independent ofL (cf. Fig. 2.9). This

leads to the closure model

− L n · ∇v · nσ = b3
L
`
v′σ̄ (2.52)

whereb3 = 1.3 with the integral length scale defined as

` = 0.37v′3/ε̄ (2.53)

and the r.m.s velocity fluctuations as

v′ =
√

2/3 k̄ . (2.54)
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Figure 2.9: Results of numerical simulation of the strain rate term.

We will combine the first and the last term on the l.h.s of (2.37) as

s0
L σ̄ + L n · ∇v · nσ = sT |∇G| (2.55)

where

sT = s0
L σ̄

(
1− b3

L
`

v′

s0
L

)
(2.56)

is the turbulent burning velocity. ForL/` → 0 this is equal to (2.35). With all
these closure assumptions we may write the equations forG andG′2 as

∂G

∂t
+ v · ∇G = −(DL + Dt)κ̄(G)|∇G| + sT |∇G| , (2.57)

∂G′2

∂t
+ v · ∇G′2 = −(DL + Dt)κ̄(G′2)|∇G′2| + 2Dt(∇G)2− cs

ε̄

k̄
G′2 . (2.58)

The only quantity that still needs to be determined is the flame surface area ratio
σ̄ . The scaling relation (2.43) together with the definition (2.39) for the kinematic
restoration shows that for large turbulent Reynolds numbers the laminar burning
velocity s0

L plays a similar role in the kinematic restorationω as the viscosityν
plays in the dissipation̄ε. In this limit both,ω andε̄, are to be modelled in terms of
quantities defined at the integral scales. Therefore the variance equation becomes
independent ofs0

L as the turbulent kinetic energy equation becomes independent
of ν. This also indicates that the terms0

L σ̄ in (2.57) should be independent ofs0
L

in the large Reynolds number limit. Introducing an artificial dimension forG, say
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g, one finds thatω has the dimension g2/s andσ̄ the dimension g/m. Dimensional
analysis then suggests that

s0
L σ̄ ∼

(
ε̄

k̄
ω

)1/2

∼ ε̄

k̄
(G′2)1/2 ∼ v′

`
(G′2)1/2 . (2.59)

With these closure assumptions one may readily calculate the turbulent burning
velocity of a one-dimensional unsteady planar flame. Since the varianceG′2 is a
property of the entire turbulent flame and does not vary across the flame brush,
it is appropriate to assign zero gradient boundary conditions on both sides of
the flame brush. Then the gradient∇G′2 normal to the flame vanishes. If the
turbulence quantitiesDt , k̄ andε̄ are constant, the gradient∇G′2 in the convective
term also does not change in tangential direction and therefore disappears entirely.
Furthermore, in interpretingG as a distance function for the turbulent flame,|∇G|
is equal to unity in the production term and since the flame is planar the curvature
term vanishes in (2.56). Using (1.14), (2.53) and (2.54) and a turbulent Schmidt
number Sc= νt/Dt = 0.7 one obtains for the turbulent diffusivity

Dt = 0.78v′` . (2.60)

Likewise we may replacēε/k̄ in (2.58) by

ε̄

k̄
= 0.247

v′

`
(2.61)

wherek̄/ε̄ = τ which is the integral time scale. The variance equation is then
written in terms of the non-dimensional timet/τ with cs = 2 as

∂G′2

∂(t/τ)
= 6.32`2− 2G′2 . (2.62)

This has the solution

G′2 = b2
2 `

2
[
1− exp(−2t/τ)

]+ G′20 exp(−2t/τ) (2.63)

whereb2 =
√

3.16= 1.78. HereG′2 = G′20 is the initial value att = 0. This may
be set equal tò2

F , if one assumes the flame to start as a plane laminar flame.
The quantity(G′2)1/2/|∇G| may be interpreted as the turbulent flame brush

thickness̀ F,t . In the limit G′0
2
/`2→ 0 this quantity would evolve as

`F,t = (G′2)1/2

|∇G| = b2 `[1− exp(−2t/τ)]1/2 (2.64)

This shows that for large times the turbulent flame brush thickness is proportional
to the integral length scale. Equation (2.63) may be inserted into (2.59) to write

s0
L σ̄ = b1v

′
[

1− exp(−2t/τ)+ G′20
3.16`2

exp(−2t/τ)

]1/2

. (2.65)
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Figure 2.10: Time evolution of the turbulent flame brush thickness and the turbulent
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This may be introduced into the expression (2.56) for the turbulent burning velocity

sT . One obtains in the limitG′0
2
/`2→ 0

sT = b1 v
′[1− exp(−2t/τ)]1/2

(
1− b3

L
`

v′

s0
L

)
. (2.66)

This reaches for large timest/τ →∞ and forL/`→ 0 the steady state limit

sT = b1 v
′ (2.67)

which is equivalent to Damk¨ohler’s expression (2.1) for large scale turbulence.
The modelling constantb1 may be determined by the slope in the burning velocity
diagram and lies between 1.0 and 2.0. The term in square brackets in (2.64) and
(2.66) is plotted in Fig. 2.10 showing that the steady state condition is approached
rather rapidly.

We may conclude that, apart from unsteady effects, modelling of the kinematic
G-equation for high Reynolds number turbulence leads to well-known results,
namely that the flame brush thickness is proportional to the integral length scale
and that the turbulent burning velocity is proportional to the turbulent intensity.
These findings are reassuring but they do not explain the “bending” of the turbulent
burning velocity when the ratiosT/sL is plotted as a function ofv′/sL as shown in
Fig. 2.6. As discussed in the beginning of this lecture this bending was found in
many experimental situations. In order to understand the bending effect we will
extend the level set approach to the thin reaction zones regime.
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2.6 The Level-Set-Approach for the Diffusive
G-Equation

We will consider a flame which contains a single reaction zone–which may con-
tain several reaction layers–that separates the preheat zone from the post-flame
equilibrium layers. The most upstream of these reaction layers adjacent to the
preheat zone will be called the inner layer. We will furthermore assume that the
binary diffusion approximation is valid and that the diffusivities of fuel, oxidizer
and temperature differ only by a small amount. We want to derive an equation
for the propagation velocitydx/dt of the thin reaction zone similar to (2.21). For
that purpose we must define the location of the inner layer by specifying either
concentrations or reaction rates in that zone. Since we do not intend to resolve the
thin reaction zone we do not need to specify the chemistry. Asymptotic analyses
[2.18] show that for lean, stoichiometric and slightly rich flames the fuel is the
deficient species which disappears completely in the inner layer. Although the
asymptotic analysis for very rich flames with realistic chemistry has not yet been
performed, one may expect that in that case oxygen is the deficient species and
disappears in the inner layer. We define the location of the reaction zone by the
iso-scalar surface of either the fuel mass fractionYF or the oxygen mass fraction
YO2 in the limit YF → 0 orYO2 → 0, respectively. We denote the mass fraction of
the deficient species byY and consider its balance equation

ρ

(
∂Y

∂t
+ v · ∇Y

)
= ∇ · (ρD∇Y)+ ṁ (2.68)

whereD is its diffusion coefficient anḋm its chemical source term. Similar to
(2.23) the iso-scalar surfaceY(x, t) = Y0 must satisfy the condition

∂Y

∂t
+∇Y · dx

dt

∣∣∣
Y=Y0

= 0 . (2.69)

Replacing∂Y/∂t from (2.68) this leads to

dx
dt

∣∣∣
Y=Y0

= v−
[∇ · (ρD∇Y)+ ṁ

ρ|∇Y|
]

0

n . (2.70)

Here the term in square brackets is the displacement speed of the thin reaction
zone. For diffusive scalars (2.70) was first derived in [2.19]. The normal vector
on the iso-concentration surface is defined as

n = ∇Y

|∇Y| . (2.71)

We want to derive aG-equation that describes the location of the thin reaction
zones such that the iso-surfaceY(x, t) = Y0 coincides with the iso-surface defined

44



by G(x, t) = G0. Then the normal vector defined by (2.71) is equal to that defined
by (2.22) and also points towards the unburnt mixture. Using (2.22) and (2.24)
together with (2.70) leads to

∂G

∂t
+ v · ∇G = −

[∇ · (ρD∇Y)+ ṁ

ρ|∇Y|
]

0

|∇G| . (2.72)

The diffusive term appearing on the r.h.s of (2.72) may be split in a similar way as
in (2.32) into one term accounting curvature and another for diffusion normal to
the iso-surface

∇ · (ρD∇Y) = ρD|∇Y|∇ · n+ n · ∇(ρDn · ∇Y) (2.73)

where the definition (2.71) has been used. When (2.73) is introduced into (2.72)
it can be written as

∂G

∂t
+ v · ∇G = −D κ|∇G| + (Vn + Vr )|∇G| . (2.74)

Hereκ may be expressed by (2.32) in terms of theG-field. The quantitiesVn and
Vr are contributions due to normal diffusion and reaction to the displacement speed
of the thin reaction zone and are defined as

Vn = −n · ∇(ρDn · ∇Y)

ρ|∇Y| , (2.75)

Vr = − ṁ

ρ|∇Y| . (2.76)

In a steady, unstretched planar laminar flame the sum ofVn andVr would be equal to
the laminar burning velocitys0

L . Here, however, the unsteady mixing and diffusion
of all chemical species and the temperature in the regions ahead of the thin reaction
zone will influence the local displacement speed. Therefore the sum ofVn andVr

cannot be prescribed, but is a fluctuating quantity, that couples theG-equation to
the solution of the balance equations of the reactive scalars. There is reason to
expect, however, that the sum ofVn andVr is of the same order of magnitude as
the laminar burning velocitys0

L .
Furthermore, in the thin reaction zones regime the last term in (2.74) is small

compared to the other terms. This can be shown by normalizing the independent
quantities and the curvature in this equation with respect to Kolmogorov length
and time scales

t̂ = t/tη , x̂α = xα/η , α = 1, 2, 3

κ̂ = ηκ , ∇̂ = η∇ .
(2.77)

Usingη2/tη = ν one obtains

∂G

∂ t̂
+ v · ∇̂G

vη
= −D

ν
κ̂|∇̂G| + Vn + Vr

vη
|∇̂G| . (2.78)
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Since Kolmogorov eddies can perturb the flow field that acts on theG-field, all
derivatives, the curvature and the velocity ratiov0/vη are typically of order unity.
It was assumed thatD/ν is also of order unity. However, in the thin reaction zones
regime the Karlovitz number is larger than unity and thereby, due to (1.45)

vη > s0
L ∼ Vn + Vr (2.79)

indicating that the last term in (2.78) will be small.
In order to be able to analyze the properties of (2.74), we replace the sum of

Vn andVr by their statistical mean value, which we denote bys∗L and consider in
the following as a model equation for the thin reaction zone regime

∂G

∂t
+ v · ∇G = −Dκ|∇G| + s∗L |∇G| (2.80)

which will be called the diffusiveG-equation. This equation is very similar to
(2.33), which was derived for the corrugated flamelet regime. An important dif-
ference, apart from the difference betweensL ands∗L , is the difference betweenDL
and D and the disappearance of the strain term in (2.80) as compared to (2.33).
The Markstein diffusivityDL, although of the same order of magnitude asD,
may even be negative if the Lewis number is sufficiently smaller than unity as can
be seen from (2.31). In an analytical study of the response of one-dimensional
constant density flames to time-dependent stretch and curvature, Joulin [2.20] has
shown that for high frequency perturbations the effect of strain disappears en-
tirely and Lewis-number effects on the Markstein length also disappear such that
DL approachesD. This analysis was based on one-step large activation energy
asymptotics with the assumption of a single thin reaction zone. It suggests that
(2.80) could also have been derived from (2.33) for the limit of high frequency
perturbations of the chemically inert structure surrounding the thin reaction zone.
This strongly supports the physical picture derived for the thin reaction zones
regime.

Based on (2.80) equations for the meanG and the varianceG′2 are readily
derived. Modelling of these equations is very similar to that performed for the
kinematicG-equation and (2.57) and (2.58) remain unchanged. The only funda-
mental difference concerns the scalar dissipation which now is based onD rather
than DL. The scalar dissipation is then the dominating destruction term in the
variance equation, while the kinematic restoration based ons∗L is small. This is
shown rigorously in [2.16]. The derivation is again based on the scalar spectrum
function for two-point correlations ofG. But as it is shown in Fig. 1.7, the Gibson
scale is smaller than the Obukhov-Corrsin scale

`C =
(

D3

ε̄

)1/4

. (2.81)

Therefore the range with slope -2 in Fig. 2.8 disappears and`C is the relevant
cut-off scale. The closure relation for the scalar dissipation is similar to that in
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(2.43) for the kinematic restoration

χ = 2Dσ ′2 = cχ
ε̄

k̄
G′2 (2.82)

with cχ = 1.62. Now the kinematic restoration is small, but the sum of both
destruction terms may also be approximated by (2.47).

An important consequence of (2.82) is, however, that the scaling ofσ̄ , that
is presented by (2.59) for the corrugated flamelets regime is different for the dis-
tributed reaction zones regime. Dimensional analysis now leads to

σ̄ 2 ∼ ε̄

k̄

G′2

D
. (2.83)

This also has important consequences for the scaling of the turbulent burning
velocity. The result for the variance given by (2.63) remains unchanged since the
modelled variance equation is the same for both regimes. However, when (2.63) is
introduced into (2.83) and (2.60) and (2.61) are combined to expressε̄/k̄ in terms
of Dt/`

2 one obtains

σ̄ = b4(Dt/D)1/2
[

1− exp(−2t/τ)+ G′0
2

3.16`2
exp(−2t/τ)

]1/4

. (2.84)

Using (2.35) this reduces for large times to the steady state limit

sT

s0
L

= b4

√
Dt

D
(2.85)

which, with b4 = 1, is equal to Damk¨ohler’s expression (2.9) for small scale
turbulence.

This surprising result which is based on simple scaling arguments needs a
further physical explication. As noted below (2.9), Damk¨ohler had implicitly
assumed that the chemical time scale is not affected by turbulence in the small
scale turbulence limit. This assumption was difficult to accept if one follows
the arguments on the modelling difficulties of the turbulent mean reaction rate
in lecture 1. However, the physical picture in the thin reaction zones regime is
based on turbulent eddies that enter into the chemically inert preheat zone, not
into the reaction zone. Therefore they affect the chemical reaction only indirectly
by controlling the diffusion processes into that zone. Damk¨ohler’s assumption
therefore defines the upper limit for the thin reaction zone regime which was given
by η = `δ in the combustion diagram in Fig. 1.3.
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2.7 A Model Equation for the Flame Surface Area
Ratio for Both Regimes

In this paragraph we want to derive a model equation for the quantityσ̄ = |∇G|
which, according to (2.35) may be interpreted as the flame surface ratio. By
applying the∇-operator to both sides of (2.80) and multiplying it with−n =
∇G/|∇G| one obtains an equation forσ

∂σ

∂t
+ v · ∇σ = −n · ∇v · nσ + s0

L(κσ +∇2G)− D[∇ · (κ∇G)+ κ2σ ] . (2.86)

Here the terms proportional toD are a result of the transformation

n · ∇(κσ ) = −∇G · ∇κ − κ∇2G− κ2σ = −∇ · (κ∇G)− κ2σ . (2.87)

As in the variance equation the term containing the laminar burning velocity is
important in the corrugated flamelet regime only. Therefore we have replaceds∗L
by s0

L . The first term on the r.h.s of (2.86) accounts for straining by the flow field.
It will lead to a production of flame surface ratio. The second term is proportional
to s0

L and will have the same effect as the kinematic restoration has on the variance
G′2. The last term is proportional toD and its effect will be similar to that of
scalar dissipation onG′2. Since closure relations for these terms cannot be derived
in a systematic way as for those in the variance equation we place ourselves in
the context of two-equation modelling based on the constant density analogue to
equations (1.15) and (1.16) for the turbulent kinetic energyk̄ and the dissipation̄ε.

With the scaling relations betweenσ̄ andε̄/k̄ obtained in both regimes, namely
(2.59) and (2.83), we are now able to derive model equations forσ̄ in the two
regimes. We will start with the corrugated flamelet regime and will use (2.59) to
derive a differential relation between̄σ andε̄, k̄ andG′2 as

dσ̄

σ̄
= dε̄

ε̄
− dk̄

k̄
+ 1

2

dG′2

G′2
. (2.88)

Combining the constant density analogues of (1.15) and (1.16) with (2.58) one
obtains an equation for̄σ of the form

∂σ̄
∂t + v · ∇σ̄ = −Dtk̄(σ̄ )|∇σ̄ | + (cε1− 1)

(−v′αv′β)
k̄

∂vα

∂xβ
σ̄

+ −v′G′ · ∇G

G′2
− (cε2− 1+ cs

2
)
ε̄

k̄
σ̄ + (additional terms) .

(2.89)
In this equation the terms on the l.h.s. represent the unsteady change and convection
of σ̄ by the mean velocity field. The first term on the r.h.s. describes the turbulent
transport ofσ̄ , which in the spirit of (2.48) and the discussion thereafter was
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modelled as a curvature term. Here,k̄(σ̄ ) is defined as in (2.32) but with̄σ instead
of G. The second term represents the production of the flame surface area ratio by
mean velocity gradients and the third term by local turbulent fluctuations. The last
term accounts for the destruction of the flame surface ratio by kinematic restoration.
The additional terms originate from the curvature term in (2.58) and the turbulent
transport terms in (1.15) and (1.16) and contain the squares of derivatives ofε̄, k̄
andG′2. It is common practice in turbulence modelling to interpret the squares
of derivatives of mean quantities as dissipation terms and to subsume them within
the last term in (2.89). This term may be cast into a form proportional tos0

L by
replacingε̄/k̄ using (2.59) as

ε̄

k̄
∼ s0

L

σ̄

(G′2)1/2
. (2.90)

In the corrugated flamelet regime the model equation for the total flame surface
density then reads

∂σ̄
∂t + v · ∇σ̄ = −Dtk̄(σ̄ )|∇σ̄ | + c0

(−v′αv′β)
k̄

∂vα

∂xβ
σ̄

+ c1
Dt(∇G)2

G′2
σ̄ − c2

s0
L σ̄

2

(G′2)1/2

(2.91)

wherec0 = cε1− 1= 0.44. In the turbulent production term we have used (2.51).
A similar approach can be taken in the thin reaction zones regime where now

the scalar dissipationχ is the main term responsible for reducing fluctuations of
the reaction zone. Using (2.83) this leads to the differential form

2
dσ̄

σ̄
= dε̄

ε̄
− dk̄

k̄
+ dG′2

G′2
(2.92)

rather than (2.88). We then obtain a similar equation as (2.89), except with a factor
2 in front of the turbulent production term andcs replacingcs/2 in the last term.
In the last term, however, we now use (2.83) to replaceε̄/k̄ as

ε̄

k̄
∼ Dσ̄ 2

G′2
. (2.93)

Therefore, in the thin reaction zones regime an equation similar to (2.91) can be
derived, namely

∂σ̄
∂t + v · ∇σ̄ = −Dtk̄(σ̄ )|∇σ̄ | + c0

(−v′αv′β)
k̄

∂vα

∂xβ
σ̄

+ 2
Dt(∇G)2

G′2
σ̄ − c3

Dσ̄ 3

G′2
.

(2.94)
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The last term in (2.94) being proportional toσ̄ 3 differs from (2.91) where the last
term was proportional tōσ 2. This shows a fundamental difference between the
two regimes.

At this point we may take guidance from (2.86) which, after averaging, contains
source terms proportional tos0

L and toD. Therefore the last terms in (2.91) and
(2.94) are assumed to be additive, the former accounting for flame surface area
ratio destruction in the corrugated flamelet regime and the latter in the thin reaction
zones regime. A model equation forσ̄ that covers both regimes would therefore
read

∂σ̄
∂t + v · ∇σ̄ = −Dtk̄(σ̄ )|∇σ̄ | + c0

(−v′αv′β)
k̄

∂uα
∂xβ

σ̄ + c1
Dt(∇G)2

G′2
σ̄

− c2
s0

L σ̄
2

(G′2)1/2
− c3

Dσ̄ 3

G′2
.

(2.95)
The last three terms in this equation represent the turbulent production, the kine-
matic restoration and the scalar dissipation of the flame surface area ratio, respec-
tively, and correspond to the three terms on the r.h.s of (2.86). A constantc1 has
been introduced for a model of the production term that would be valid in both
regimes.

We now want to fix the constantsc1, c2 andc3 in Eq. 2.95 at least tentatively.
Existing collections and burning velocity data [2.21], [2.3] provide some guidance,
but it must be recognized that in many experiments quantitative information about
length scales is missing. Also, in interpreting many experimental data the burning
velocity was assumed to have reached its steady state while it was still developing.
The effect of mean velocity gradients on the development of the total flame surface
density has hardly ever been taken into account.

For simplicity we will consider the case of isotropic fully developed turbu-
lence and a fully developed turbulent flame in the limit of large timest/τ . This
corresponds to the limit of turbulent production of flame surface area ratio equals
kinematic restoration and scalar dissipation in (2.95) as

c1
Dt

`2
F,t

σ̄ − c2
s0

L

`F,t
σ̄ 2− c3

D

`2
F,t

σ̄ 3 = 0 . (2.96)

Here the variance has been replaced by the turbulent flame brush thickness using
(2.63) and|∇G| has been set equal to unity as before. In the corrugated flamelet
regime the last term in (2.96) may be neglected. The turbulent diffusivity is
expressed by (2.60) as a function ofv′ and`. Then it follows from (2.64) for
t/τ →∞ that`F,t = b2` and therefore

c2 b2 s0
L σ̄ = 0.78c1v

′ . (2.97)

Experimental data for fully developed flames suggest that the turbulent burning
velocity is approximatelysT = 2.0v′ in the large scale turbulence limit [2.21]. It
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follows thatσ̄ = 2.0v′/s0
L and therefore

c2 b2 = 0.39c1 . (2.98)

Similarly, for the thin reaction zones regime the second term in (2.96) may be
neglected. We use (2.9) which Damk¨ohler believed to be exact to obtain

c3 = c1 . (2.99)

In order to define the laminar flame thickness unambiguously in the present context
we set

D = s0
L`F . (2.100)

Then the limit where production equals kinematic restoration and scalar dissipation
leads to a quadratic equation

σ̄ 2+ 0.39
`

`F
σ̄ − 0.78

v′`
s0

L`F
= 0 (2.101)

with the solution

σ̄ = −0.39

2

`

`F
+
√(

0.39

2

`

`F

)2

+ 0.78
v′`

s0
L`F

. (2.102)

This equation satisfies the limits̀/`F → ∞ corresponding tōσ = 1.5v′/s0
L for

the corrugated flamelet regime and`/`F → 0 corresponding toσ = (Dt/D)1/2

for the thin reaction zones regime. Since the equation for the flame surface area
ratio was derived for the limit of large turbulent Reynolds numbers (2.102) does
not cover the laminar limit̄σ = 1 for v′ → 0, ` → 0. In order to obtain an
expression similar to (2.11), it is proposed to replace (2.56) by

sT = s0
L + σ̄

(
1− b3

L
`

v′

s0
L

)
. (2.103)

In Fig. 2.11 the ratio of the turbulent to the laminar burning velocity has been
plotted using (2.103) forL = 0 and for constant length scale ratios ranging from
1 to 100. A constant length scale ratio is typical for experiments at constant
pressure with a fixed geometry. Fig. 2.11 then shows the “bending” behaviour of
the turbulent burning velocity asv′/s0

L increases. It corresponds to the deviation
from the straight linesT = s0

L + 2.0v′ and leads to smaller values ofsT/s0
L for

small length scale ratios.
There remains the problem of assigning a value to the constantc1. Since after
averaging the mean strain term in (2.86) is identical to that in (2.37) one may use
the closure (2.52) derived by direct numerical simulations. This leads with (2.60)
to

c1 = 1.3b2
2/0.547= 5.261 . (2.104)
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Figure2.11: Ratio of theturbulent to the laminar burning velocity as afunction of
v′/s0

L for different length scale ratios.

For strong shear flowsonemay now also assumeproduction equalsdissipation in
theturbulent kinetic energy equation (1.15). Using (2.61) theproduction term due
to velocity gradients may then beexpressed as

c0
ε̄

k̄
σ̄ = 0.109

v′

`
σ̄ψ (2.105)

showing that production by mean gradients is of minor importance compared to
production by strain.

2.8 Derivation of an Equation for theMean Progress
Variable

Numerical solutions of the G-equation present certain difficulties. The location
defined by G(x, t) = G0 is the location of the mean flame front. SinceG is
interpreted as adistance function, initial conditions should satisfy theequation

|∇G| = 1 (2.106)
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for G 6= G0. For instance, if flame propagation starting from a spherical spark of
radiusR0 is to be calculated, initialG iso-lines would correspond to spherical shells
around the spark withG − G0 = R0 − r wherer is the radial distance from the
center of the spark. As the calculation proceeds, it may be necessary to re-initialize
theG-field outsideG = G0 such that it satisfies (2.106). A numerical procedure
for doing this is given in [2.9] where it is proposed to solve the time-dependent
equation for re-initialization

∂g

∂t
= sign(G(x, t)− G0)(1− |∇g|) (2.107)

starting fromg(x, t = t0) = G(x, t) until the stationary final solutiong∞(x) is
reached. Then the solutionG(x, t) is set equal tog∞(x) for G 6= G0 such that it
satisfies (2.106) while it remains unchanged atG = G0. This numerical process is
time-consuming. Therefore it would be useful to find an alternative to determine
the location of the mean flame front.

Classical models of premixed turbulent combustion are based on the mean
progress variablēc rather than the mean distance functionG. Starting from (2.29)
an equation for the mean progress variable can be derived using the same closure
assumption that led to (2.57)

∂ c̄

∂t
+ v · ∇c̄ = −(DL + Dt)k̄(c̄)|∇c̄| + sT |∇c̄| . (2.108)

An iso-surface of, say,̄c(x, t) = 0.5 then would represent the location of the mean
flame frontx = xF . This equation, however, bears no advantage over (2.57).
In fact, numerical diffusion will decrease the gradient|∇c̄| in the last term of
(2.108) which in turn will decrease the convective term. This will quickly lead to
a spreading of the region wherec̄ is between 0 and 1 which is inconsistent with
the physical interpretation of̄c(x) as the probability of finding burnt gas at the
locationx. Therefore, if an equation for̄c is preferred for numerical calculations,
the particular character of the Eikonal term in (2.108) must be examined. A more
fundamental derivation of the equation for the progress variable starts from the
transport equation for the pdfP(G, x) [2.22]. Following [2.22] one may derive
from (2.33) an equation similar to (1.24) by interpreting the eikonal terms0

Lσ and
the strain term as source terms and the curvature term as a transport term. The
resulting pdf transport equation will then read

∂P
∂t + v · ∇P + s0

L
∂
∂G {< |∇G| >G P} + L ∂

∂G {< n · ∇v · nσ >G P}
+ (DL + Dt)k̄(P)|∇P| = 0 .

(2.109)
Here, in the spirit of (2.48) and (2.49) we have combined the turbulent transport
term and the curvature term into a mean curvature term. The quantities< |∇G| >G

and< n · ∇v · nσ >G are conditional ensemble averages. An equation forc̄ may
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now be derived by multiplying (2.109) byc and integrating fromG = −∞ to
G = ∞. Here it should be taken into account thatc is a random variable that does
not depend ont andx in (2.109). Then, since

c̄(x) =
∫ +∞
−∞

c(G)P(G, x)dG (2.110)

one obtains

∂ c̄

∂t
+ v · ∇c̄ = − (DL + Dt)k̄(c̄)|∇c̄|

+ s0
L

∫ +∞
−∞

δ(G− G0) < |∇G| >G PdG

+ L
∫ +∞
−∞

δ(G− G0) < n · ∇v · nσ >G PdG .

(2.111)

Here, (2.27) has been taken into account and partial integration was performed in
order to obtain the last two terms on the r.h.s of (2.111). The delta function in these
integrals makes them equal to the values of the integrand atG = G0. Therefore,
we obtain the following equation for the mean progress variable

∂ c̄

∂t
+ v · ∇c̄ = −(DL + Dt)k̄(c̄)|∇c̄| + sT P(G = G0, x) . (2.112)

Here the turbulent burning velocity was identified in agreement with (2.56) as

sT = s0
L < |∇G| >G=G0 +L < n · ∇v · nσ >G=G0= s0

L σ̄

(
1− b3

L
`

v′

s0
L

)
.

(2.113)
Equation (2.112) is very similar to (2.108) except for the last term which now
contains the conditional pdf atG = G0. The pdfP(G = G0, x) is a function ofx
only. This may be shown if one assumes, for instance, a Gaussian function for the
pdf of G

P(G, x) = 1√
2πG′2

exp

(
−(G− G)2

2G′2

)
(2.114)

whereG andG′2 are functions ofx. Then, ifG is interpreted as a distance function,
it may be expressed as

G(x, t)− G0 = x + F(y, z, t) (2.115)

wherex measures the distance normal to the mean flame position atx = 0 and
y andz are coordinates in tangential direction. ThereforeF(y, z, t) describes the
fluctuation around the mean flame position. Taking the mean of (2.115) leads to

G− G0 = x (2.116)
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Figure 2.12: Probability density function of normal flame front fluctuations.

sinceF = 0. Then forG = G0

G− G = F = −x . (2.117)

Inserting this into (2.114) leads to

P(G = G0, x) = P(x) = 1√
2πG′2

exp

(
− x2

2G′2

)
. (2.118)

The varianceG′2 does not vary in normal directionx = n · (x − xF) within the
flame brush but it may vary in tangential direction.

Closure of (2.112) therefore uses the preassumed pdfP(x) which then is a
function of the coordinate normal to the flame brushx and the varianceG′2.

In Fig. 2.12 the Gaussian pdf is compared with experimental data from flame
front fluctuations obtained by Mie-scattering in a transparent spark ignition engine.
Details may be found in [2.23] and [2.24]. It is seen that the Gaussian pdf fits the
data quite well.

It should be noted that (2.112) has a non-local character since the variance must
be evaluated at the location of the mean flame frontx = xF . Therefore, expansion
effects that would modify the flow field ahead and behind the flame front will have
no influence on the flame propagation mechanism.
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Lecture 3

Non-Premixed Turbulent
Combustion

A process where the mixing of fuel and oxidizer occurs simultaneously with com-
bustion is called non-premixed combustion. Typical examples are fires and com-
bustion in furnaces and in Diesel engines. As it was noted in lecture 1, combustion
is nearly always fast compared to molecular mixing and therefore takes place in
layers that are much thinner than the typical scales of turbulence. Under these
conditions the flamelet concept for non-premixed combustion is applicable. This
concept has been presented in previous reviews [3.1], [3.2]. For the case of a one-
step reaction it may be viewed as a non-equilibrium derivation from the classical
Burke-Schumann limit. However, the concept is much more general and may be
used with detailed chemistry and for cases far from equilibrium. We will base this
lecture essentially on the flamelet approach.

A very important quantity for the theory of non-premixed combustion is the
mixture fractionZ which plays a similar role as the distance functionG does in
premixed combustion. Therefore, before going into the description of current mod-
elling approaches we will present the mixture fraction as an independent coordinate
of the Burke-Schumann solution.

3.1 The Mixture Fraction Coordinate and
the Burke-Schumann Solution

The definition of the mixture fraction is best derived for a homogeneous system
in the absence of diffusion. Then, by writing the global reaction equation for
complete combustion of a hydrocarbon fuel, for instance, as

ν ′F F+ ν ′O2
O2→ ν ′′CO2

CO2+ ν ′′H2O H2O
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one defines the stoichiometric coefficientsν ′F andν ′O2
. The reaction equation relates

to each other the changes of mass fraction of oxygendYO2 and fueldYF by

dYO2

ν ′O2
WO2

= dYF

ν ′FWF
(3.1)

whereWi is the molecular weight. For a homogeneous system this equation may
be integrated to

νYF− YO2 = νYF,u − YO2,u , (3.2)

whereν = ν ′O2
WO2/ν

′
FWF is the stoichiometric oxidizer-to-fuel mass ratio and

the subscriptu denotes the initial conditions in the unburnt mixture. The mass
fractionsYF andYO2 correspond to any state of combustion between the unburnt
and the burnt state. If the diffusivities of fuel and oxidizer are equal, (3.2) can also
be used for spatially non-homogeneous systems such as diffusion flames.

In a two-feed system, subscript 1 denotes the fuel stream with mass fluxṁ1 and
subscript 2 denotes the oxidizer stream with mass fluxṁ2 into the system. Then
the mixture fraction is defined as the local mass fraction of all elements within the
mixture originating from the fuel feed

Z = ṁ1

ṁ1+ ṁ2
. (3.3)

Both fuel and oxidizer streams may contain inerts such as nitrogen. The local mass
fractionYF,u of the fuel is the same fraction as in the original fuel stream, so

YF,u = YF,1Z , (3.4)

whereYF,1 denotes the mass fraction of fuel in the fuel stream. Similarly, since
1− Z represents the mass fraction of the oxidizer stream locally in the unburnt
mixture, one obtains for the local mass fraction of oxygen

YO2,u = YO2,2(1− Z) , (3.5)

whereYO2,2 represents the mass fraction of oxygen in the oxidizer stream (YO2,2 =
0.232 for air). Introducing (3.4) and (3.5) into (3.2) one obtains for the mixture
fraction at any state of combustion

Z = νYF− YO2 + YO2,2

νYF,1+ YO2,2
. (3.6)

Since a stoichiometric mixture is defined byνYF = YO2 the stoichiometric mixture
fraction is

Zst =
[
1+ νYF, 1

YO2,2

]−1

. (3.7)

For pure fuels(YF,1 = 1) mixed with air the stoichiometric mixture fraction is,
for instance 0.0284 for H2, 0.055 for CH4, 0.0635 for C2H4, 0.0601 for C3H8 and
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0.072 for C2H2. This indicates that typically 20 times the mass of air, compared
to the fuel, is needed to obtain a stoichiometric mixture.

The mixture fraction is a quantity that is conserved during combustion. It can
be related to the fuel-air equivalence ratio which is defined as the fuel-to-air ratio
in the unburnt mixture normalized by that of a stoichiometric mixture

φ = YF,u/YO2,u

(YF,u/YO2,u)st
= ν YF,u

YO2,u
. (3.8)

Introducing (3.4) and (3.5) into (3.8) leads to

φ = Z

1− Z

(1− Zst)

Zst
. (3.9)

In the limit of infinitely fast chemistry the reaction zone is an infinitely thin layer
at Z = Zst. Outside of this layer the temperature is a piecewise linear function of
Z. When the profiles of temperature and mass fractions are plotted as a function
of mixture fraction, one obtains the Burke-Schumann solution.

T(Z) = Tu(Z)+ (−∆H)YF,1

cpν
′
FWF

Z , Z ≤ Zst

T(Z) = Tu(Z)+ (−∆H)YO,2

cpν
′
O2

WO2

(1− Z) , Z ≥ Zst

Tu(Z) = T2+ Z(T1− T2) .

(3.10)

The quantity(−∆H) may be identified as the heat of reaction, since the reaction
enthalpy∆H is negative for exothermic reactions. Both,(−∆H) and the specific
heatcp have been assumed to be constant. The maximum temperature atZ = Zst

is obtained from (3.10) as

Tst = Tu(Zst)+ (−∆H)YF,1

cpν
′
FWF

Zst

= Tu(Zst)+ (−∆H)YO,2

cpν
′
O2

WO2

(1− Zst)

(3.11)

The mass fractions of the reactants are also piecewise linear functions ofZ

YO2 = YO2,2

(
1− Z

Zst

)
, Z ≤ Zst

YF = YF,1
Z − Zst

1− Zst
, Z ≥ Zst .

(3.12)

The mass fractions of product species may be written similarly. The Burke-
Schumann solution is shown in Fig. 3.1.
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Figure 3.1: The Burke-Schumann solution as a function of mixture fraction.

3.2 Flamelet Structure of a Diffusion Flame

Different from previous formulations we will interpretZ similar toG as a variable
that fixes the location of the thin reaction zone, namely at

Z(x, t) = Zst . (3.13)

We do not explicitly relateZ to any combinations of mass fractions, but define it
as the solution of a convective diffusive equation

ρ
∂Z

∂t
+ ρv · ∇Z = ∇ · (ρD∇Z) (3.14)

which has no chemical source term. The diffusion coefficientD in this equation
is in principle arbitrary, but it is convenient to set it equal to the thermal diffusivity

D = λ

ρcp
= DT . (3.15)

Hereλ is the thermal conductivity. Independent of (3.14) the reactive-diffusive
structure of the flamelet is determined by the equations for the

mass fractionsYi

ρ
∂Yi

∂t
+ ρv · ∇Yi = 1

Lei
∇ · (ρDT∇Yi )+ ṁi (i = 1, 2, . . . ,n) (3.16)
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Figure 3.2: Surface of stoichiometric mixture in a turbulent jet.

and the temperature

ρcp
∂T

∂t
+ ρcpv · ∇T = ∇ · (ρcpDT∇T)−

n∑
i=1

hi ṁi + qR+ ∂p

∂t
. (3.17)

In these equationṡmi denotes the chemical source term of speciesi and
∑n

i=1 hi ṁi

the heat release rate. We have assumed the Lewis numbers for all species

Lei = λ

ρcpDi
= DT

Di
(i = 1, 2, . . . ,n) (3.18)

to be constant. In the temperature equation the low Mach number limit leading
to zero spatial pressure gradients has been employed, but the temporal pressure
change∂p/∂t has been retained. The heat capacitycp is assumed to be constant
for simplicity. Finally, qR denotes the heat loss due to radiation which in many
cases can be calculated by using the thin gas approximation.

We assume the mixture fractionZ to be given in the flow field as a function
of space and time by solution of (3.14). Then the surface of the stoichiometric
mixture can be determined from (3.13). This is shown schematically in Fig. 3.2
for a turbulent jet flame. Fuel and oxidizer interdiffuse at the lip of the nozzle.
The surface of stoichiometric mixture starts there and is highly convoluted by the
turbulent flow.

In turbulent combustion we are not so much interested in the instantaneous
flame location, but in mean quantities. Modelling of (3.14) in a similar way as in
(1.17) and (1.18) leads to the equation for the Favre mean mixture fraction

ρ̄
∂ Z̃

∂t
+ ρ̄v · ∇ Z̃ = ∇ · (ρ̄Dt∇ Z̃) . (3.19)

Since the molecular diffusivityD in (3.14) is typically much smaller than the
turbulent diffusivityDt , it has been neglected in (3.19). Therefore the arbitrariness
of the choice ofD has no influence on the mean mixture fraction and the mean
flame contour given bỹZ(x, t) = Zst.
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In addition to the mean mixture fraction we need an equation for the Favre
variancẽZ′′2 which is modelled by standard procedures as

ρ̄
∂ Z̃′′2

∂t
+ ρ̄v · ∇ Z̃′′2 = ∇ ·

(
ρ̄Dt∇ Z̃′′2

)
+ 2ρ̄Dt(∇ Z̃)2− ρ̄χ̃ . (3.20)

Hereχ̃ is the mean scalar dissipation rate, which is defined as

χ̃ = 2 D ˜(∇Z′′)2 (3.21)

and will be modelled similar to (2.83) as

χ̃ = cχ
ε̃

k̃
Z̃′′2 (3.22)

wherecχ = 2.0.
Let us locally introduce an orthogonal coordinate systemx1, x2, x3, t attached

to the surface of stoichiometric mixture as shown in Fig. 3.2, wherex1 points
normal to the surfaceZ(xα, t) = Zst and x2 and x3 lie within the surface. We
replace the coordinatex1 by the mixture fractionZ andx2, x3 andt by Z2 = x2,
Z3 = x3 andτ = t . By definition the new coordinateZ is locally normal to the
surface of stoichiometric mixture. With the transformation rules

∂
∂t =

∂
∂τ
+ ∂Z
∂t

∂
∂Z ,

∂
∂xk

= ∂
∂Zk
+ ∂Z
∂xk

∂
∂Z , (k = 2, 3)

∂
∂x1

= ∂Z
∂x1

∂
∂Z

(3.23)

we obtain the temperature equation in the form

ρcp

(
∂T

∂τ
+ v2

∂T

∂Z2
+ v3

∂T

∂Z3

)
−

3∑
k=2

∂(ρcpDT)

∂xk

∂T

∂Zk

−ρcpDT

[
(∇Z)2

∂2T

∂Z2 + 2
3∑

k=2

∂Z

∂xk

∂2T

∂Z∂Zk
+

3∑
k=2

∂2T

∂Z2
k

]

+
{
ρ
∂Z

∂t
+ ρv · ∇Z −∇ · (ρDT∇Z)

}
cp
∂T

∂Z
= −

n∑
i=1

hi ṁi + qR+ ∂p

∂t
.

(3.24)
A similar form can be derived for the species equations. In the species equations,
however,Di appears instead ofDT . It is immediately seen that due to (3.14) the
term in braces on the l.h.s drops out in the temperature equation if one assumes
D = DT , but the corresponding term cannot be neglected in the species equations.
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If the flamelet is thin in theZ direction, an order-of-magnitude analysis shows
that the second derivative with respect toZ is the dominating term on the left-hand
side of (3.24). This term must balance the terms on the right-hand side. All other
terms containing spatial derivatives inZ2 and Z3 directions can be neglected to
leading order. This is equivalent to the assumption that the temperature derivatives
normal to the flame surface are much larger than those in tangential direction. The
term containing the time derivative is important if the flamelet undergoes rapid
changes, such as ignition or extinction events. It is also necessary to satisfy initial
conditions if those are not equal to the steady state solution. This will be discussed
below.

Neglecting the terms containing derivatives inZ2 andZ3 direction, one obtains
the one-dimensional time-dependent temperature equation

ρcp
∂T

∂t
− ρcp

χst

2

∂2T

∂Z2 = −
n∑

i=1

hi ṁi + qR+ ∂p

∂t
. (3.25)

This equation is valid in the vicinity of stoichiometric mixture. We have introduced
the quantity

χst = 2DT

(
∂Z

∂xα

)2

st

(3.26)

as the instantaneous scalar dissipation rate at stoichiometric conditions. For turbu-
lent non-premixed combustion it must be replaced by a conditional average value
χ̃st. It has the dimension 1/s and may be interpreted as the inverse of a characteristic
diffusion time. It may depend ont and Z and acts as a prescribed parameter in
(3.25), representing the flow and the mixture field. As a result of the transforma-
tion, it implicitly incorporates the influence of convection and diffusion normal
to the surface of stoichiometric mixture. In the limitχ → 0, the temperature
equation for the homogeneous reactor is obtained.

The corresponding equations for the species are similarly

ρ
∂Yi

∂t
− ρ

Lei

χst

2

∂2Yi

∂Z2 +
{
ρ
∂Z

∂t
+ ρv · ∇Z −∇ · (ρDi∇Z)

}
∂Yi

∂Z
= ṁi . (3.27)

The term in braces may be expressed in a more convenient form. Since, by ex-
changing the dependent variables, a second derivatived2y/dx2 may be transformed
to (dz2/dy)/2 with z= dy/dx, we obtain with (3.14) for that term

{(
1− 1

Lei

)
∇(ρDT∇Z)

}
=

(
1− 1

Lei

){
∇Z · ∂

∂Z
(ρDT∇Z)

}
= 1

4

(
1− 1

Lei

)
∂ρχst

∂Z

(3.28)
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whereρDT has been assumed to be constant for simplicity. For the case of non-
unity Lewis numbers the flamelet equations for the chemical species can therefore
be written

ρ
∂Yi

∂t
− ρ

Lei

χst

2

∂2Yi

∂Z2 +
1

4

(
1− 1

Lei

)
∂ρχst

∂Z

∂Yi

∂Z
= ṁi . (3.29)

The last term in this expression accounts for differential diffusion effects. Here
the gradient of the scalar dissipation rate acts as a velocity in mixture fraction
space. However, it should be noted that the assumption of constant Lewis numbers
different from unity conflicts with the requirement that the sum of the diffusion
fluxes should be zero. Therefore, if the binary diffusion approximation is used,
correction terms must be considered that lead to much more complicated expres-
sions than (3.29). Species equations containing those expressions are derived in
[3.3]. These equations should be used to correctly account for differential dif-
fusion effects when flamelet profiles are calculated with the mixture fraction as
independent variable. A procedure to avoid this difficulty is to calculate species
and temperature profiles in physical space, for a counterflow flame for example,
and solve (3.14) simultaneously [3.4]. Then the scalar profiles may be plotted as
a function ofZ.

In [3.5] the counterflow diffusion flame in the stagnation region of a porous
cylinder has been calculated using the four-step reduced mechanism

CH4+ 2H+ H2O = CO+ 4H2

CO+ H2O = CO2+ H2

H+ H+M = H2+M
O2+ 3H2 = 2H+ 2H2O .

This flow configuration, used by Tsuji and Yamaoka [3.6] has the advantage that
a similarity transformation can be formulated in order to derive a system of one-
dimensional equations.

Temperature and fuel and oxygen mass fractions profiles from numerical sim-
ulation are plotted in Figs. 3.3 and 3.4 as a function of mixture fraction for the
strain rates ofa = 100/s anda = 400/s wherea is the velocity gradient. Here
the mixture fraction was calculated from the chemical species using the definition
[3.7]

Z =
2 ZC/MC+ 1

2ZH/MH + (ZO,O− ZO)/MO

2 ZC,F/MC+ 1
2ZH,F/MH + ZO,O/MO

(3.30)

whereZm is the mass fraction of the elementm, Zm,F is the mass fraction of the
elementm in the fuel stream, andZm,O is the mass fraction of the elementm in the
oxidant stream. The higher value of the strain rate in Figs. 3.3 and 3.4 corresponds
to a condition close to extinction. It is seen that the temperature in the reaction zone
decreases and the oxygen leakage through the reaction zone increases as extinction
is approached.
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Figure 3.3: Temperature profiles of methane-air diffusion flames for strain rates
of a = 100/s anda = 400/s as a function of mixture fraction.

For the counter-flow geometry, the scalar dissipation rate may be approxi-
mated as a function of mixture fraction diffusivity, assuming constant density and
diffusivity, by

χ = a

π
exp{−2[erfc−1(2Z)]2} ≈ 4aZ2[erfc−1(2Z)]2 (3.31)

where erfc−1 is the inverse of the complementary error function. For example,
(erfc−1(2Z)) is 1.13 for methane-air flames atZ = 0.055. The second expression
in (3.31) is derived using an approximation of the error function for small values
of Z. It shows thatχ is proportional toZ2 for small Z but it becomes inaccurate
even atZ as small as 0.05. For a non-constant density profile, which is typical for
diffusion flames, (3.31) was improved to [3.8]

χ(Z) = a∞
4π

3
(√
ρ∞/ρ + 1

)2
2
√
ρ∞/ρ + 1

exp
{
−2

[
erfc−1(2Z)

]2}
. (3.32)

Extinction of a CH4-air counter-flow flame occurs approximately at a strain rate of
a = 550/s. With (3.31) this corresponds to a scalar dissipation rate at quenching
conditions ofχq = 13.6/s. At these values heat release by chemistry just balances
heat loss by diffusion imposed by the flow. This corresponds to the situation in
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Figure 3.4: Fuel and oxygen mass fractions for strain rates ofa = 100/s and
a = 400/s as a function of mixture fraction.

premixed flames, where the burning velocity is such that heat release in the reaction
zone just balances heat loss by diffusion towards the unburnt mixture.

The flamelet equations may also be used to describe ignition in a non-premixed
system. If fuel and oxidizer are initially at the unburnt temperatureTu(Z), as
shown in Fig. 3.1, but sufficiently close to the ignition temperature, heat release
by chemical reactions will lead to a thermal runaway. This auto-ignition process
occurs in Diesel engines, where the air is heated by compression to temperatures
of about 800K. During mixing the scalar dissipation rate decreases until it reaches
the ignition valueχi . For values larger thanχi , heat loss out of the reaction
zone is larger than the heat release by chemical reactions, thereby restricting the
temperature rise and preventing a thermal runaway. This corresponds to a steady
state condition.

The solution of the steadystate flamelet equations is shown schematically in
Fig. 3.5. Here the maximum temperature is plotted as a function of the inverse
of the scalar dissipation rate. The lower branch corresponds to the non-reacting
flamelet prior to ignition. As the scalar dissipation rate is decreased the ignition
point I is reached. For values smaller thanχi a rapid unsteady transition to the
upper burning branch occurs. If one starts on the burning branch and increases
the dissipation rate moving to the left, one reaches the pointQ where quenching
occurs. This diagram is called the S-shaped curve. The middle branch between
the pointI andQ is unstable and therefore has no physical significance.
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Figure 3.5: The S-shaped curve showing the maximum temperature in a diffusion
flame as a function of the inverse of the scalar dissipation rate at stoichiometric
mixture.

3.3 Diffusion Flamelets in Turbulent Combustion

The flamelet concept views a turbulent diffusion flame as an ensemble of laminar
diffusion flamelets. The main advantage of the flamelet concept is the fact that
chemical time and length scales need not be resolved ina multi-dimensional CFD
code. In addition to the continuity, momentum and energy equations, equations
describing turbulence quantities likẽk and̃ε and thereby the turbulent length and
time scales, the balance equations for the mean mixture fraction (3.19) and the
mixture fraction variance (3.20) need to be solved numerically. The flamelet
structure can be calculated as a function of prescribed parameters by solving the
one-dimensional equations (3.25) and (3.27). These solutions may be available
either in form of steady state flamelet libraries or from an instationary calculation.
The latter is used in the interactive approach [3.10] shown in Fig.3.6, where the
time-dependent parametersχ̃st(t), p̃(t), T1(t) = T̃fuel(t) andT2(t) = T̃ox(t) are fed
into the flamelet code from the CFD code. Then the flamelet solution provides all
scalars as functions of the mixture fraction at each time step. Mean values of these
scalars may then be obtained by using the presumed pdf approach, whereP̃(Z) is
calculated from (1.26) for the given values ofZ̃(x, t) and Z̃′′2(x, t) and equations
like (1.28) are used to calculate the mean temperature and species mass fractions.

In previous presentations [3.1] the enthalpyh has been related to the mixture
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fraction by the coupling relation

h = h2+ Z(h1− h2) . (3.33)

For a general formulation, however, it is preferable to include the enthalpy as an
additional variable modelled by the equation

ρ
∂ h̃

∂t
+ ρ ṽα ∂ h̃

∂xα
= ∂

∂xα

(
ρ
ν̃t

Pr

∂ h̃

∂xα

)
+ ∂ p

∂t
− qR . (3.34)

Here Pr is a turbulent Prandtl number. The terms containing the mean spatial
pressure gradient have been neglected in the limit of zero Mach number, when fast
acoustic waves are rapidly homogenizing the pressure field. The term describing
temporal mean pressure changes∂ p/∂t is important in internal combustion engines
operating under non-premixed conditions, such as the Diesel engine. Also the
mean volumetric heat loss term must be retained if radiative heat exchange has an
influence on the local enthalpy balance. This may well be the case in large furnaces
where it influences the prediction of NOx formation which is very sensitive to
temperature. Changes of the mean enthalpy may also occur due to heat loss at
the boundaries and due to evaporation of a liquid fuel in a Diesel engine. Under
these conditions the mean enthalpy can no longer be coupled to the mean mixture
fraction by a linear relation analogue to (3.33).

No equation for enthalpy fluctuations is written here. In non-premixed turbu-
lent combustion fluctuations of the enthalpy are mainly due to mixture fraction
fluctuations and are described by those.

In (3.19), (3.20) and (3.34) diffusive terms containing molecular diffusivities
have been neglected as small compared to the turbulent transport terms in the large
Reynolds number limit. Diffusive effects have only been retained in the mean
scalar dissipatioñχ which is modelled by (3.22). Effects due to non-unity Lewis
numbers on the mean mixture fraction and its variance are difficult to quantify and
will also be neglected here.

An important additional quantity that needs modelling is the conditional scalar
dissipation ratẽχst. Equations (3.31) and (3.32) show that there is a dependence
of the scalar dissipation rate on the mixture fraction. Since a CFD code will only
provide the unconditioned averagẽχ , for instance from (3.22), there is a need to
relateχ̃st to χ̃ by using the information provided by (3.31) and (3.32). We may
express (3.31) in the form

χ(Z) = χ(Zst)
f (Z)

f (Zst)
(3.35)

where f (Z) is the exponential term in (3.31). Then, as suggested by Hellstr¨om
[3.9] one obtains the average

χ̃ =
∫ 1

0
χ(Z)P̃(Z)d Z = χ(Zst)

∫ 1

0

f (Z)

f (Zst)
P̃(Z)d Z (3.36)
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Figure 3.6: Code structure of Representative Interactive Flamelet concept.

which is given by (3.22). Therefore, the scalar dissipation at stoichiometric con-
ditionsχ̃st = χ(Zst) can be expressed as

χ̃st =
cχ
ε̃

k̃
Z̃′′2∫ 1

0

f (Z)

f (Zst)
P̃(Z)d Z

. (3.37)

Since the r.h.s describes averaged quantities, this may be interpreted as the condi-
tional average valuẽχst required in the flamelet equations.

3.4 Turbulent Jet Diffusion Flames

Turbulent diffusion flames owe their name to the rate-determining mechanism that
controls the combustion in many applications: laminar and turbulent diffusion. In
technical furnaces, but also in gas turbine combustion chambers fuel and oxidizer
are injected separately. Mixing then occurs essentially by turbulent diffusion. But
only when fuel and oxidizer are mixed at the molecular scales, combustion can
take place.

In many applications fuel enters into the combustion chamber as a turbulent
jet, with or without swirl. To provide an understanding of the basic properties
of jet diffusion flames, we will consider here at first the easiest case, the round
jet flame into still air without buoyancy, for which we can obtain approximate
analytical solutions to determine the flame length of a jet diffusion flame. The
flame length is defined as the distance from the nozzle on the centerline of the
flame to where the mean mixture fraction is equal to the stoichiometric valueZst.
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The flow configuration and the flame contour of a vertical jet diffusion flame are
shown in Fig. 3.7. We consider a fuel jet issuing from a round nozzle with diameter
d and exit velocityu0 into quiescent air. The indices 0 and∞ denote conditions at
the nozzle and in the ambient air, respectively. Later on buoyancy will be included
but then we restrict the analysis to a vertical jet.

With these assumptions we obtain a two-dimensional axisymmetric problem
governed by equations for

Continuity
∂

∂x
(ρ̄ũr)+ ∂

∂r
(ρ̄ṽr ) = 0 , (3.38)

Momentum inx-direction

ρ̄ũr
∂ũ

∂x
+ ρ̄ṽr ∂ũ

∂r
= ∂

∂r

(
ρ̄ν̃t r

∂ũ

∂r

)
, (3.39)

Mean mixture fraction

ρ̄ũr
∂ Z̃

∂x
+ ρ̄ṽr ∂ Z̃

∂r
= ∂

∂r

(
ρ̄ν̃t r

Sc

∂ Z̃

∂r

)
. (3.40)

Here Sc is the turbulent Schmidt number. We have introduced the boundary layer
assumption and neglected the viscous stress as compared to the Reynolds stress
component which was modelled as

− ρ̄ũ′′v′′ = ρ̄ν̃t
∂ũ

∂r
. (3.41)

We will not consider equations fork̃ andε̃ or the mixture fraction variance but seek
an approximate solution by introducing a model for the turbulent viscosityν̃t . The
system of equations may be reduced by introducing a similarity transformation
[3.11]

η = r̄

ζ
, r̄ 2 = 2

∫ r

0

ρ̄

ρ∞
r ′ dr ′ , ζ = x + x0 , (3.42)

which contains a density transformation defining the density weighted radial coor-
dinater̄ . The new axial coordinateζ starts from the virtual origin of the jet located
at x = −x0. With the stream function defined by

ρ̄ũr = ∂ψ/∂r , ρ̄ṽr = −∂ψ/∂x (3.43)

the continuity equation (3.38) is satisfied. Introducing the non-dimensional stream
function

F(ξ, η) = ψ/ρ∞νtr ζ (3.44)

one obtains with

ũ = νtr Fη/ηζ and ρ̄ṽr = −ρ∞νtr (ζ Fζ + F − Fηη) (3.45)

71



b(x)

flame length
L

d

u0

Z̃(x;r)

Z̃(x;r) = Zst

r; ṽ
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in the similarity region of the jet

− ∂

∂η

(
F Fη
η

)
= ∂

∂η

[
Cη

∂

∂η

(
Fη
η

)]
(3.46)

− ∂

∂η
(Fω) = ∂

∂η

(
C

Sc
η
∂ω

∂η

)
. (3.47)

Hereω = Z̃/Z̃C L stands for the mixture fraction normalized by that on the cen-
terline.

The basic assumption introduced here is that the Chapman-Rubesin parameter

C = ρ̄2ν̃t r 2

ρ2∞νtr r̄ 2
(3.48)

is a constant in the entire jet. The reference eddy viscosityνtr is that of a jet with
constant density. It is fitted to experimental data as

νtr = u0d

70
. (3.49)

A similarity solution exists only for a zero free-stream velocity. Then one obtains

F = Cγ 2η2/(1+ (γ η)2/4)

ω = (1+ (γ η)2/4)−2Sc .

(3.50)

The axial velocity profile is then given by

ũ

u0
= 2Cγ 2νtr

ζ

(
1+ (γ η)

2

4

)−2

(3.51)

where the jet spreading parameter

γ 2 = 3 · 702

64

ρ0

ρ∞C2
(3.52)

is obtained from the requirement of momentum conservation. The conservation
of the mixture fraction on the centerline gives

Z̃C L = 70(1+ 2Sc)

32

ρ0

ρ∞C

d

ζ
(3.53)

such that the mixture fraction profile is

Z̃ = 2.19(1+ 2Sc) d

x + x0

ρ0

ρ∞C

(
1+ (γ η)

2

4

)−2Sc

. (3.54)

73



The flame length is obtained by settingL = x, r = 0 andZ̃ = Zst

L + x0

d
= 2.19(1+ 2Sc)

Zst

ρ0

ρ∞C
. (3.55)

Experimental data by [3.12] suggest that the flame length should scale as

L + x0

d
= 5.3

Zst

(
ρ0

ρst

)1/2

. (3.56)

This fixes the turbulent Schmidt number as Sc= 0.71 and the Chapman-Rubesin
parameter as

C = (ρ0ρst)
1/2

ρ∞
. (3.57)

This may be introduced into (3.51) and (3.52) to obtain for the centerline velocity

ũC L

u0
= 6.56d

x + x0

(
ρ0

ρst

)1/2

. (3.58)

The distance of the virtual origin fromx = 0 may be estimated by settingũC L = u0

at x = 0 in (3.58) so that

x0 = 6.56d

(
ρ0

ρst

)1/2

. (3.59)

Since at the stoichiometric mixture the molecular weight is approximately that of
nitrogen, the density ratioρ0/ρst may be estimated as

ρ0

ρst
= W0

WN2

Tst

T0
. (3.60)

With the estimateTst ≈ 2000 K for methane this takes the valueρ0/ρst ∼ 3.8. The
flame length may then be calculated withZst = 0.055 asL ∼ 200d.

3.5 Vertical Turbulent Jet Diffusion Flames with
Buoyancy Effects

For flames with buoyancy effects a closed form solution of the governing equations
cannot be derived. Here we seek an approximate solution by replacing the velocity
and mixture fraction profiles by top hat profiles (cf. [3.13])

ũ, Z̃ =
 û, Ẑ for r ≤ b(x) ;

0 for r > b(x) ,
(3.61)
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whereb(x) is the half-width of the jet (cf. Fig. 3.7). The cross-sectional averages
û(x), andẐ(x) are defined by the area averages

ρ∞û2b2 = 2
∫ ∞

0
ρ̄ũ2r dr

ρ∞ûb2 = 2
∫ ∞

0
ρ̄ũr dr

ρ∞ûẐb2 = 2
∫ ∞

0
ρ̄ũZ̃r dr .

(3.62)

If the profiles are known,̂u, Ẑ andb can be calculated from (3.62). Introducing
(3.51) and (3.54) into (3.62) leads for the non-buoyant jet flame to the solution

û

u0
= Ẑ = 2.19

d

x + x0

(
ρ0

ρst

)1/2

b(x) = 0.23x

(
ρst

ρ∞

)1/2

.

(3.63)

In order to derive an equation for the cross-sectional momentum we combine (3.38)
and (3.39) and add for the case of a vertical jet flame the buoyancy term

∂

∂x
(ρ̄ũ2r )+ ∂

∂r
(ρ̄ũṽr ) = ∂

∂r

(
ρ̄ν̃t r

∂ũ

∂r

)
+ r (ρ∞ − ρ̄)g . (3.64)

When this is integrated overr from r = 0 to r = ∞ the two terms containing
radial derivatives disappear due to the boundary conditionsṽ = 0 atr = 0, ũ = 0
at r = ∞ and∂ũ/∂r = 0 atr = 0 andr = ∞. We then obtain an integrated form
of the momentum equation

d

dx
[û2b2] = 2g

∫ r

0

(
1− ρ̄

ρ∞

)
r dr . (3.65)

Similarly, the integrated mixture fraction equation may be written as

d

dx

[
ûẐb2

]
= 0 . (3.66)

Applying the initial conditionẐ = 1 at the nozzle, wherẽZ = 1, ρ̄ = ρ0 and
ũ = u0 for r smaller thand/2 the right-hand side of (3.62)3 is ρ0u0d2/4, the
integrated form of (3.66) is

ûẐb2 = d2

4

ρ0

ρ∞
u0 . (3.67)
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This allows to define an effective exit diameter as

deff = d

(
ρ0

ρ∞

)1/2

. (3.68)

For a non-buoyant jet flame (3.65) can be integrated analytically

û2b2 = d2

4

ρ0

ρ∞
u2

0 . (3.69)

In the following we relate all velocities to the jet exit velocity and all lengths to
the effective diameter. Then, withu∗ = û/u0, b∗ = b/deff, the solution for the
velocityu∗ from (3.69) may be written in terms ofb∗ as

u∗ = 1

2b∗
. (3.70)

The next step is to evaluate the half-widthb(x). We note that the spreading of
turbulent jets is due to the entrainment of fluid from outside by large vortices
generating an entrainment velocityve. Following a particle within the jet that
moves with velocityû downstream one may, by dimensional analysis, relate the
growth of the half-width to the entrainment velocityve as

û
db

dx
∼ ve . (3.71)

The entrainment velocity is proportional to the velocity difference between the jet
and its surrounding. Settingve ∼ û − u∞,whereu∞ = 0 for the jet into still air,
we obtain the relation

û
db

dx
= β (û− u∞

)
, (3.72)

whereβ is a proportionality constant. For a non-buoyant flame it follows from
(3.63)2 thatβ = 0.23(ρst/ρ∞)1/2.

The flame length is defined by the location whereZ̃ on the centerline is equal to
Zst. The area-averaged valueẐ is smaller than the centerline value, asû is smaller
than the centerline velocity. Therefore, rather than usingZst we useẐ = Zst/α1,
whereα1 is a correction factor for the mixing over the jet area. In order to determine
the value ofα1 we consider again a jet into still air. From (3.63) we obtain

L + x0

d
= 2.19α1

1

Zst

(
ρ0

ρst

)1/2

, (3.73)

which is identical to (3.55), ifα1 is set equal to(1+ 2 Sc) = 2.42. We adopt this
value in the following.

Buoyancy becomes important in flames due to the density differences that
combustion generates. The density decreases fromρ0 at the nozzle toρst at the
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flame length. The integral on the r.h.s. of (3.65) may therefore be approximated
by

2
∫ ∞

0

(
1− ρ̄

ρ∞

)
r dr = b2α2

(
1− ρst

ρ∞

)
, (3.74)

whereα2 is an empirical coefficient that takes the variable density into account.
Introducing a modified Froude number

Fr∗ = u2
0

gdeff

ρ∞
α2 (ρ∞ − ρst)

= Fr
√
ρ0

ρ∞

ρ∞
α2 (ρ∞ − ρst)

, (3.75)

where Fr= u2
0/gd, we may replace (3.65) withx∗ = x/deff by

d

dx∗
[
u∗2b∗2

] = b∗2

Fr∗
. (3.76)

With b∗ = βx∗ from (3.72) foru∞ = 0 this leads to

du∗2

db∗
+ 2u∗2

b∗
= 1

βFr∗
, (3.77)

which is a linear first-order differential equation foru∗2 and may therefore be
solved analytically. One obtains the solution

u∗2 = c0

b∗2
+ b∗

3βFr∗
, wherec0 = 1

4
− 1

24βFr∗
, (3.78)

with the initial conditionu∗ = 1 for b∗ = 1/2. The first term describes the
momentum-dominated part of the vertical flame and reduces tou∗ = 1/(2b∗),
identical to (3.70), for large Froude numbers. The second term, which increases
with b∗, describes the influence of buoyancy. Using only this term the flame length
L is obtained with 4u∗ Ẑb∗2 = 1 from (3.67) andẐ = Zst/α1 as

L

deff
= 1

β

(
3βα2

1

16Z2
st

Fr∗
)1/5

. (3.79)

This shows the 1/5-exponential dependence of the flame length on the Froude
number. A comparison with experimental data reported in Sønju and Hustad
[3.14] allows to determine the yet unknown empirical constantα2 asα2 = 1. A
general equation for the flame length is obtained by combining (3.78) and (3.79)
as (

3

4
βFr∗ − 1

8

)(
βL

deff

)2

+
(
βL

deff

)5

= 3βα2
1

16Z2
st

Fr∗ , (3.80)

which reduces for sufficiently large values ofL to (3.79) and for large Froude
numbers to the momentum-dominated flame described by (3.73). Equation (3.80)
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Figure 3.8: Dimensionless flame length,L/d, versus Froude number, Fr, for
propane and comparison with experimental data of Sønju and Hustad [3.14].

has been evaluated for propane withρst/ρ∞ ≈ T∞/Tst and compared with exper-
imental data from [3.14] shown in Fig. 3.8. The buoyancy-dominated regime is
valid for Froude numbers Fr< 105 showing a slope of 1/5 in this range, whereas
the Froude number independent solution is approached for Fr> 106. For lower
Froude numbers there is an excellent agreement between the predictions of (3.80)
and the experimental data.

3.6 Experimental Data Showing Non-Equilibrium
Effects in Jet Diffusion Flames

While the flame length may be calculated on the basis of the mixture fraction field
only, more details on scalars are needed if one wants to determine chemical effects
and pollutant formation in jet flames. Flamelet extinction leading to lift-off will
be considered in lecture 4. Here we want to discuss as an example data taken
locally in a jet flame. They were obtained by Raman-scattering and laser-induced
fluorescence in diluted hydrogen-air diffusion flames by Barlow et al. [3.15]. The
fuel stream consisted of a mixture of 78 mole % H2, 22 mole % argon, the nozzle
inner diameterd was 5.2 mm and the co-flow air velocity was 9.2 m/s. The resulting
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flame length was approximatelyL = 60d. Two cases of nozzle exit velocities
were analyzed but only the case B withu0 = 150m/s will be considered here.

The stable species H2, O2, N2, and H2O were measured using Raman-scattering
at a single point with light from a flash-lamp pumped dye laser. In addition,
quantitative OH radical concentrations from LIF measurements were obtained by
using the instantaneous one-point Raman data to calculate quenching corrections
for each laser shot. The correction factor was close to unity for stoichiometric and
moderately lean conditions but increased rapidly for very lean and moderately rich
mixtures. The temperature was calculated for each laser shot by adding number
densities of the major species and using the perfect gas law for this atmospheric
pressure flame. The mixture fraction was calculated similarly from the stable
species concentrations. An ensemble of one-point, one-time Raman-scattering
measurements of major species and temperature are plotted over mixture fraction
in Fig. 3.9. They were taken atx/d = 30, r/d = 2 in the case B flame. Also
shown are calculations based on the assumption of chemical equilibrium.

The overall agreement between the experimental data and the equilibrium solu-
tion is quite good. This is often observed for hydrogen flames where the chemistry
is very fast. On the contrary, hydrocarbon flames at high strain rates are likely to
exhibit local quenching effects and non-equilibrium effects due to slow conversion
of CO to CO2.

Fig. 3.10 shows temperature profiles versus mixture fraction calculated for
counter-flow diffusion flames at different strain rates. These flamelet profiles
display a characteristic decrease of the maximum temperature with increasing
strain rates as shown schematically by the upper branch of the S-shaped curve in
Fig. 3.5. The strain rates vary here betweena = 100/s which is close to chemical
equilibrium anda = 10000/s. For comparison, the mean strain rate in the jet flame,
defined here as̄a = u(x)/b(x) may be estimated as̄a = 12.15/s atx/d = 30
based on (3.63).

Data of OH-concentrations are shown in Fig. 3.11. They are to be compared
to flamelet calculations in Fig. 3.12 for the different strain rates mentioned before.
It is evident from Fig. 3.11 that the local OH-concentrations exceed those of the
equilibrium profile by a factor 2 to 3. The flamelet calculations show an increase of
the maximum values by a factor of 3 already at the low strain ratesa = 100/s and
a = 1000/s, while the OH-profile over mixture fraction decreases and broadens for
the maximum valuea = 10000/s. This value is close to extinction for the diluted
flamelet considered here.

It should be mentioned that also Monte-Carlo simulations to solve a pdf-
transport equation were performed for this experimental configuration. Since the
prediction of chemically reacting flows by pdf-transport equations suffers from
limitations of the turbulent mixing model, we will not discuss these results here.

In summary, it may be concluded that one-point, one-time experimental data for
hydrogen flames when plotted as a function of mixture fraction, show qualitatively
similar tendencies as flamelet profiles. Non-equilibrium effects are evident in
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Figure 3.9: Ensemble of Raman scattering measurements of major species con-
centrations and temperatures atx/d = 30, r/D = 2. The solid curves show
equilibrium conditions.
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Figure 3.10: Temperature profiles from flamelet calculations at different strain
rates.
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Figure 3.11: Ensemble of LIF measurements of OH concentrations at
x/d = 30, r/D = 2. The solid curve shows equilibrium solution.
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Figure 3.12: OH mole fractions from flamelet calculations at different strain rates.
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both cases and lead to an increase of radical concentrations and a decrease of
temperatures. This has an important influence on NOx formation in turbulent
diffusion flames.
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Lecture 4

Partially Premixed Turbulent
Combustion

In this lecture we present a unified approach for partially premixed combustion
that combines the formulations for premixed combustion in lecture 2 and for non-
premixed combustion in lecture 3. The approach will be based on the two scalar
fieldsG(x, t) andZ(x, t) and the modeling assumptions that were introduced for
each of these fields. While the mixture fractionZ determines the local equivalence
ratio and thereby the value of the laminar burning velocity, the distance function
G determines the location of the premixed flame front. When the laminar burning
velocity is plotted as a function of mixture fraction the maximum lies close to
stoichiometric mixture. Therefore, flames will propagate the fastest along surfaces
Z(x, t) = Zst in a mixture field. If such a surface exists in a partially premixed field,
flame propagation generates a flame structure that is called triple flame. Such a
structure is shown schematically in Fig. 4.1 in a layered mixture. The leading edge
of the flame, called the triple point, propagates along the surface of stoichiometric
mixture. On the lean side of that surface there is a lean premixed flame branch
and on the rich side there is a rich premixed flame branch, both propagating with
a lower burning velocity. Behind the triple point, on the surface of stoichiometric
mixture, a diffusion flame develops where the unburnt intermediates like H2 and
CO from the rich premixed flame branch burn with the remaining oxygen from the
lean premixed flame branch.

Triple flames are the key element for flame propagation in partially premixed
systems. An early paper demonstrating the structure of a triple flame is due to
Phillips [4.1]. More recently, a number of theoretical and experimental papers have
been devoted to this subject [4.2]–[4.8]. In this lecture we will first analyze the
structure of triple flames and discuss numerical simulations. Then we will derive
an expression for the turbulent burning velocity for partially premixed combustion
and finally we apply this combustion model to determine the lift-off heights of
turbulent jet diffusion flames.
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Figure 4.1: A schematic presentation of the triple flame structure showing the
triple point, the two premixed flame branches and the trailing diffusion flame.

4.1 The Structure of Triple Flames

Fig. 4.2 shows the photograph of a methane-air triple flame stabilized in a laminar
round jet 44 mm above the triple flame burner. This flame was analyzed in [4.9].
The burner generates a staged mixture by issuing a central flow of diluted fuel,
surrounded by a lean co-flow, which is again surrounded by an air co-flow. These
three mixtures have interdiffused at the stabilization height to form a partially
premixed mixture ranging betweenZ = 0.15 on the centerline andZ = 0 in the
air co-flow. Due to dilution of the central flow the stoichiometric mixture fraction
is 0.0789. One can clearly distinguish in Fig. 4.2 (a) the bright rich premixed
flame in the center, the broad diffusion flame surrounding it and extending further
downstream and the thin lean premixed branches outside. The temperature field,
obtained from Rayleigh measurements is compared with numerical simulations in
Fig. 4.3. Here only the high temperature region generated by the diffusion flame
is identified as a flame. The numerically calculated heat release rate shown in
Fig. 4.4, however, indicates clearly the triple flame structure. The original data
on the l.h.s of Fig. 4.4 show that the heat release by the lean premixed flame is
the strongest, while the data multiplied by a factor 10 on the r.h.s show the heat
release in all three branches. It is interesting to note that neither the rich premixed
flame branch (as the chemiluminescence in Fig. 4.2 would suggest), nor the high
temperature diffusion flame shown in Fig. 4.3 generates the strongest heat release.

Triple flames are always curved at the triple point. This is due to the fact that
the burning velocity decreases as one moves from the stoichiometric contour to the
lean and the rich. The triple point therefore propagates faster against the oncoming
flow and the rich and lean premixed flame branches stay behind.
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Figure 4.2: (a) Photograph of a laminar triple flame and (b) a schematic diagram
of the triple flame burner.
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Heat release in the premixed branches has a strong influence on the flow field
ahead of the flame structure. Expansion in the premixed flame front generates
a normal velocity away from the front into the unburnt mixture. Since the front
is curved, this leads to a diverging flow field and a lower oncoming velocity di-
rectly ahead of the flame. The latter is shown in Fig. 4.5 where the axial velocity
through the triple point is shown, both by PIV measurements and by numerical
simulations. The oncoming velocity decreases from an upstream value of 0.9 m/s
to 0.4 m/s, which roughly corresponds to the burning velocity of the mixture. The
radial profiles of the axial velocity and the mixture fraction are shown in Fig. 4.6.
The measured values of the mixture fraction were obtained from the Raman mea-
surements of CH4 and O2. The triple point lies at stoichiometric mixture. The
strong velocity minimum at that point clearly shows the expansion effect.

Due to the decrease of the oncoming velocity ahead of the flame we have to
distinguish between the propagation velocity of the entire triple flame structure
and the burning velocity of the premixed flames relative to the flow, which has a
maximum close to the triple point. The ratio of the propagation velocity to the
burning velocity at the triple point depends on the density ratio between the unburnt
gas ahead of the triple point and the stoichiometric burnt gas behind. This velocity
ratio should scale with the square root of the density ratio [4.6].

The burning velocity at the two premixed branches should depend to first ap-
proximation on the local mixture fraction. Numerical calculations of the mass
burning rateρusL were performed in [4.9]. They showed, however, that the max-
imum of the mass burning rate normal to the flame front evaluated from the two
dimensional simulations was significantly lower than the mass burning rate through
a one-dimensional flame in a homogeneous mixture. The lowering of the burning
velocity may in part be attributed to the local mixture fraction gradient. An ad-hoc
expression that models this effect by a factor(1−αχ(Z)/χq) in terms of the scalar
dissipation rate was proposed in [4.10] and was justified using asymptotic analysis
in [4.11]. The mass flow rate is then given by the expression

(ρ s)(Z, χ) = ρu(Z)sL(Z)

{
1− αχ(Z)

χq

}
(4.1)

which is compared in Fig. 4.7 with the values obtained from the simulations.
Here, the scalar dissipation rate at quenching ofχq = 30 s−1 calculated for

this diluted methane diffusion flame is used [4.12]. The parameterα was fixed to
α = 0.96. The scalar dissipation rate on the premixed flame contour rises from
low values to about 6 s−1 for stoichiometric mixtures, and increases then up to 9.5
s−1 for rich mixtures. For very rich conditions the actual flow rate is higher than
predicted by (4.1). This is due to the preheating from the diffusion flame. For close
to stoichiometric mixtures, the flow rate is considerably lower which probably is
due to increased heat loss resulting from flame front curvature in this region. It
can be concluded that for a precise prediction of the local burning velocity in a
triple flame, effects of preheating and heat loss need to be considered and a simple
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Figure 4.3: Calculated and measured temperature distribution.
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expression like (4.1) may not be sufficient. However, in the following we will only
use the qualitative behaviour of the burning velocity of a triple flame as a function
of the mixture fraction, in order to derive an expression for the turbulent burning
velocity in partially premixed systems.

4.2 Numerical Simulations of Auto-Ignition and
Triple Flame Propagation

Numerical simulations of auto-ignition in non-uniform mixtures illustrate the role
of triple flame structures in partially premixed turbulent combustion very convinc-
ingly. In [4.6] and [4.7] two dimensional simulations on a 2562 grid have been
performed using a sixth-order finite difference scheme and a one-step reaction with
a Zeldovich number Ze= 8 and a heat release parameterα = (Tb−Tu)/Tb = 0.8.
The reaction rate was first order with respect to fuel and oxygen. In order to simu-
late the effect of compression, source terms were added to the temperature and the
species equations. Thereby the temperature was increased up to conditions close
to auto-ignition. The different stages of ignition and flame propagation may be
described as follows
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Figure 4.8: Triple flame propagation through a non-homogeneous mixture field
[4.6].

1. Ignition occured in the vicinity of the stoichiometric line in regions where
the scalar dissipation rate was low.

2. Two premixed flame fronts containing lean and rich branches propagate in
opposite directions along the stoichiometric lines. They have the shapes of
arrow-heads as shown in Fig. 4.8.

3. A diffusion flame develops on the stoichiometric line between the premixed
flames. The tails of the premixed flames are lying nearly parallel to the
diffusion flame and are propagating into the lean and rich mixture. As they
depart from the diffusion flame they become weaker and finally disappear.

4. When premixed flame fronts try to propagate into regions of very high scalar
dissipation rates, local extinction is likely to occur.

5. The dissipation rate and the heat release rate are inversely correlated. Max-
imum values of the dissipation rate correspond to minimum levels of heat
release and vice versa.

It is concluded that the conditional mean value of the scalar dissipation rate at
stoichiometric mixtureχ̃st rather than its unconditioned meanχ̃ controls ignition
and subsequent flame propagation in partially premixed systems.
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4.3 Turbulent Flame Propagation in Partially
Premixed Systems

We want to derive an expression for the mean turbulent burning velocity in a
partially premixed system. We expect turbulent flame propagation to be the fastest
in regions when the probability of finding stoichiometric mixture is the highest.
This correspond to regions where the mean mixture fraction is in the vicinity of
stoichiometric mixture. For a partially premixed system we also may formulate
a kinematic or a diffusiveG-equation that describes this propagation process, but
now the laminar burning velocity will be a function of the mixture fraction

∂G

∂t
+ v · ∇G = sL(Z, χ)σ − DLkσ + L n · ∇ · nσ . (4.2)

The turbulence modeling will be essentially the same as in lecture 2. Therefore
the turbulent counterpart of (4.2) corresponding to (2.57) will then be

∂G

∂t
+ v · ∇G = sT,p|∇G| − (DL + Dt)k̄(G)|∇G| . (4.3)

Here we have also combined the means of the first and the last term in 4.2 to define
the turbulent burning velocitysT,p for partially premixed systems by

sT,p = sL(Zst)+ sL(Z, χ)σ

(
1− b3

Lv′

`s0
L(Zst)

)
. (4.4)

Here, following (2.103) we have added the first term to cover the laminar limit.
The turbulent burning velocity for partially premixed systemssT,p depends in a
non-trivial manner on the laminar burning velocitysL(Z, χ), on the statistics ofσ
and on the mixture fraction field.

In [4.10] a model for the turbulent burning velocity has been derived by con-
sidering the mean value ofsL(Z, χ)σ as a statistical mean depending onZ, χ and
σ

sL(Z, χ)σ =
∫ ∞

0

∫ ∞
0

∫ ∞
0

sL(Z, χ)σ P(Z, χ, σ )d Zdχdσ . (4.5)

HereP(Z, χ, σ ) is a joint probability density function ofZ, χ andσ . In general,
one may not assume these quantities to be statistically independent. In fact, since
G = G0 represents the premixed flame fronts, iso-lines ofG will tend to align
with iso-lines ofZ in very lean and rich parts of the mixture, whileG is nearly
normal toZ aroundZ = Zst.

We will for simplicity, however, assume statistical independence and further-
more neglect fluctuations ofχ such that the pdf ofχ is given by a delta function.
The joint pdf is then written

P(Z, χ, σ ) = P(Z)P(σ )δ(χ − χ) . (4.6)
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Then, using (4.1) the integral in (4.5) takes the form

sL(Z, χ)σ = σ
(

1− αχst

χq

)∫ 1

0
sL(Z)P(Z) d Z . (4.7)

Here we have introduced the conditioned mean scalar dissipation rate at stoi-
chiometric mixture since this value determines the flame propagation process.
Furthermore, a convenient representation of the integral in (4.7) is∫ 1

0
sL(Z)P(Z) d Z = sL(Zst)P(Zst)(∆Z)sL (4.8)

which defines the width(∆Z)sL . This is essentially the range in mixture fraction
space where the burning velocity is a significant fraction of the maximum burning
velocity. It will depend on the shape ofsL(Z) and viaP(Z) on Z̃ andZ̃′′2. Numer-
ical calculations using (4.7) show that using a beta-function pdf and assuming the
mixture fraction variance to be proportional to the square of the mean mixture frac-
tion, one obtains for methane flames a nearly constant value for(∆Z)sL = 0.06,
which is in the vicinity of the stoichiometric mixture fractionZst = 0.055.

Inserting (4.8) into (4.7) leads to

sL (Z, χ) σ = sL(Zst)σ̄︸ ︷︷ ︸
premixed flame
propagation

× P(Zst)(∆Z)sL︸ ︷︷ ︸
partial
premixing

(
1− αχ st

χq

)
.︸ ︷︷ ︸

diffusion
flamelet
quenching

(4.9)

This formulation contains three contributions:

1. A term accounting for premixed turbulent flame propagation proportional to
the maximum laminar burning velocitysL(Zst) times the flame surface area
ratioσ , which may be calculated from (2.95).

2. A term due to partial premixing which restricts flame propagation to regions
where the probability for stoichiometric conditions is high.

3. A term accounting for triple flame extinction at large scalar dissipation rates.
This term takes into account that triple flamelets are less able to propagate
as the dissipation rate increases and will extinguish whenχ approachesχq.

4.4 Stabilization Heights of Lifted Jet Diffusion
Flames

In order to protect the burner material from being affected by the high temperatures
of the flame, industrial burners in general operate with lifted flames. If the nozzle
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Figure 4.9: Schematic presentation of a lifted jet diffusion flame.

exit velocity of the fuel in a jet diffusion flame exceeds a characteristic value,
the flame abruptly detaches from the nozzle. It now acquires a new position and
stabilizes further downstream. The lift-off height is the centerline distance from
the nozzle to the plane of flame stabilization (cf. Fig. 4.9). A further increase in
the exit velocity increases the lift-off height without significantly modifying the
turbulent flame length. The flame length was already considered in lecture 3.

There has been a long-term controversy about the stabilization mechanism in
lifted turbulent diffusion flames. The mechanism proposed by Vanquickenborne
and van Tiggelen [4.13] suggests that flame stabilization occurs on the contour of
mean stoichiometric mixture at the position where the axial mean velocity equals
the turbulent burning velocity for entirely premixed conditions. This model has
been followed by Eickhoff et al. [4.14] and Kalghatgi [4.15]. On the contrary,
Peters and Williams [4.16] have argued that in a non-premixed flow field flame
propagation will proceed along instantaneous surfaces of stoichiometric mixtures
up to the position where too many flamelets are quenched, so that flame propagation
of the turbulent flame towards the nozzle cannot proceed further. Here the flame
was viewed as a diffusion flamelet and flamelet quenching was thought to be the
essential mechanism. A thorough review on the lift-off problem has been given by
Pitts [4.17].

In Fig. 4.10 non-dimensional lift-off heights of methane flames are plotted as a
function of the nozzle exit velocityu0 for different nozzle diameters. Similar data
were obtained for methane in diluted air. The scalar dissipation rate at quenching
χq for diluted and undiluted methane-air flames taken from laminar flamelet calcu-
lations was multiplied withd/u0 to obtain the non-dimensional quantityχ∗q [4.18].
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Figure 4.10: Non-dimensional lift-off heights for methane-air flames.

These data are plotted as a function ofH/d in Fig. 4.11 for different dilutions
of the oxidizer stream, characterized by the mole fraction of the oxygen in that
stream. The straight line through these data has a slope of -1 and corresponds to

χqd

u0
= 0.036

(
H

d

)−1

. (4.10)

This leads immediately to the scaling

H = 0.036uo/χq (4.11)

independent of the nozzle diameter. Different values ofχq account for different
fuels. Typical values to be used here areχq = 15/s for methane andχq = 30/s for
propane in air at atmospheric pressure.

4.5 Numerical Simulation of Downward Flame
Propagation and Lift-Off Heights

The turbulent burning velocity model described by (4.9) has been used to calculate
the unsteady flame propagation and the stabilization in turbulent jet flames. For
this purpose the KIVA II code was modified to include an equation forG similar to
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(4.3). TheG field was initialized withG = 0 for unburnt conditions. Combustion
was initiated by settingG = 0.1 in one cell. The evolution of theG field then
led to valuesG > G0, whereG0 was chosen toG0 = 1.0. If G increases beyond
G = 2.0 it is set equal to that value.

The combustion model of KIVA II was removed, but equations for the mean
mixture fractionZ̃ and its variancẽZ′′2 were included. In addition, an equation
for the mean total enthalpỹh was solved,

∂ρh̃

∂t
+∇ · (ρvh̃) = ∂ p

∂t
+ v · ·∇ p+∇ ·

(
ρ̄ν̃t

Pr
∇h̃

)
. (4.12)

This was necessary, because KIVA II is a compressible code which uses an Arbi-
trary Lagrangian Eulerian (ALE) algorithm, where in a first Lagrangian step the
diffusion and acoustic terms are solved implicitly. In the second Eulerian step the
convection terms are treated explicitly by subcycling the implicit time step. There-
fore, the enthalpy equation cannot be coupled to the mixture fraction equation but
must contain the first two acoustic terms on the r.h.s. of (4.12).

The mass fractions of the chemical species were determined by using a flamelet
library for laminar counterflow diffusion flames for different values of the velocity
counterflow gradient. There are two possible states for a diffusion flamelet which
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are conditioned by the value ofG. If in a computational cellG À G0, it is
considered to be completely burnt and the mass fractions are determined by

Ỹi,b(Z̃, Z̃′′2,a) =
∫ 1

0
Yi (Z,a)P̃(Z) d Z (4.13)

whereYi (Z,a) is taken from the library of burning flamelets setting the velocity
gradienta of the flamelet equal to the local strain rate

a = ε̃

k̃
(4.14)

of the turbulent flow. In (4.13) a beta function pdf was used. The integration was
performed in advance and values forỸi,b were tabulated as functions ofZ̃, Z̃′′2 and
a.

If G¿ G0 in a computational cell, the mass fractions are those of fuel and air
in an unburnt mixture at the local value ofZ̃

Ỹi,u = Yi,u(Z̃) . (4.15)

If the computation cell is located within the flame brush thickness, the weighted
sum

Ỹi = f Ỹi,b + (1− f )Ỹi,u (4.16)

is used. The fraction of burnt flamelets in each cell is calculated by assuming that
G fluctuations are Gaussian distributed. Then

f =
∫ ∞

G=GO

1√
2πG′2

exp

{
−(G− G)2

2G′2

}
dG (4.17)

where the varianceG′2 is assumed to be proportional to the square of the integral
length scale.

The temperaturẽT in the cell was calculated from the mean enthalpy by

n∑
i=1

Ỹi hi (T̃) = h̃(x, t) (4.18)

where the specific enthalpies are taken from NASA polynomials. The temperature
profile and the velocity change due to thermal expansions, at the flame frontG =
G0 are continuous over a few grid points due to the weighting used in (4.16).

To determine instationary propagation velocities in turbulent methane jets a
simple experimental set-up consisting of a burner, an ignition device, a high speed
camera and an Argon-Ion laser was used. The nozzles had a length of 115 mm
and inner diametersD of 4, 6, and 8 mm. Methane was used as fuel, the fuel mass
flow was measured by flowmeters.
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Figure 4.12: Axial coordinate of the flame base over time during unsteady prop-
agation of a flame burning in an ignited turbulent cold jet of methane into still
air.

To visualize the flame front, the fuel flow was seeded with club moss spores
and illuminated with a laser light sheet. The club moss spores scatter the laser light
in the unburnt mixture and burn in the flame front, thus there is no light scatter in
the burned gas. Flame propagation is recorded with a high speed camera at 200
frames per second perpendicular to the laser light sheet. An electric spark is used
to ignite the flame at a downstream position, where a fuel lean mixture is expected.

In order to determine the burning velocities, the lowest visible flame front
position on each image of the film is marked visually and the positions are scanned.
From the images it can be seen, that local propagation velocities are influenced
by three-dimensional structures moving sometimes in spirals around the axis of
symmetry.

In order to simulate the downward propagating flame front one computational
cell of the steady cold flow field was initiated with̄G = G0 on the centerline
downstream of the position of mean stoichiometric mixture. The flame ignition
and propagation is then driven by theG gradient towards the neighboring cells.
An example calculation is shown in Fig. 4.12 where the axial distance between the
flame base and the nozzle is plotted versus time. The solid line denotes the calcu-
lation and the symbols represent the measured values from different experimental
runs.

It is seen that the slope of the calculated curve and therefore the propagation
velocity agrees well with that of the experimental runs. A closer inspection of the
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Figure 4.13: Stabilization region of a lifted turbulent jet diffusion flame.

calculations shows that flame propagation follows the surface of mean stoichio-
metric mixture and depends on the velocity fluctuations there. The experiments,
on the one side, seem to show a transport of the flame by the large structures at the
edge of the jet. Therefore, there remains a substantial difference between the very
crude turbulence modeling based on thek-ε-model and the large scale dynamics
in a jet.

When the unsteady flame front propagation reaches a steady state, the lift-off
height can be determined. Fig. 4.13 shows a blow-up of the stabilization region in
a turbulent methane jet flame with a diameterD = 4 mm and a fuel exit velocity
of 20 m/s. The shadowed area indicates the burnt gas regionG > G0 and the solid
lines are iso-contours of the mixture fraction. The expansion by the flame deflects
the stream lines and thereby the mixture fraction iso-contours at the flame base.
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Figure 4.14: A cut following the line of mean stoichiometric mixture at the stabi-
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In Fig. 4.14 a cut following the line of mean stoichiometric mixture at the
stabilization height is shown. The absolute values of the velocityṽ along this line
and theḠ-profile are plotted. The expansion effect by the rising temperature leads
first to a decrease of the velocityṽ with a local minimum in front of the flame and
then to a velocity acceleration further downstream.

In Fig. 4.15 calculated non-dimensional lift-off heights H/D of turbulent me-
thane jet diffusion flames are plotted over the jet exit velocity. They are compared
with experiments of different authors. The calculations have been performed for
two nozzle diameters,D = 4 mm andD = 8 mm, and a wide range of jet exit
velocities. The computed lift-off heights depend on the value of the parametersα

andχq in (4.9). This also indicates that the last term in (4.9) becomes important at
the stabilization height. The calculations also show that this term is nearly unity
during most of the downward propagation process and becomes approximately 0.3
at the lift-off height. Since the flow velocity and thereforesT p are non-zero,χ must
be smaller there thanχq at the stabilization height. If the stabilization height was
determined byχ = χq, as by the flamelet quenching criterion, the lift-off height is
underpredicted. This is evident from Fig. 4.13 where the position ofχ/χq = 5.0
lies upstream of the stabilization region. Therefore, both effects, premixed flame
propagation and flamelet quenching add to the stabilization mechanism.

It may be concluded that flame propagation and lift-off in jet diffusion flames
may be predicted using an expression for the turbulent burning velocity (4.9) that
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Figure 4.15: Measured and calculated lift-off heights of methane/air jet diffusion
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includes the two different physical mechanisms proposed in [4.13]–[4.16] to ex-
plain the stabilization mechanisms, namely premixed flame propagation along the
surface of mean stoichiometric mixture and flamelet quenching. While unsteady
flame propagation is essentially dominated by the first mechanism, the flame is
stabilized close to, but downstream of the positionχ = χq, indicating that flamelet
quenching is important for flame stabilization of lifted flames.
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