Thermodynamik II Aufgabe 2.3

Thema: Standard-Bildungsenthalpie und Standard-Reaktionsenthalpie, Hessscher Satz

A)

Die molaren Standard-Bildungsenthalpien h_m° einiger Stoffe sind in der nachfolgenden Tabelle aufgeführt.

Standard-Bildungsenthalpien h_m° bei $25\,^{\circ}\mathrm{C}$ und $1\,\mathrm{bar}$ in $\mathrm{kJ/mol}$

$\mathrm{H}_2\mathrm{O}(\mathrm{l})$	-285,8	$\mathrm{H_2O_2}(\mathrm{l})$	-187,8
$HN_3(g)$	-46,1	$\mathrm{HN}_3(\mathrm{l})$	+264,0
NO(g)	+90,3	$NO_2(g)$	+33,2

Ges.:

- a) Ermitteln Sie die molare Standard-Reaktionsenthalpie der Reaktion von flüssiger Stickstoffwasserstoffsäure $\mathrm{HN}_3(l)$ mit gasförmigem Stickstoffmonoxid $\mathrm{NO}(g)$ zu flüssigem Wasserstoffperoxid $\mathrm{H}_2\mathrm{O}_2(l)$ und gasförmigen molekularem Stickstoff $\mathrm{N}_2(g)$.
- b) Ist die Reaktion exotherm oder endotherm?

B)

Die Standard-Bildungsenthalpie pro Mol Formelumsatz von Methan als Gas $\mathrm{CH_4}(g)$ kann durch die Reaktion von festem Kohlenstoff (Graphit) $\mathrm{C}(s)$ mit Wasserstoff $\mathrm{H_2}(g)$

$$C(s) + 2 H_2(g) \rightarrow CH_4(g)$$

dargestellt werden. Eine direkte Bestimmung im Kalorimeter ist aus experimentellen Gründen jedoch nicht möglich.

Stattdessen wird die einfach zu realisierende Verbrennungsreaktion

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(l), \quad \Delta_r h_m^{\circ}$$

betrachtet und ihre Standard-Reaktionsenthalpie $\Delta_{\bf r} h_m^\circ$ pro Mol Formelumsatz experimentell ermittelt.

Geg.:

$$\Delta_{\rm r} h_m^{\circ} = -891, 6 \text{ kJ/mol}$$

Standard-Bildungsenthalpien h_m° bei 25 °C und 1 bar in kJ/mol

$$H_2O(1)$$
 -285,8 $H_2O(g)$ -241,8 $CO_2(g)$ -393,5 $CH_4(g)$ -74,9

Überprüfen Sie mit den Daten aus der Tabelle für die Standard-Bildungsenthalpien von Wasser $\mathrm{H}_2\mathrm{O}(1)$ und Kohlendioxid $\mathrm{CO}_2(\mathrm{g})$ und der gemessenen molaren Standard-Reaktionsenthalpie $\Delta_\mathrm{r}h_m^\circ$ für die Bruttoverbrennungsreaktion (3) die molare Standard-Bildungsenthalpie $h_{m,\mathrm{CH}_4(\mathrm{g})}^\circ$ von Methan aus der Tabelle!